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Abstract

We consider the problem of testing whether two unequal-sized samples were
drawn from identical distributions, versus distributions that differ significantly.
Specifically, given a target error parameter ε > 0, m1 independent draws from
an unknown distribution p with discrete support, and m2 draws from an unknown
distribution q of discrete support, we describe a test for distinguishing the case that
p = q from the case that ||p− q||1 ≥ ε. If p and q are supported on at most n ele-
ments, then our test is successful with high probability provided m1 ≥ n2/3/ε4/3

and m2 = Ω
(

max{ n√
m1ε

2 ,
√
n
ε2 }
)
. We show that this tradeoff is information the-

oretically optimal throughout this range in the dependencies on all parameters,
n,m1, and ε, to constant factors for worst-case distributions. As a consequence,
we obtain an algorithm for estimating the mixing time of a Markov chain on n
states up to a log n factor that uses Õ(n3/2τmix) queries to a “next node” ora-
cle. The core of our testing algorithm is a relatively simple statistic that seems to
perform well in practice, both on synthetic and on natural language data. We be-
lieve that this statistic might prove to be a useful primitive within larger machine
learning and natural language processing systems.

1 Introduction
One of the most basic problems in statistical hypothesis testing is the question of distinguishing
whether two unknown distributions are very similar, or significantly different. Classical tests, like
the Chi-squared test or the Kolmogorov-Smirnov statistic, are optimal in the asymptotic regime,
for fixed distributions as the sample sizes tend towards infinity. Nevertheless, in many modern
settings—such as the analysis of customer, web logs, natural language processing, and genomics,
despite the quantity of available data—the support sizes and complexity of the underlying distribu-
tions are far larger than the datasets, as evidenced by the fact that many phenomena are observed
only a single time in the datasets, and the empirical distributions of the samples are poor represen-
tations of the true underlying distributions.1 In such settings, we must understand these statistical
tasks not only in the asymptotic regime (in which the amount of available data goes to infinity), but
in the “undersampled” regime in which the dataset is significantly smaller than the size or complex-
ity of the distribution in question. Surprisingly, despite an intense history of study by the statistics,
information theory, and computer science communities, aspects of basic hypothesis testing and esti-
mation questions–especially in the undersampled regime—remain unresolved, and require both new
algorithms, and new analysis techniques.

∗Supported in part by NSF CAREER Award CCF-1351108
1To give some specific examples, two recent independent studies [19, 26] each considered the genetic se-

quences of over 14,000 individuals, and found that rare variants are extremely abundant, with over 80% of
mutations observed just once in the sample. A separate recent paper [16] found that the discrepancy in rare mu-
tation abundance cited in different demographic modeling studies can largely be explained by discrepancies in
the sample sizes of the respective studies, as opposed to differences in the actual distributions of rare mutations
across demographics, highlighting the importance of improved statistical tests in this “undersampled” regime.
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In this work, we examine the basic hypothesis testing question of deciding whether two unknown
distributions over discrete supports are identical (or extremely similar), versus have total variation
distance at least ε, for some specified parameter ε > 0. We consider (and largely resolve) this
question in the extremely practically relevant setting of unequal sample sizes. Informally, taking
ε to be a small constant, we show that provided p and q are supported on at most n elements, for
any γ ∈ [0, 1/3], the hypothesis test can be successfully performed (with high probability over the
random samples) given samples of size m1 = Θ(n2/3+γ) from p, and m2 = Θ(n2/3−γ/2) from
q, where n is the size of the supports of the distributions p and q. Furthermore, for every γ in
this range, this tradeoff between m1 and m2 is necessary, up to constant factors. Thus, our results
smoothly interpolate between the known bounds of Θ(n2/3) on the sample size necessary in the
setting where one is given two equal-sized samples [6, 9], and the bound of Θ(

√
n) on the sample

size in the setting in which the sample is drawn from one distribution and the other distribution is
known to the algorithm [22, 29]. Throughout most of the regime of parameters, when m1 � m2

2,
our algorithm is a natural extension of the algorithm proposed in [9], and is similar to the algorithm
proposed in [3] except with the addition of a normalization term that seems crucial to obtaining our
information theoretic optimality. In the extreme regime whenm1 ≈ n andm2 ≈

√
n, our algorithm

introduces an additional statistic which (we believe) is new. Our algorithm is relatively simple, and
practically viable. In Section 4 we illustrate the efficacy of our approach on both synthetic data, and
on the real-world problem of deducing whether two words are synonyms, based on a small sample
of the bi-grams in which they occur.

