
A Proofs

In this section, we provide the proofs for our main results. First we characterize the implications of
our general framework for the models in §2. We then establish the statistical convergence rates of the
proposed procedure and the corresponding minimax lower bounds.

A.1 Proof of Lemma 3.2

LetX andX ′ be two independent random vectors following N (0, Ip). Let Y and Y ′ be two binary
responses that depend onX,X ′ via (1.1). Then we have

E(M) = E
[
(Y − Y ′)2(X −X ′)(X −X ′)>

]
.

Note that (Y − Y ′)2 is a binary random variable taking values in {0, 4}. We have

E
[
(Y − Y ′)2|X = x,X ′ = x′

]
= 4 · P

[
(Y − Y ′)2 = 4|X = x,X ′ = x′

]
= 4 · P(Y = 1|X = x) · P(Y ′ = −1|X ′ = x′) + 4 · P(Y ′ = 1|X ′ = x′) · P(Y = −1|X = x)

= 2− 2f(〈x,β∗〉)f(〈x′,β∗〉). (A.1)

There exists some rotation matrix Q ∈ Rp×p such that Qβ∗ = e1 := [1, 0, . . . , 0]>. LetX := QX
andX ′ := QX ′. Then we have

E
[
(Y − Y ′)2|X = x,X ′ = x′

]
= E

[
(Y − Y ′)2|X = Qx,X ′ = Qx′] = 2− 2 · f(x1) · f(x′1),

where x1 and x′1 denote the first entries of x := Qx and x′ := Qx′ respectively. Note that X and
X ′ also follow N (0, Ip) since symmetric Gaussian distribution is rotation invariant. Then we have

E(M) = E
{[

2− 2f
(
X1

)
f
(
X ′1
)]

(X −X ′)(X −X ′)>
}

= Q>E
{[

2− 2f(X1)f(X ′1)
]
(X −X ′)(X −X ′)>

}
Q

= 4Q>
[
(µ2

1 − µ0µ2 + µ2
0) · e1e>1 + (1− µ2

0) · Ip
]
Q = 4φ(f) · β∗β∗> + 4(1− µ2

0) · Ip.
The third equality is from the definitions of µ0, µ1, µ2 in (3.2) and the last equality is from (3.1).

A.2 Proof of Lemma 3.4

Flipped logistic regression. For flipped logistic regression, the link function f is defined in (2.1),
where ζ is the intercept. For ζ = 0, we have

f(z) =
ez − 1

ez + 1
+ 2pe ·

1− ez

1 + ez
.

Note that f is odd. Hence, by (3.2) we have µ0 = µ2 = 0. Meanwhile, from Stein’s lemma, we have

µ1 = E[f ′(z)] = E
[
(1− 2pe) ·

2ez

(1 + ez)2

]
= (1− 2pe) · E

2ez

(1 + ez)2
.

We thus have φ(f) = µ2
1 ≥ C(1− 2pe)

2 for some constant C.

Robust one-bit compressed sensing. Recall in robust one-bit compressed sensing, we have

f(z) = 2 · P(z + ε > 0)− 1,

where ε ∼ N (0, σ2) is the noise term in (2.2). In particular, note that

f(z) + f(−z) = 2 ·
[
P(ε > z) + P(ε > −z)

]
− 2 = 0.

Hence, f(z) is an odd function, which implies µ0 = µ2 = 0 by (3.2). For µ1 defined in (3.2), we
have

µ1 = E[f(z)z] = E
{[

2 · P(ε > −z)− 1
]
z
}

= E
[
P(|ε| < |z|)|z|

]
≥ E

{[
1− 2e−z

2/(2σ2)
]
|z|
}

(A.2)

= E(|z|)−
∫ ∞
−∞

2√
2π
e−

u2

2σ2 e−
u2

2 |u|du = E(|z|)
(

1− 2
σ2

1 + σ2

)
= E(|z|)1− σ2

1 + σ2
.
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Here the inequality is from the fact that P(|ε| < |z|) ≥ 1−2e−
z2

