
Enforcing balance allows local supervised learning in
spiking recurrent networks

Ralph Bourdoukan
Group For Neural Theory, ENS Paris

Rue dUlm, 29, Paris, France
ralph.bourdoukan@gmail.com

Sophie Deneve
Group For Neural Theory, ENS Paris

Rue dUlm, 29, Paris, France
sophie.deneve@ens.fr

Abstract

To predict sensory inputs or control motor trajectories, the brain must con-
stantly learn temporal dynamics based on error feedback. However, it remains
unclear how such supervised learning is implemented in biological neural net-
works. Learning in recurrent spiking networks is notoriously difficult because lo-
cal changes in connectivity may have an unpredictable effect on the global dynam-
ics. The most commonly used learning rules, such as temporal back-propagation,
are not local and thus not biologically plausible. Furthermore, reproducing the
Poisson-like statistics of neural responses requires the use of networks with bal-
anced excitation and inhibition. Such balance is easily destroyed during learning.
Using a top-down approach, we show how networks of integrate-and-fire neu-
rons can learn arbitrary linear dynamical systems by feeding back their error as
a feed-forward input. The network uses two types of recurrent connections: fast
and slow. The fast connections learn to balance excitation and inhibition using a
voltage-based plasticity rule. The slow connections are trained to minimize the
error feedback using a current-based Hebbian learning rule. Importantly, the bal-
ance maintained by fast connections is crucial to ensure that global error signals
are available locally in each neuron, in turn resulting in a local learning rule for
the slow connections. This demonstrates that spiking networks can learn complex
dynamics using purely local learning rules, using E/I balance as the key rather
than an additional constraint. The resulting network implements a given function
within the predictive coding scheme, with minimal dimensions and activity.

The brain constantly predicts relevant sensory inputs or motor trajectories. For example, there is
evidence that neural circuits mimic the dynamics of motor effectors using internal models [1]. If the
dynamics of the predicted sensory and motor variables change in time, these models may become
false [2] and therefore need to be readjusted through learning based on error feedback.

From a modeling perspective, supervised learning in recurrent networks faces many challenges.
Earlier models have succeeded in learning useful functions at the cost of non local learning rules
that are biologically implausible [3, 4]. More recent models based on reservoir computing [5–7]
transfer the learning from the recurrent network (with now “random”, fixed weights) to the readout
weights. Using this simple scheme, the network can learn to generate complex patterns. However,
the majority of these models use abstract rate units and are yet to be translated into more realistic
spiking networks. Moreover, to provide a sufficiently large reservoir, the recurrent network needs
to be large, balanced and have a rich and high dimensional dynamics. This typically generates far
more activity than strictly required, a redundancy that can be seen as inefficient.

On the other hand, supervised learning models involving spiking neurons have essentially concen-
trated on the learning of precise spike sequences [8–10]. With some exceptions [10,11] these models
use feed-forward architectures [12]. In a balanced recurrent network with asynchronous, irregular
and highly variable spike trains, such as those found in cortex, the activity has been shown to be

1



chaotic [13, 14]. This leads to spike timing being intrinsically unreliable, rendering a representation
of the trajectory by precise spike sequences problematic. Moreover, many configurations of spike
times may achieve the same goal [15].

Here we derive two local learning rules that drive a network of leaky integrate-and-fire (LIF) neu-
rons into implementing a desired linear dynamical system. The network is trained to minimize the
objective ‖x(t)− x̂(t)‖2 +H(r), Where x̂(t) is the output of the network decoded from the spikes,
x(t) is the desired output, and H(r) is a cost associated with firing (penalizing unnecessary activ-
ity, and thus enforcing efficiency). The dynamical system is linear, ẋ = Ax + c, with A being
a constant matrix and c a time varying command signal. We first study the learning of an autoen-
coder, i.e., a network where the desired output is fed to the network as a feedforward input. The
autoencoder learns to represent its inputs as precisely as possible in an unsupervised fashion. After
learning, each unit represents the encoding error made by the entire network. We then show that
the network can learn more complex computations if slower recurrent connections are added to the
autoencoder. Thus, it receives the command c along with an error signal and learns to generate the
output x̂ with the desired temporal dynamics. Despite the spike-based nature of the representation
and of the plasticity rules, the learning does not enforce precise spike timing trajectories but, on the
contrary, enforces irregular and highly variable spike trains.