We also note that, as pointed out in several related work [3, 12, 6], this hypothesis testing question
has applications to other problems, such as estimating or testing the mixing time of Markov chains,
and our results yield improved algorithms in these settings.

1.1 Related Work

The general question of how to estimate or test properties of distributions using fewer samples
than would be necessary to actually learn the distribution, has been studied extensively since the
late ’90s. Most of the work has focussed on “symmetric” properties (properties whose value is
invariant to relabeling domain elements) such as entropy, support size, and distance metrics between
distributions (such as `1 distance). This has included both algorithmic work (e.g. [4, 5, 7, 8, 10, 13,
20, 21, 27, 28, 29]), and results on developing techniques and tools for establishing lower bounds
(e.g. [23, 30, 27]). See the recent survey by Rubinfeld for a more thorough summary of the
developments in this area [24]).

The specific problem of “closeness testing” or “identity testing”, that is, deciding whether two dis-
tributions, p and q, are similar, versus have significant distance, has two main variants: the one-
unknown-distribution setting in which q is known and a sample is drawn from p, and the two-
unknown-distributions settings in which both p and q are unknown and samples are drawn from
both. We briefly summarize the previous results for these two settings.

In the one-unknown-distribution setting (which can be thought of as the limiting setting in the case
that we have an arbitrarily large sample drawn from distribution q, and a relatively modest sized
sample from p), initial work of Goldreich and Ron [12] considered the problem of testing whether
p is the uniform distribution over [n], versus has distance at least ε. The tight bounds of Θ(

√
n/ ε2)

were later shown by Paninski [22], essentially leveraging the birthday paradox and the intuition
that, among distributions supported on n elements, the uniform distribution maximizes the number
of domain elements that will be observed once. Batu et al. [8] showed that, up to polylogarithmic
factors of n, and polynomial factors of ε, this dependence was optimal for worst-case distributions
over [n]. Recently, an “instance–optimal” algorithm and matching lower bound was shown: for any
distribution q, up to constant factors, max{ 1

ε , ε
−2||q−max

−Θ(ε)||2/3} samples from p are both necessary
and sufficient to test p = q versus ||p − q|| ≥ ε, where ||q−max

−Θ(ε)||2/3 ≤ ||q||2/3 is the 2/3-rd norm
of the vector of probabilities of distribution q after the maximum element has been removed, and
the smallest elements up to Θ(ε) total mass have been removed. (This immediately implies the tight
bounds that if q is any distribution supported on [n], O(

√
n/ ε2) samples are sufficient to test its

identity.)

The two-unknown-distribution setting was introduced to this community by Batu et al. [6]. The
optimal sample complexity of this problem was recently determined by Chan et al. [9]: they showed
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thatm = Θ(n2/3/ε4/3) samples are necessary and sufficient. In a slightly different vein, Acharya et
al. [1, 2] recently considered the question of closeness testing with two unknown distributions from
the standpoint of competitive analysis. They proposed an algorithm that performs the desired task
using O(s3/2 polylog s) samples, and established a lower bound of Ω(s7/6), where s represents the
number of samples required to determine whether a set of samples were drawn from p versus q, in
the setting where p and q are explicitly known.

A natural generalization of this hypothesis testing problem, which interpolates between the two-
unknown-distribution setting and the one-unknown-distribution setting, is to consider unequal sized
samples from the two distributions. More formally, given m1 samples from the distribution p, the
asymmetric closeness testing problem is to determine how many samples, m2, are required from the
distribution q such that the hypothesis p = q versus ||p − q||1 > ε can be distinguished with large
constant probability (say 2/3). Note that the results of Chan et al. [9] imply that it is sufficient to
consider m1 ≥ Θ(n2/3/ε4/3). This problem was studied recently by Acharya et al. [3]: they gave
an algorithm that given m1 samples from the distribution p uses m2 = O(max{ n logn

ε3
√
m1
,
√
n logn
ε2 })

samples from q, to distinguish the two distributions with high probability. They also proved a lower
bound of m2 = Ω(max{

√
n
ε2 ,

n2

ε4m2
1
}). There is a polynomial gap in these upper and lower bounds

in the dependence on n,
√
m1 and ε.