2σ2 since ε ∼ N (0, σ2). For σ2 < 1/2,
we have

φ(f) = µ2
1 ≥ C

(
1− σ2

1 + σ2

)2

,

where C = E(|z|) with z ∼ N (0, 1). For σ2 ≥ 1/2, rather than applying P(|ε| < |z|) ≥ 1− 2e−
z2

2σ2

in the inequality of (A.2), we apply P(|ε| < |z|) ≥ 2√
2πσ

e−
z2

2σ2 |z| since ε ∼ N (0, σ2). We then
obtain

µ1 ≥ E
[

2√
2πσ

e−
z2

2σ2 z2
]

=
2√
2πσ

∫ ∞
−∞

1√
2π
e−

u2

2σ2 e−
u2

2 u2du ≥ C ′

σ

(
σ2

1 + σ2

) 3
2

.

Finally, for σ2 ≥ 1/2 we have

φ(f) ≥ C ′σ4

(1 + σ2)3
.

One-bit phase retrieval. For the one-bit phase retrieval model, the major difference from the previous
two models is that f(z) is even, which results in µ1 = 0. By the definition in (3.2), we have

µ0 = E[f(z)] = P(|z| ≥ θ)− P(|z| < θ),

and

µ2 = E
[
f(z)z2

]
= P(|z| ≥ θ)E

(
z2
∣∣ |z| ≥ θ)− P(|z| < θ)E

(
z2
∣∣ |z| < θ

)
.

For notational simplicity, we define p1 = P(|z| ≥ θ). We have

φ(f) = µ0(µ0 − µ2) = 2p1(2p1 − 1)
[
1− E

(
z2
∣∣ |z| > θ

)]
, (A.3)

where the second equality follows from the fact that

P(|z| ≥ θ) + P(|z| < θ) = 1, (A.4)

and

P(|z| ≥ θ)E
(
z2
∣∣ |z| ≥ θ)+ P(|z| < θ)E

(
z2
∣∣ |z| < θ

)
= E(z2) = 1. (A.5)

By (A.4) and (A.5) we have p1 > 0 and E
(
z2
∣∣ |z| ≥ θ) > 1 for θ > 0. Hence, for θ < θm with θm

being the median of |z| with z ∼ N (0, 1), we have p1 ≥ 1/2, which further implies φ(f) < 0 by
(A.3). Otherwise we have φ(f) > 0. Thus, we have sign[φ(f)] = sign(θ − θm).

In the following we establish a lower bound for |φ(f)|. Note that

E
(
z2
∣∣ |z| ≥ θ) =

2

p1

∫ +∞

θ

1√
2π
e−

z2

2 z2dz =
2θ

p1
√

2π
e−

θ2

2 + 1. (A.6)

Plugging (A.6) into (A.3) yields

φ(f) = −2(2p1 − 1)
2θ√
2π
e−

θ2

2 . (A.7)

For 0 < θ < θm, which implies p1 ≥ 1/2, we have

p1 −
1

2
= 2

∫ θm

θ

1√
2π
e−

z2

2 dz ≥ 2√
2π
e−

θ2m
2 (θm − θ). (A.8)

By plugging (A.6) into (A.7), we have

|φ(f)| ≥ 8√
2π
e−

θ2m
2 (θm − θ)

2θ√
2π
e−

θ2

2 ≥ Cθ(θm − θ)e−
θ2

2 . (A.9)

For θ > θm, which implies p1 < 1/2, similarly to (A.8), we have

1

2
− p1 = 2

∫ θ

θm

1√
2π
e−

z2

2 dx ≥ 2√
2π
e−

θ2

2 (θ − θm). (A.10)

Thus, we conclude that

|φ(f)| ≥ C ′θ(θ − θm)e−θ
2

.
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A.3 Proof of Theorem 3.5

Let β̂ be the top eigenvector of M and λ̂1, λ̂2 be the first and second largest eigenvalues of M. We
use λ1, λ2 to denote the first and second largest eigenvalues of E(M). From Lemma 3.2, we already
know that

λ1 = 4φ(f) + 4(1− µ2
0), and λ2 = 4(1− µ2

0).