1 Learning a balance : global becomes local

Using a predictive coding strategy [15–17], we build a network that learns to efficiently represent its
inputs while expending the least amount of spikes. To introduce the learning rules and explain how
they work, we start by describing the optimized network (after learning).

Let us first consider a set of unconnected integrate-and-fire neurons receiving shared input signals
x = (xi) through feedforward connections F = (Fji). We assume that the network performs predic-
tive coding, i.e. it subtracts from each of these input signals an estimate x̂ obtained by decoding the
output spike trains (fig 1A). Specifically, x̂i =

∑
Dijrj , where D = (Dij) are the decoding weights

and r = (rj) are the filtered spike trains which obey ṙj = −λrj + oj with oj(t) =
∑

k δ(t − tkj )
being the spike train of neuron j and tkj are the times of its spikes. Note that such an autoencoder
automatically maintains an accurate representation, because it responds to any encoding error larger
than the firing threshold by increasing its response and in turn decreasing the error. It is also effi-
cient, because neurons respond only when input and decoded signals differ. The autoencoder can be
equivalently implemented by lateral connections, rather than feedback targeting the inputs (fig 1A).
These lateral connections combine the feedforward connections and the decoding weights and they
subtract from the feedforward inputs received by each neuron. The membrane potential dynamics
in this recurrent network are described by:

V̇ = −λV + Fs+Wo (1)

where V is the vector of the membrane potentials of the population, s = ẋ + λx is the effective
input to the population, W = −FD is the connectivity matrix, and o is the population vector of the
spike. Neuron i has threshold Ti = ‖Fi‖2/2 [15]. When input channels are independent and the
feed-forward weights are distributed uniformly on a sphere then the optimal decoding weights D are
equal to the encoding weights F and hence the optimal recurrent connectivity W = −FFT [17].
In the following we assume that this is always the case and we choose the feedforward weights
accordingly.

In this auto-encoding scheme having a precise representation of the inputs is equivalent to main-
taining a precise balance between excitation and inhibition. In fact, the membrane potential of a
neuron is the projection of the global error of the network on the neurons’s feedforward weight
(Vi = Fi(x − x̂) [15]). If the output of the network matches the input, the recurrent term in the
membrane potential, Fix̂, should precisely cancel the feedforward term Fix. Therefore, in order to
learn the connectivity matrix W, we tackle the problem through balance, which is its physiological
characterization. The learning rule that we derive achieves efficient coding by enforcing a precise
balance at a single neuron level. The learning rule makes the network converge to a state where each
presynaptic spike cancels the recent charge that was accumulated by the postsynaptic neuron (Fig
1B). This accumulation of charge is naturally represented by the postsynaptic membrane potential
Vi, which jumps upon the arrival of a presynaptic spike by a magnitude given by the recurrent weight

2



�W = 0
�W > 0

+ 
- 

x̂x

Wf = �FD

x

x̂

F D

F D

-20 0 20
-20

0

20

1000200030004000

10

20

10002000300040001000200030004000

10

20

1000200030004000

N
eu

ro
n

in
d
ex

x
1
,

x̂
1

x
2
,

x̂
2

Before After

�
F

ix̂
Wir

Wir = �Fix̂

Fix

Balanced Unbalanced

A

B

C

D E

101 102 103
10-5

100

E
W

Time(s)

V
p
o
st

200 ms

Figure 1: A: a network preforming predictive coding. Top panel: a set of unconnected leaky
integrate-and-fire neurons receiving the error between a signal and their own decoded spike trains.
Bottom panel: the previous architecture is equivalent to the recurrent network with lateral connec-
tions equal to the product of the encoding and the decoding weights. B: illustration of the learning
of an inhibitory weight. The trace of the membrane potential of a postsynaptic neuron is shown in
blue and red. The blue lines correspond to changes due to the integration of the feedforward input,
and the red to changes caused by the integration of spikes from neurons in the population. The black
line represents the resting potential of the neuron. In the right panel the presynaptic spike perfectly
cancels the accumulated feedforward current during a cycle and therefore there is no learning. In the
left panel the inhibitory weight is too strong and thus creates imbalance in the membrane potential;
therefore, it is depressed by learning. C: learning in a 20 neuron network. Top panels: the two
dimensions of the input (blue lines) and the output (red lines) before (left) and after (right) learning.
Bottom panels: raster plots of the spikes in the population. D: left panel: after learning each neuron
receives a local estimate of the output of the network through lateral connections (red arrows). right
panel: scatter plot of the output of the network projected on the feedforward weights of the neurons
versus the recurrent input they receive. E: the evolution of the mean error between the recurrent
weights of the network and the optimal recurrent weights −FFT using the rule defined by equation
2 (black line) and the rule in [16] (gray line). Note that our rule is different from [16] because it
operates on a a finer time-scale and reaches the optimal balanced state with more than one order
of magnitude faster. This speed-up is important because, as we will see below, some computations
require a very fast restoration of this balance.