As a corollary to our main hypothesis testing result, we obtain an improved algorithm for testing
the mixing time of a Markov chain. The idea of testing mixing properties of a Markov chain goes
back to the work of Goldreich and Ron [12], which conjectured an algorithm for testing expansion
of bounded-degree graphs. Their test is based on picking a random node and testing whether ran-
dom walks from this node reach a distribution that is close to the uniform distribution on the nodes
of the graph. They conjectured that their algorithm had O(

√
n) query complexity. Later, Czumaj

and Sohler [11], Kale and Seshadhri [15], and Nachmias and Shapira [18] have independently con-
cluded that the algorithm of Goldreich and Ron is provably a test for expansion property of graphs.
Rapid mixing of a chain can also be tested using eigenvalue computations. Mixing is related to the
separation between the two largest eigenvalues [25, 17], and eigenvalues of a dense n × n matrix
can be approximated in O(n3) time and O(n2) space. However, for a sparse n × n symmetric
matrix with m nonzero entries, the same task can be achieved in O(n(m + log n)) operations and
O(n+m) space. Batu et al. [6] used their `1 distance test on the t-step distributions, to test mixing
properties of Markov chains. Given a finite Markov chain with state space [n] and transition matrix
PPP = ((P (x, y))), they essentially show that one can estimate the mixing time τmix up to a factor
of log n using Õ(n5/3τmix) queries to a next node oracle, which takes a state x ∈ [n] and outputs a
state y ∈ [n] drawn from the distribution P (x, ·). Such an oracle can often be simulated significantly
more easily than actually computing the transition matrix P (x, y).

We conclude this related work section with a comment on “robust” hypothesis testing and distance
estimation. A natural hope would be to simply estimate ||p− q|| to within some additive ε, which is
a strictly more difficult task than distinguishing p = q from ||p− q|| ≥ ε. The results of Valiant and
Valiant [27, 28, 29] show that this problem is significantly more difficult than hypothesis testing:
the distance can be estimated to additive error ε for distributions supported on ≤ n elements using
samples of sizeO(n/ log n) (in both the setting where either one, or both distributions are unknown).
Moreover, Ω(n/ log n) samples are information theoretically necessary, even if q is the uniform
distribution over [n], and one wants to distinguish the case that ||p − q||1 ≤ 1

10 from the case that
||p − q||1 ≥ 9

10 . Recall that the non-robust test of distinguishing p = q versus ||p − q|| > 9/10
requires a sample of size only O(

√
n). The exact worst-case sample complexity of distinguishing

whether ||p− q||1 ≤ 1
nc versus ||p− q||1 ≥ ε is not well understood, though in the case of constant

ε, up to logarithmic factors, the required sample size seems to scale linearly in the exponent between
n2/3 and n as c goes from 1/3 to 0.

1.2 Our results

Our main result resolves the minimax sample complexity of the closeness testing problem in the
unequal sample setting, to constant factors, in terms of n, the support sizes of the distributions in
question:
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Theorem 1. Given m1 ≥ n2/3/ε4/3 and ε > n−1/12, and sample access to distributions p and q
over [n], there is an O(m1) time algorithm which takes m1 independent draws from p and m2 =

O(max{ n√
m1ε

2 ,
√
n
ε2 }) independent draws from q, and with probability at least 2/3 distinguishes

whether

||p− q||1 ≤ O
(

1

m2

)
versus ||p− q||1 ≥ ε. (1)

Moreover, given m1 samples from p, Ω(max{ n√
m1ε

2 ,
√
n
ε2 }) samples from q are information-

theoretically necessary to distinguish p = q from ||p − q||1 ≥ ε with any constant probability
bounded below by 1/2.