By the triangle inequality, we have∥∥βt − β∗∥∥
2
≤
∥∥β∗ − β̂∥∥

2
+
∥∥βt − β̂∥∥

2
.

The first term on the right hand side is the statistical error and the second term is the optimization
error. From standard analysis of the power method, we have∥∥βt − β̂∥∥

2
≤
√

1− α2

α2
·
(
λ̂2/λ̂1

)t
,

where α =
〈
β0, β̂

〉
. By the definition in (3.4), M is the sample covariance matrix of n/2 independent

realizations of the random vector (Y − Y ′)(X −X ′) ∈ Rp. SinceX is Gaussian and Y is bounded,
(Y − Y ′)(X −X ′) is sub-Gaussian. By standard concentration results (see e.g. Theorem 5.39 in
[26]), there some constants C,C1 such that for any t ≥ 0, with probability at least 1− 2e−Ct

2

,

‖M− E(M)‖2 ≤ max(δ, δ2)‖E(M)‖2,

where δ = C1

√
p
n + t√

n
. We let t =

√
p, then for any ξ ∈ (0, 1), we have that ‖M − E(M)‖2 ≤

ξ‖E(M)‖2 when n ≥ C2p/ξ
2 for sufficiently large constant C2. Conditioning on ‖M− E(M)‖2 ≤

ξ‖E(M)‖2, from Weyl’s inequality, we have

λ̂1 ≥ 4(1− ξ)
[
φ(f) + 1− µ2

0

]
, and λ̂2 ≤ 4ξφ(f) + 4(1 + ξ)(1− µ2

0).

Furthermore, for any γ ∈
(
(1− µ2

0)
/[
φ(f) + 1− µ2

0

]
, 1
)
, by restricting

ξ ≤ γφ(f) + (γ − 1)(1− µ2
0)

(1 + γ)
[
φ(f) + 1− µ2

0

] , (A.11)

we have ∥∥βt − β̂∥∥
2
≤
√

1− α2

α2
· γt.

Now we turn to the statistical error. By Wedin’s sin theorem, for some positive constant C > 0, we
have

sin∠
(
β∗, β̂

)
≤ C · ξ‖E(M)‖2

λ1 − λ2
. (A.12)

Elementary calculation yields∥∥β̂ − β∗∥∥
2

= 2 sin
[
∠
(
β∗, β̂

)
/2
]
≤
√

2 sin∠
(
β∗, β̂

)
. (A.13)

As ξ .
√
p/n, combining (A.12) and (A.13), we have∥∥β̂ − β∗∥∥

2
.
φ(f) + 1− µ2

0

φ(f)
·
√
p

n
.

Putting all pieces together, we conclude that if ξ satisfies (A.11) and n & p/ξ2, then we have that
with probability at least 1− 2e−Cp,∥∥βt − β∗∥∥

2
≤ C · φ(f) + 1− µ2

0

φ(f)
·
√
p

n
+

√
1− α2

α2
· γt.

as required.

A.4 Proof of Theorem 3.6

The analysis of Algorithm 2 follows from a combination of [27] (for the initialization via convex
relaxation) and [31] (for the original truncated power method). Recall that κ is defined in (3.9).
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Assume the initialization β0 is ŝ-sparse with ‖β0‖2 = 1, and satisfies∥∥β0 − β∗
∥∥
2
≤ C min

{√
κ(1− κ1/2)/2,

√
2κ/4

}
, (A.14)

for ŝ = C ′max
{⌈

1/(κ−1/2 − 1)2
⌉
, 1
}
· s. Theorem 1 of [31] implies that

∥∥βt − β∗∥∥
2
≤ C ′′ ·

[
φ(f) + (1− µ2

0)
] 5

2 (1− µ2
0)

1
2

φ3
·
√
s log p

n
+ κt ·

√
min

{
(1− κ1/2)/2, 1/8

}
with high probability. Therefore, we only need to prove the initialization β0 obtained in Algorithm 2
satisfies the condition in (A.14).