Wij due to the instantaneous nature of recurrent synapses. Because the two charges should cancel
each other, the greedy learning rule is proportional to the sum of both quantities:

δWij ∝ −(Vi + βWij) (2)

where Vi is the membrane potential of the postsynaptic neuron, Wij is the recurrent weight from
neuron j to neuron i, and the factor β controls the overall magnitude of lateral weights and, therefore,
the total spike count in the population. More importantly, β regularizes the cost penalizing the total
spike count in the population (i.e. H(r) = µ

∑
i ri where µ is the effective linear cost [15]). The

example of an inhibitory synapseWij < 0 is illustrated in figure 1B. If neuron i is too hyperpolarized
upon the arrival of a presynaptic spike from neuron j, i.e., if the inhibitory weight Wij is smaller

3



than −Vi/β, the absolute weight of the synapse (the amplitude of the IPSP) is decreased. The
opposite occurs if the membrane is too depolarized. The synaptic weights thus converge when the
two quantities balance each other on average Wij = −〈Vi〉tj/β, where tj are the spike times of the
presynaptic neuron j.

Fig 1C shows the learning in a 20-neuron network receiving random input signals. For illustration
purposes the weights are initialized with very small values. Before learning, the lack of lateral
connectivity causes neurons to fire synchronously and regularly. After learning, spike trains are
sparse, irregular and asynchronous, despite the quasi absence of noise in the network. Even though
the firing rates decrease globally, the quality of the input representation drastically improves over
the course of learning. Moreover, the convergence of recurrent weights to their optimal values is
typically quick and monotonic (Fig 1E).

By enforcing balance, the learning rule establishes an efficient and reliable communication between
neurons. Because V = Fx − FFT r = F(x − x̂), every neuron has access - through its recurrent
input - to the network’s global coding error projected on its feedforward weight (Fig 1D). This local
representation of network’s the global performance is crucial in the supervised learning scheme we
describe in the following sections.

2 Generating temporal dynamics within the network

While in the previous section we presented a novel rule that drives a spiking network into efficiently
representing its inputs, we are generally interested in networks that perform more complex compu-
tations. It has been shown already that a network having two synaptic time scales can implement an
arbitrary linear dynamical system [15]. We briefly summarize this approach in this section.

A

ẋ + �x x̂
+c

Ax + �x Ax̂ + �x̂
+c

x̂ x̂

+c

(A + �I)x̂

F FT+ 
+ 

+c
F FT

x̂

Wf = FFT

Ws = F(A + �I)FT

i
ii iii

iv vD E

CBA

Figure 2: The construction of a recurrent network that implements a linear dynamical system.

In the autoencoder presented above, the effective input to the network is s = ẋ + λx (Fig 2A). We
assume that x follows linear dynamics ẋ = Ax+ c, where A is a constant matrix and c(t) is a time
varying command. Thus, the input can be expanded to s = Ax + c + λx = (A + λI)x + c (Fig
2B). Because the output of the network x̂ approximates x very precisely, they can be interchanged.
According to this self-consistency argument, the external input term (A + λI)x is replaced by
(A + λI)x̂ which only depends on the activity of the network (Fig 2C). This replacement amounts
to including a global loop that adds the term (A + λI)x̂ to the source input (Fig 2D). As in the
autoencoder, this can be achieved using recurrent connections in the form of F(A + λI)FT (Fig
2E). Note that this recurrent input is the filtered spike train r, not the raw spikes o. As a result, these
new connections have slower dynamics than the connections presented in the first section. This
motivates us to characterize connections as fast and slow depending on their underlying dynamics.
The dynamics of the membrane potentials are now described by:

V̇ = −λV V + Fc+Wsr+Wfo (3)
where λV is the leak in the membrane potential, it is different from the leak in the decoder λ. It is
clear from the previous construction that the slow connectivity Ws = F(A + λI)FT , is involved

4



in generating the temporal dynamics of x. Owing to the slow connections, the network is able to
generate autonomously the temporal dynamics of the output and thus, only needs the command
c as an external input. For example, if A = 0 (i.e. the network implements a pure integrator),
Ws = λFFT compensates for the leak in the decoder by generating a positive feedback term that
prevents the activity form decaying. On the other hand, the fast connectivity matrix Wf = −FFT ,
trained with the unsupervised, voltage based rule presented previously, plays the same role as in the
autoencoder; It insures that the global output and the global coding error of the network are available
locally to each neuron.

3 Teaching the network to implement a desired dynamical system

Our aim is to develop a supervised learning scheme where a network learns to generate a desired
output using an error feedback as well as a local learning rule. The learning rule targets the slow
recurrent connections responsible for the generation of the temporal dynamics in the output, as seen
in the previous section. Instead of deriving directly the learning rule for the recurrent connections,
we first derive a learning rule for the matrix A of the linear dynamical system using simple results
from control theory, and then we translate the learning to the recurrent network.

3.1 learning a linear dynamical system online

Consider the linear dynamical system ˙̂x = Mx̂ + c where M is a matrix. We derive an online
learning rule for the coefficients of the matrix M, such that the output x̂ becomes after learning
equal to the desired output x. The latter undergoes the dynamics ẋ = Ax+ c. Therefore, we define
e = x − x̂ as the error vector between the actual and the desired output. This error is fed to the
mistuned system in order to correct and “guide” its behavior (Fig 3A). Thus, the dynamics of the
system with this feedback are ˙̂x = Mx̂+ c+K(x− x̂), where K is a scalar implementing the gain
of the loop. The previous equation can be rewritten in the following form:

˙̂x = (M−KI)x̂+ c+Kx (4)

where I is the identity matrix. If we assume that the spectra of the signals are bounded, it is straight-
forward to show, via a Laplace transform, that x̂ → x when K → +∞. The larger the gain of the
feedback, the smaller the error. Intuitively, if K is large, very small errors are immediately detected
and therefore, corrected by the system. Nevertheless our aim is not to correct the dynamical system
forever, but to teach it to generate the desired output itself without the error feedback. Thus, the
matrix M needs to be modified over time. To derive the learning rule for the matrix M, we operate
a gradient descent on the loss function L = eTe = ‖x− x̂‖2 with respect to the components of the
matrix. The component Mij is updated proportionally to the gradient of L,

δMij = −
∂L

∂Mij
= (

∂x̂

∂Mij
)Te (5)

To evaluate the term ∂x̂/∂Mij , we solve the equation 4 in the simple case were inputs c are con-
stant. If we assume that K is much larger than the eigenvalues of M, the gradient ∂x̂/∂Mij is
approximated by Eij x̂, where Eij is a matrix of zeros except for component ij which is one. This
leads to the very simple learning rule δMij ≈ x̂jei, which we can write in matrix form as:

δM ∝ ex̂T (6)

The learning rule is simply the outer product of the output and the error. To derive the learning rule
we assume constant or slowly varying input. In practice, however, learning can be achieved also
using fast varying inputs (Fig 3).

3.2 learning rule for the slow connections

In the previous section we derived a simple learning rule for the state matrix M of a linear dynamical
system, driving it into a desired regime. We translate this learning scheme to the recurrent network
described in section 2. To do this, two things have to be determined. First, we have to define the
form of the error feedback in the recurrent network case. Second, we need to adapt the learning

5



rule of the matrix of the underlying dynamical system to the slow weights of the recurrent neural
network.

In the previous learning scheme the error is fed to the dynamical system as an additional input. Since
the input/decoding weight vector of a neuron Fi defines the direction that is relevant for its “action”
space, the neuron should only receive the errors that are in this direction. Thus, the error vector is
projected on the feedforward weights vector of a neuron before being fed to it. The feedback weights
matrix is then simply equal to the feedforward weights matrix F (Fig 3A). Accordingly, equation 3
becomes:

V̇ = −λV V + Fc+Wsr+Wfo+KFe (7)

In the autoencoder, the membrane potential of a neuron represents the auto-coding error made by
the entire network along the direction of the neuron’s feedforward weights. With the addition of the
dynamic error feedback and the slow connections, the membrane potentials now represent the error
between obtained and desired network output trajectories.