The lower bound in the above theorem is proved using the machinery developed in Valiant [30],
and “interpolates” between the Θ(

√
n/ ε2) lower bound in the one-unknown-distribution setting of

testing uniformity [22] and the Θ(n2/3/ ε4/3) lower bound in the setting of equal sample sizes from
two unknown distributions [9]. The algorithm establishing the upper bound involves a re-weighted
version of a statistic proposed in [9], and is similar to the algorithm proposed in [3] modulo the
addition of a normalizing term, which seems crucial to obtaining our tight results. In the extreme
regime whenm1 ≈ n andm2 ≈

√
n/ ε2, we incorporate an additional statistic that has not appeared

before in the literature.

As an application of Theorem 1 in the extreme regime when m1 ≈ n, we obtain an improved
algorithm for estimating the mixing time of a Markov chain:
Corollary 1. Consider a finite Markov chain with state space [n] and a next node oracle; there is
an algorithm that estimates the mixing time, τmix, up to a multiplicative factor of log n, that uses
Õ(n3/2τmix) time and queries to the next node oracle.

Concurrently to our work, Hsu et al. [14] considered the question of estimating the mixing time
based on a single sample path (as opposed to our model of a sampling oracle). In contrast to our
approach via hypothesis testing, they considered the natural spectral approach, and showed that the
mixing time can be approximated, up to logarithmic factors, given a path of length Õ(τ3

mix/πmin),
where πmin is the minimum probability of a state under the stationary distribution. Hence, if the
stationary distribution is uniform over n states, this becomes Õ(nτ3

mix). It remains an intriguing
open question whether one can simultaneously achieve both the linear dependence on τmix of our
results and the linear dependence on 1/πmin or the size of the state space, n, as in their results.

1.3 Outline

We begin by stating our testing algorithm, and describe the intuition behind the algorithm. The
formal proof of the performance guarantees of the algorithm require rather involved bounds on the
moments of various parameters, and are provided in the supplementary material. We also defer
the entirety of the matching information theoretic lower bounds to the supplementary material, as
the techniques may not appeal to as wide an audience as the algorithmic portion of our work. The
application of our testing results to the problem of testing or estimating the mixing time of a Markov
chain is discussed in Section 3. Finally, Section 4 contains some empirical results, suggesting that
the statistic at the core of our testing algorithm performs very well in practice. This section contains
both results on synthetic data, as well as an illustration of how to apply these ideas to the problem
of estimating the semantic similarity of two words based on samples of the n-grams that contain the
words in a corpus of text.

2 Algorithms for `1 Testing

In this section we describe our algorithm for `1 testing with unequal samples. This gives the upper
bound in Theorem 1 on the sample sizes necessary to distinguish p = q from ||p − q||1 ≥ ε. For
clarity and ease of exposition, in this section we consider ε to be some absolute constant, and supress
the dependency on ε . The slightly more involved algorithm that also obtains the optimal dependency
on the parameter ε is given in the supplementary material.

We begin by presenting the algorithm, and then discuss the intuition for the various steps.
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Algorithm 1 The Closeness Testing Algorithm
Suppose ε = Ω(1) and m1 = O(n1−γ) for some γ ≥ 0. Let S1, S2 denote two independent sets of
m1 samples drawn from p and let T1, T2 denote two independent sets of m2 samples drawn from q.
We wish to test p = q versus ||p− q||1 > ε.

• Let b = C0
logn
m2

, for an absolute constant C0, and define the set

B = {i ∈ [n] :
X
S1
i

m1
> b} ∪ {i ∈ [n] :

Y
T1
i

m2
> b}, where XS1

i denotes the number of
occurrences of i in S1, and Y T1

i denotes the number of occurrences of i in T1.
• Let Xi denote the number of occurrences of element i in S2, and Yi denote the number of

occurrences of element i in T2:

1. Check if ∑
i∈B

∣∣∣∣Xi

m1
− Yi
m2

∣∣∣∣ ≤ ε/6. (2)

2. Check if

Z :=
∑

i∈[n]\B

(m2Xi −m1Yi)
2 − (m2

2Xi +m2
1Yi)

Xi + Yi
≤ Cγm3/2

1 m2, (3)

for an appropriately chosen constant Cγ (depending on γ).
3. If γ ≥ 1/9:

• If (2) and (3) hold, then ACCEPT. Otherwise, REJECT.
4. Otherwise, if γ < 1/9 :

• Check if

R :=
∑

i∈[n]\B

111{Yi = 2}
Xi + 1

≤ C1
m2

2

m1
, (4)

where C1 is an appropriately chosen absolute constant.
• REJECT if there exists i ∈ [n] such that Yi ≥ 3 and Xi ≤ C2

m1

m2n1/3 , where C2 is an
appropriately chosen absolute constant.