Corollary 3.3 of [27] shows that the minimizer to the minimization problem in line 3 of Algorithm 2
satisfies ∥∥Π0 − β∗ · (β∗)>

∥∥
2
≤ C · φ(f) + (1− µ2

0)

φ
· s
√

log p

n

with high probability. Corollary 3.2 of [27] implies, the first eigenvector of Π0, denoted as β0, satisfies∥∥β0 − β∗
∥∥
2
≤ C ′ · φ(f) + (1− µ2

0)

φ
· s
√

log p

n

with the same probability. However, β0 is not necessarily ŝ-sparse. Using Lemma 12 of [31], we
obtain that the truncate step in lines 12-15 of Algorithm 2 ensures that β0 is ŝ-sparse and also satisfies∥∥β0 − β∗

∥∥
2
≤
(
1 + 2

√
ŝ/s
)
·
∥∥β0 − β∗

∥∥
2
≤ 3
∥∥β0 − β∗

∥∥
2
,

where the last inequality follows from our assumption that ŝ ≥ s. Therefore, we only have to set n to
be sufficiently large such that∥∥β0 − β∗

∥∥
2
≤ C ′ · φ(f) + (1− µ2

0)

φ(f)
· s
√

log p

n
≤ C min

{√
κ(1− κ1/2)/2,

√
2κ/4

}
,

which is ensured by setting n ≥ nmin with

nmin = C ′ · s2 log p · φ(f)2 ·min
{
κ(1− κ1/2)/2, κ/8

}/ [
(1− µ2

0) + φ(f)
]2
,

as specified in our assumption. Thus we conclude the proof.

A.5 Proof of Theorem 3.7

The proof of the minimax lower bound follows from the basic idea of reducing an estimation problem
to a testing problem, and then invoking Fano’s inequality to lower bound the testing error. We first
introduce a finite packing set for Sp−1 ∩ B0(s, p).

Lemma A.1. Consider the set {0, 1}p equipped with Hamming distance δ. For s ≤ p/4, there exists
a finite subset Q ⊂ {0, 1}p such that

δ(θ,θ′) > s/2, ∀(θ,θ′) ∈ Q×Q and θ 6= θ′, ‖θ‖0 = s, for all θ ∈ Q.
The cardinality of such a set satisfies

log(|Q|) ≥ 8/3 · s log(p/s).

Proof. See the proof of Lemma 4.10 in [18].

We use Q(p, s) to denote the finite set specified in Lemma A.1. For ξ < 1, we construct a finite
subset Q(p, s, ξ) ⊂ Sp−1 ∩ B0(s, p) as

Q(p, s, ξ) :=

{
β ∈ Rp : β =

(√
1− ξ2, ξ√

s− 1
·w
)
, where w ∈ Q(p− 1, s− 1)

}
.

(A.15)
It is easy to verify that set Q(p, s, ξ) has the following properties:

• For any θ ∈ Q(p, s, ξ), it holds that ‖θ‖2 = 1 and ‖θ‖0 = s.
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• For distinct θ,θ′ ∈ Q(p, s, ξ), ‖θ − θ′‖2 ≥
√

2ξ/2 and ‖θ − θ′‖2 ≤
√

2ξ.

• log |Q(p, s, ξ)| ≥ Cs log(p/s) for some positive constant C.