To translate the learning rule of the dynamical system into a rule for the recurrent network, we as-
sume that any modification of the recurrent weights directly reflects a modification in the underlying
dynamical system. This is achieved if the updates δWs of the slow connectivity matrix are in the
form of F(δM)FT . This ensures that the network always implements a linear dynamical system and
guarantees that the analysis is consistent. The learning rule of the slow connections Ws is obtained
by replacing δM by its expression according to equation 6 in F(δM)FT :

δWs ∝ (Fe)(Fx̂)T (8)

According to this learning rule, the weight update between two neurons, δW s
ij , is proportional to

the error feedback Fie received as a current by the postsynaptic neuron i and to Fjx̂, the output of
the network projected on the feedforward weight of the presynaptic neuron j. The latter quantity is
available to the presynaptic neuron through its inward fast recurrent connections, as shown for the
autoencoder in Fig 1D.

One might object that the previous learning rule is not biologically plausible because it involves
currents present separately in the pre- and post-synaptic neurons. Indeed, the presynaptic term may
not be available to the synapse. However, as shown in the supplementary information of [15], the
filtered spike train rj of the presynaptic neuron is approximately proportional to bFjx̂c+, a rectified
version of the presynaptic term in the previous learning rule. By replacing Fjx̂ by rj in the equation
8 we obtain the following biologically plausible learning rule:

δW s
ij = Eirj (9)

Where Ei = Fie is the total error current received by the postsynaptic neuron.

3.3 Learning the underlying dynamical system while maintaining balance

For the previous analysis to hold, the fast connectivity Wf should be learned simultaneously with
the slow connections using the learning rule defined by equation 2. As shown in the first section,
the learning of the fast connections establishes a detailed balance on the level of the neuron and
guarantees that the output of the network is available to each neuron through the term Fjx̂. The
latter is the presynaptic term in the learning rule of equation 8. Despite not being involved in the
dynamics per se, these fast connections are crucial in order to learn any temporal dynamics. In other
words, learning a detailed balance is a pre-requirement to learn dynamics with local plasticity rules
in a spiking network. The plasticity of the fast connections restores very quickly any perturbation to
the balance caused by the learning of the slow connections.

3.4 Simulation

As a toy example, we simulated a 20-neuron network learning a 2D-damped oscillator using a feed-
back gain K = 100. The network is initialized with weak fast connections and weak slow connec-
tions. The learning is driven by smoothed gaussian noise as the command c. Note that in the initial
state, because of the absence of fast recurrent connections, the output of the network does not de-
pend linearly on the input because membrane potentials are hyperpolarized (Fig 3B). The network’s
output is quickly linearized through the learning of the fast connections (equation 2 by enforcing a

6



M
x̂ xc

Ke

+ 
+ - + 

c
x̂ x

Ke

+ - 
F

F

FT

A

C D

M
.P

.

100 102 104
0

4

8

-8

-4

0

150 ms

5000 10000 15000
1

10

20

5000 10000 15000

N
eu

ro
n

in
d
ex

x
1
,

x̂
1

x
2
,

x̂
2

-1 0 1
-1
0
1

-102 0 102
-102

0

102

300 msPredicted

L
ea

rn
ed

L
ea

rn
ed Wf

Ws

100 102 104
0

4

8

-8

-4

0

B

E
rr

or

Time(s)

Figure 3: Learning temporal dynamics in a recurrent network. A, Top panel: the linear dynamical
system characterized by the state matrix M, receives feedback signaling the difference between its
actual output and a desired output. Bottom panel: a recurrent network displaying slow and fast
connections is equivalent to the top architecture if the error feedback is fed into the network through
the feedforward matrix F. B: a 20 neuron network learns using equations 9 and 2. Left panel: the
evolution of the error between the desired and the actual output during learning. The black and
grey arrows represent instances where the time course of the membrane potential is shown in the
next plot. Right panel: the time course of the membrane potential of one neuron at two different
instances during learning. The gray line corresponds to the initial state while the black line is a few
iterations after. C: scatter plots of the learned versus the predicted weights at the end of learning for
fast (top panel) and slow (bottom panel) connections. D, top panels: the output of the network (red)
and the desired output (blue), before (left) and after (right) learning. The black solid line on the top
shows the impulse command that drives the network. Bottom panels: raster plots before and after
learning. In the left raster plot there is no spiking activity after the first 50 ms.