• If (2), (3), and (4) hold, then ACCEPT. Otherwise, REJECT.

The intuition behind the above algorithm is as follows: with high probability, all elements in the
set B satisfy either pi > b/2, or qi > b/2 (or both). Given that these elements are “heavy”, their
contribution to the `1 distance will be accurately captured by the `1 distance of their empirical
frequencies (where these empirical frequencies are based on the second set of samples, S2, T2).

For the elements that are not in set B—the “light” elements—their empirical frequencies will,
in general, not accurately reflect their true probabilities, and hence the distance between the em-
pirical distributions of the “light” elements will be misleading. The Z statistic of Equation 3 is
designed specifically for this regime. If the denominator of this statistic were omitted, then this
would give an estimator for the squared `2 distance between the distributions (scaled by a factor of
m2

1m
2
2). To see this, note that if pi and qi are small, then Binomial(m1, pi) ≈ Poisson(m1pi)

and Binomial(m2, qi) ≈ Poisson(m2qi); furthermore, a simple calculation yields that if Xi ←
Poisson(m1pi) and Yi ← Poisson(m2qi), then E

[
(m2Xi −m1Yi)

2 − (m2
2Xi +m2

1Yi)
]

=

m2
1m

2
2(p − q)2. The normalization by Xi + Yi “linearizes” the Z statistic, essentially turning the

squared `2 distance into an estimate of the `1 distance between light elements of the two distri-
butions. Similar results can possibly be obtained using other linear functions of Xi and Yi in the
denominator, though we note that the “obvious” normalizing factor of Xi + m1

m2
Yi does not seem to

work theoretically, and seems to have extremely poor performance in practice.

For the extreme case (corresponding to γ < 1/9) where m1 ≈ n and m2 ≈
√
n/ ε2, the statistic

Z might have a prohibitively large variance; this is essentially due to the “birthday paradox” which
might cause a constant number of rare elements (having probability O(1/n) to occur twice in a
sample of size m2 ≈

√
n/ ε2). Each such element will contribute Ω(m2

1) ≈ n2 to the Z statistic,
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and hence the variance can be ≈ n4. The statistic R of Equation (4) is tailored to deal with these
cases, and captures the intuition that we are more tolerant of indices i for which Yi = 2 if the
corresponding Xi is larger. It is worth noting that one can also define a natural analog of the R
statistic corresponding to the indices i for which Yi = 3, etc., using which the robustness parameter
of the test can be improved. The final check—ensuring that in this regime with m1 � m2 there are
no elements for which Yi ≥ 3 but Xi is small—rules out the remaining sets of distributions, p, q, for
which the variance of the Z statistic is intolerably large.

Finally, we should emphasize that the crude step of using two independent batches of samples—
the first to obtain the partition of the domain into “heavy” and “light” elements, and the second to
actually compute the statistics, is for ease of analysis. As our empirical results of Section 4 suggest,
for practical applications one may want to use only the Z-statistic of (3), and one certainly should
not “waste” half the samples to perform the “heavy”/“light” partition.

3 Estimating Mixing Times in Markov Chains

The basic hypothesis testing question of distinguishing identical distributions from those with sig-
nificant `1 distance can be employed for several other practically relevant tasks. One example is the
problem of estimating the mixing time of Markov chains.

Consider a finite Markov chain with state space [n], transition matrix PPP = ((P (x, y))), with sta-
tionary distribution π. The t-step distribution starting at the point x ∈ [n], P tx(·) is the probability
distribution on [n] obtained by running the chain for t steps starting from x.

Definition 1. The ε-mixing time of a Markov chain with transition matrixPPP = ((P (x, y))) is defined

as tmix(ε) := inf
{
t ∈ [n] : supx∈[n]

1
2

∑
y∈[n] |P tx(y)− π(y)| ≤ ε

}
.