In order to derive lower bound of R(n,m,L,B) with B = Sp−1 ∩ B0(s, p), we assume that the
infimum over f in (3.13) is obtained for a certain f∗ ∈ F(m,L), namely

R(n,m,L,B) = inf
β̂∈Sp−1

sup
β∈Sp−1∩B0(s,p)

E
∥∥β̂(Xnf∗)− β

∥∥
2
≥ inf
β̂∈Sp−1

sup
β∈Q(p,s,ξ)

E
∥∥β̂(Xnf∗)− β

∥∥
2
.

Note that for any ξ > 0, we have ‖β1 − β2‖2 ≥
√
2
2 ξ for any two distinct vectors (β1,β2) in

Q(p, s, ξ). Therefore, we are in a position to apply standard minimax risk lower bound. Following
Lemma 3 in Yu [30], we obtain

inf
β̂∈Sp−1

sup
β∈Q(p,s,ξ)

E
∥∥β̂(Xnf∗)− β

∥∥
2
≥
√

2

4
ξ

(
1−

maxβ,β′∈Q(p,s,ξ)DKL(Pβ′‖Pβ) + log 2

log |Q(p, s, ξ)|

)
.

(A.16)
In the following, we derive an upper bound for the term involving KL divergence on the right hand
side of the above inequality. For any β,β′ ∈ Q(p, s, ξ), we have

DKL(Pβ′‖Pβ) ≤ n ·DKL

[
Pβ′(Y,X)‖Pβ(Y,X)

]
= n · EX

{
DKL

[
Pβ′(Y |X)‖Pβ(Y |X)

]}
=

1

2
n · EX

{[
1 + f∗(X>β)

]
log

1 + f∗(X>β)

1 + f∗(X>β′)
+
[
1− f∗(X>β)

]
log

1− f∗(X>β)

1− f∗(X>β′)

}
≤ 1

2
n · EX

{[
1 + f∗(X>β)

] [ 1 + f∗(X>β)

1 + f∗(X>β′)
− 1

]
+
[
1− f∗(X>β)

] [ 1− f∗(X>β)

1− f∗(X>β′)
− 1

]}
.

(A.17)

In the last inequality, we utilize the fact that log z ≤ z − 1. Then by elementary calculation, we have

DKL(Pβ′‖Pβ) ≤ n · EX

{ [
f∗(X>β)− f∗(X>β′)

]2[
1 + f∗(X>β′)

]
·
[
1− f∗(X>β′)

]} . (A.18)

Using |f(z)| ≤ 1−m and the Lipschitz continuity condition of f , we have

DKL(Pβ′‖Pβ) ≤n · EX
{
L2〈X,β − β′〉2

m(1−m)

}
=
nL2‖β − β′‖22
m(1−m)

≤ 2nL2ξ2

m(1−m)
. (A.19)

Note that (A.17)-(A.19) hold for any β,β′ ∈ Q(p, s, ξ). We thus have

max
β,β′∈Q(p,s,ξ)

DKL(Pβ′‖Pβ) ≤ 2nL2ξ2

m(1−m)
.

Now we proceed with (A.16) using the above result. The right hand side is thus lower bounded by
√

2

4
ξ

(
1− 2L2nξ2/[m(1−m)] + log 2

|Q(p, s, ξ)|

)
≥
√

2

4
ξ

(
1− 2L2nξ2/[m(1−m)] + log 2

Cs log(p/s)

)
,

where the last inequality is from |Q(p, s, ξ)| ≥ Cs log(p/s). Finally, consider the case where the
sample size n is sufficiently large such that

n ≥ m(1−m)

2L2
·
[
Cs log(p/s)/2− log 2

]
,

by choosing

ξ2 =
m(1−m)

2L2n
·
[
Cs log(p/s)/2− log 2

]
, (A.20)

we thus have

R(n,m,L,B) ≥ C ′ ·
√
m(1−m)

L
·
√
s log(p/s)

n
as required.
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