balance on the membrane potential (Fig 3B): initial membrane potentials exhibit large fluctuations
which reduce drastically after a few iterations (Fig 3B). On a slower time scale the slow connec-
tions learn to minimize the prediction error using the learning rule of equation 9. The error between
the output of the network and the desired output decreases drastically (Fig 3B). To compute this
error, different instances of the connectivity matrices were sampled during learning. The network
was then re-simulated using these instances while fixing K=0 in oder to mesure the performance
in the absence of feedback. At the end of learning the slow and fast connections converge to their
predicted values Ws = F(A + λI)FT and Wf = −FFT (Fig 3C). The presence of the feedback
is no longer required for the network to have the right dynamics (i.e. we set K = 0 and obtain the
desired output (Fig 3D and 3B). The output of the network is very accurate (representing the state
x with a precision of the order of the contribution of a single spike), parsimonious (i.e. it does not
spend more spikes than needed to represent the dynamical state with this level of accuracy) and the
spike trains are asynchronous and irregular. Note that because the slow connections are very weak
in the initial state, spiking activity decays quickly after the end of the command impulse due to the
absence of slow recurrent excitation (Fig 3D).

7



Simulation parameters Figure 1 : λ = 0.05, β = 0.51, learning rate: 0.01. Figure 3 : λ = 50,
λV = 1, β = 0.52, K = 100, learning rate of the fast connections: 0.03, learning rate of the slow
connections: 0.15.

4 Discussion

Using a top-down approach we derived a pair of spike-based and current-based plasticity rules that
enable precise supervised learning in a recurrent network of LIF neurons. The essence of this ap-
proach is that every neuron is a precise computational unit that represents the network error in a
subspace of dimension 1 in the the output space. The precise and distributed nature of this code
allows the derivation of local learning rules from global objectives.

To compute collectively, the neurons need to communicate to each other about their contributions to
the output of the network. The fast connections are trained in an unsupervised fashion using a spike-
based rule to optimize this communication. It establishes this efficient communication by enforcing
a detailed balance between excitation and inhibition. The slow connections however are trained to
minimize the error between the actual output of the network and a target dynamical system. They
produce currents with long temporal correlations implementing the temporal dynamics of the under-
lying linear dynamical system. The plasticity rule for the slow connections is simply proportional
to an error feedback injected as a current in the postsynaptic neuron, and to a quantity akin to the
firing rate of the presynaptic neuron. To guide the behavior of the network during learning, the error
feedback must be strong and specific. Such strength and specialization is in agreement with data
on climbing fibers in the cerebellum [18–20], who are believed to bring information about errors
during motor learning [21]. However, in this model, the specificity of the error signals are defined
by a weight matrix through which the errors are fed to the neurons. Learning these weights is still
under investigation. We believe that they could be learned using a covariance-based rule.

Our approach is substantially different form usual supervised learning paradigms in spiking net-
works since it does not target the spike times explicitly. However, observing spike times may be
misleading since there are many combinations that can produce the same output [15, 16]. Thus, in
this framework, variability in spiking is not a lack of precision but is the consequence of the redun-
dancy in the representation. Neurons having similar decoding weights may have their spike times
interchanged while the global representation is conserved. What is important is the cooperation
between the neurons and the precise spike timing relative to the population. For example, using in-
dependent poisson neurons with instantaneous firing rates identical to the predictive coding network
drastically degrades the quality of the representaion [15].

Our approach is also different from liquid computing in the sense that the network is small, struc-
tured, and fires only when needed. In addition, in these studies the feedback error used in the
learning rule has no clear physiological correlate, while here it is concretely injected as a current in
the neurons. This current is used simultaneously to drive the learning rule and to guide the dynamics
of the neuron in the short term. However, it is still unclear what the mechanisms are that could
implement such a current dependent learning rule in biological neurons.

An obvious limitation of our framework is that it is currently restricted to linear dynamical systems.
One possibility to overcome this limitation would be to introduce non-linearities in the decoder,
which would translate into specific non-linearities and structures in the dendrites. A similar strategy
has been employed recently to combine the approach of predictive coding and FORCE learning [7]
using two compartment LIF neurons [22]. We are currently exploring less constraining forms of
synaptic non-linearities, with the ultimate goal of being able to learn arbitrary dynamics in spiking
networks using purely local plasticity rules.