Definition 2. The average t-step distribution of a Markov chain PPP with n states is the distribution
P
t

= 1
n

∑
x∈[n] P

t
x, that is, the distribution obtained by choosing x uniformly from [n] and walking

t steps from the state x.

The connection between closeness testing and testing whether a Markov chain is close to mixing
was first observed by Batu et al. [6], who proposed testing the `1 difference between distributions
P t0x and P

t0 , for every x ∈ [n]. The algorithm leveraged their equal sample-size hypothesis testing
results, drawing Õ(n2/3 log n) samples from both the distributions P t0x and P

t0 . This yields an
overall running time of Õ(n5/3t0).

Here, we note that our unequal sample-size hypothesis testing algorithm can yield an improved
runtime. Since the distribution P

t0 is independent of the starting state x, it suffices to take Õ(n)

samples from P
t0 once and Õ(

√
n) samples from P tx, for every x ∈ [n]. This results in a query and

runtime complexity of Õ(n3/2t0). We sketch this algorithm below.

Algorithm 2 Testing for Mixing Times in Markov Chains
Given t0 ∈ R and a finite Markov chain with state space [n] and transition matrix PPP = ((P (x, y))),
we wish to test

H0 : tmix

(
O

(
1√
n

))
≤ t0, versus H1 : tmix (1/4) > t0. (5)

1. DrawO(log n) samples S1, . . . , SO(logn), each of size Pois(C1n) from the average t0-step
distribution.

2. For each state x ∈ [n] we will distinguish whether ||P t0x − P
t0 ||1 ≤ O( 1√

n
), versus

||P t0x − P
t0 ||1 > 1/4, with probability of error� 1/n. We do this by running O(log n)

runs of Algorithm 1, with the i-th run using Si and a fresh set of Pois(O(
√
n)) samples

from P tx.
3. If all n of the `1 closeness testing problems are accepted, then we ACCEPT H0.
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The above testing algorithm can be leveraged to estimate the mixing time of a Markov chain, via the
basic observation that if tmix(1/4) ≤ t0, then for any ε, tmix(ε) ≤ log ε

log 1/2 t0, and thus tmix(1/
√
n) ≤

2 log n · tmix(1/4). Because tmix(1/4) and tmix(O(1/
√
n)) differ by at most a factor of log n,

by applying Algorithm 2 for a geometrically increasing sequence of t0’s, and repeating each test
O(log t0 + log n) times, one obtains Corollary 1, restated below:

Corollary 1 For a finite Markov chain with state space [n] and a next node oracle, there is an
algorithm that estimates the mixing time, τmix, up to a multiplicative factor of log n, that uses
Õ(n3/2τmix) time and queries to the next node oracle.

4 Empirical Results
Both our formal algorithms and the corresponding theorems involve some unwieldy constant factors
(that can likely be reduced significantly). Nevertheless, in this section we provide some evidence
that the statistic at the core of our algorithm can be fruitfully used in practice, even for surprisingly
small sample sizes.

4.1 Testing similarity of words
An extremely important primitive in natural language processing is the ability to esti-
mate the semantic similarity of two words. Here, we show that the Z statistic, Z =∑
i

(m2Xi−m1Yi)
2−(m2

2Xi+m
2
1Yi)

m
3/2
1 m2(Xi+Yi)

, which is the core of our testing algorithm, can accurately dis-

tinguish whether two words are very similar based on surprisingly small samples of the contexts in
which they occur. Specifically, for each pair of words, a, b that we consider, we select m1 random
occurrences of a and m2 random occurrences of word b from the Google books corpus, using the
Google Books Ngram Dataset.2 We then compare the sample of words that follow a with the sample
of words that follow b. Henceforth, we refer to these as samples of the set of bi-grams involving
each word.

Figure 1(a) illustrates the Z statistic for various pairs of words that range from rather similar words
like “smart” and “intelligent”, to essentially identical word pairs such as “grey” and “gray” (whose
usage differs mainly as a result of historical variation in the preference for one spelling over the
other); the sample size of bi-grams containing the first word is fixed at m1 = 1, 000, and the sample
size corresponding to the second word varies from m2 = 50 through m2 = 1, 000. To provide a
frame of reference, we also compute the value of the statistic for independent samples corresponding
to the same word (i.e. two different samples of words that follow “wolf”); these are depicted in red.
For comparison, we also plot the total variation distance between the empirical distributions of
the pair of samples, which does not clearly differentiate between pairs of identical words, versus
different words, particularly for the smaller sample sizes.

One subtle point is that the issue with using the empirical distance between the distributions goes
beyond simply not having a consistent reference point. For example, let X denote a large sample
of size m1 from distribution p, X ′ denote a small sample of size m2 from p, and Y denote a
small sample of size m2 from a different distribution q. It is tempting to hope that the empirical
distance between X and X ′ will be smaller than the empirical distance between X and Y . As
Figure 1(b) illustrates, this is not always the case, even for natural distributions: for the specific
example illustrated in the figure, over much of the range of m2, the empirical distance between X
and X ′ is indistinguishable from that of X and Y , though the Z statistic easily discerns that these
distributions are very different.

This point is further emphasized in Figure 2, which depicts this phenomena in the synthetic setting
where p = Unif[n] is the uniform distribution over n elements, and q is the distribution whose
elements have probabilities (1 ± ε)/n, for ε = 1/2. The second and fourth plots represent the
probability that the distance between two empirical distributions of samples from p is smaller than
the distance between the empirical distributions of the samples from p and q; the first and third
plots represent the analogous probability involving the Z statistic. The first two plots correspond to
n = 1, 000 and the last two correspond to n = 50, 000. In all plots, we consider a pair of samples
of respective sizes m1 and m2, as m1 and m2 range between

√
n and n.

2The Google Books Ngram Dataset is freely available here: http://storage.googleapis.com/
books/ngrams/books/datasetsv2.html
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Figure 1: (a) Two measures of the similarity between words, based on samples of the bi-grams
containing each word. Each line represents a pair of words, and is obtained by taking a sample of
m1 = 1, 000 bi-grams containing the first word, and m2 = 50, . . . , 1, 000 bi-grams containing the
second word, where m2 is depicted along the x-axis in logarithmic scale. In both plots, the red lines
represent pairs of identical words (e.g. “wolf/wolf”,“almost/almost”,. . . ). The blue lines represent
pairs of similar words (e.g. “wolf/fox”, “almost/nearly”,. . . ), and the black line represents the pair
“grey/gray” whose distribution of bi-grams differ because of historical variations in preference for
each spelling. Solid lines indicate the average over 200 trials for each word pair and choice of m2,
with error bars of one standard deviation depicted. The left plot depicts our statistic, which clearly
distinguishes identical words, and demonstrates some intuitive sense of semantic distance. The
right plot depicts the total variation distance between the empirical distributions—which does not
successfully distinguish the identical words, given the range of sample sizes considered. The plot
would not be significantly different if other distance metrics between the empirical distributions,
such as f-divergence, were used in place of total variation distance. Finally, note the extremely
uniform magnitudes of the error bars in the left plot, as m2 increases, which is an added benefit
of the Xi + Yi normalization term in the Z statistic. (b) Illustration of how the empirical distance
can be misleading: here, the empirical distance between the distributions of samples of bi-grams for
“wolf/wolf” is indistinguishable from that for the pair “wolf/fox*” over much of the range of m2;
nevertheless, our statistic clearly discerns that these are significantly different distributions. Here,
“fox*” denotes the distribution of bi-grams whose first word is “fox”, restricted to only the most
common 100 bi-grams.
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Figure 2: The first and third plot depicts the probability that the Z statistic applied to samples of
sizes m1,m2 drawn from p = Unif [n] is smaller than the Z statistic applied to a sample of size m1

drawn from p and m2 drawn from q, where q is a perturbed version of p in which all elements have
probability (1 ± 1/2)/n. The second and fourth plots depict the probability that empirical distance
between a pair of samples (of respective sizes m1,m2) drawn from p is less than the empirical
distribution between a sample of size m1 drawn from p and m2 drawn from q. The first two plots
correspond to n = 1, 000 and the last two correspond to n = 50, 000. In all plots, m1 and m2 range
between

√
n and n on a logarithmic scale. In all plots the colors depict the average probability based

on 100 trials.
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