Acknowledgments

This work was supported by ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02 PSL, ERC grant
FP7-PREDISPIKE and the James McDonnell Foundation Award - Human Cognition.

8



Refrences

[1] Kawato, M. (1999). Internal models for motor control and trajectory planning. Current opinion
in neurobiology, 9(6), 718-727.

[2] Lackner, J. R., & Dizio, P. (1998). Gravitoinertial force background level affects adaptation to
coriolis force perturbations of reaching movements. Journal of neurophysiology, 80(2), 546-
553.

[3] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-
propagating errors. Cognitive modeling, 5.

[4] Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully recur-
rent neural networks. Neural computation, 1(2), 270-280.

[5] Jaeger, H. (2001). The echo state approach to analysing and training recurrent neural networks-
with an erratum note. Bonn, Germany: German National Research Center for Information
Technology GMD Technical Report, 148, 34.

[6] Maass, W., Natschlger, T., & Markram, H. (2002). Real-time computing without stable states:
A new framework for neural computation based on perturbations. Neural computation, 14(11),
2531-2560.

[7] Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic
neural networks. Neuron, 63(4), 544-557.

[8] Legenstein, R., Naeger, C., & Maass, W. (2005). What can a neuron learn with spike-timing-
dependent plasticity?. Neural computation, 17(11), 2337-2382.

[9] Pfister, J., Toyoizumi, T., Barber, D., & Gerstner, W. (2006). Optimal spike-timing-dependent
plasticity for precise action potential firing in supervised learning. Neural computation, 18(6),
1318-1348.

[10] Ponulak, F., & Kasinski, A. (2010). Supervised learning in spiking neural networks with Re-
SuMe: sequence learning, classification, and spike shifting. Neural Computation, 22(2), 467-
510.

[11] Memmesheimer, R. M., Rubin, R., lveczky, B. P., & Sompolinsky, H. (2014). Learning pre-
cisely timed spikes. Neuron, 82(4), 925-938.

[12] Gütig, R., & Sompolinsky, H. (2006). The tempotron: a neuron that learns spike timingbased
decisions. Nature neuroscience, 9(3), 420-428.

[13] van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science, 274(5293), 1724-1726.

[14] Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and inhibitory
spiking neurons. Journal of Physiology-Paris, 94(5), 445-463.

[15] Boerlin, M., Machens, C. K., & Denève, S. (2013). Predictive coding of dynamical variables
in balanced spiking networks. PLoS computational biology, 9(11), e1003258.

[16] Bourdoukan, R., Barrett, D., Machens, C. K & Denève, S. (2012). Learning optimal spike-
based representations. In Advances in neural information processing systems (pp. 2285-2293).

[17] Vertechi, P., Brendel, W., & Machens, C. K. (2014). Unsupervised learning of an efficient
short-term memory network. In Advances in Neural Information Processing Systems (pp. 3653-
3661).

[18] Watanabe, M., & Kano, M. (2011). Climbing fiber synapse elimination in cerebellar Purkinje
cells. European Journal of Neuroscience, 34(10), 1697-1710.

[19] Chen, C., Kano, M., Abeliovich, A., Chen, L., Bao, S., Kim, J. J., ... & Tonegawa, S. (1995).
Impaired motor coordination correlates with persistent multiple climbing fiber innervation in
PKC mutant mice. Cell, 83(7), 1233-1242.

[20] Eccles, J. C., Llinas, R., & Sasaki, K. (1966). The excitatory synaptic action of climbing fibres
on the Purkinje cells of the cerebellum. The Journal of Physiology, 182(2), 268-296.

[21] Knudsen, E. I. (1994). Supervised Learning in the Brain. The Journal of Neuroscience 14(7),
39853997.

[22] Thalmeier, D., Uhlmann, M., Kappen, H.J., & Memmesheimer, R. Learning universal compu-
tations with spikes. under review.

9


	Learning a balance : global becomes local
	Generating temporal dynamics within the network
	Teaching the network to implement a desired dynamical system
	learning a linear dynamical system online
	learning rule for the slow connections
	Learning the underlying dynamical system while maintaining balance
	Simulation

	Discussion

