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Abstract

We study contextual bandits with budget and time constraints, referred to as con-
strained contextual bandits. The time and budget constraints significantly com-
plicate the exploration and exploitation tradeoff because they introduce complex
coupling among contexts over time. To gain insight, we first study unit-cost sys-
tems with known context distribution. When the expected rewards are known, we
develop an approximation of the oracle, referred to Adaptive-Linear-Programming
(ALP), which achieves near-optimality and only requires the ordering of expected
rewards. With these highly desirable features, we then combine ALP with the
upper-confidence-bound (UCB) method in the general case where the expected
rewards are unknown a priori. We show that the proposed UCB-ALP algorithm
achieves logarithmic regret except for certain boundary cases. Further, we de-
sign algorithms and obtain similar regret bounds for more general systems with
unknown context distribution and heterogeneous costs. To the best of our knowl-
edge, this is the first work that shows how to achieve logarithmic regret in con-
strained contextual bandits. Moreover, this work also sheds light on the study of
computationally efficient algorithms for general constrained contextual bandits.

1 Introduction

The contextual bandit problem [1, 2, 3] is an important extension of the classic multi-armed bandit
(MAB) problem [4], where the agent can observe a set of features, referred to as context, before
making a decision. After the random arrival of a context, the agent chooses an action and receives
a random reward with expectation depending on both the context and action. To maximize the
total reward, the agent needs to make a careful tradeoff between taking the best action based on the
historical performance (exploitation) and discovering the potentially better alternative actions under
a given context (exploration). This model has attracted much attention as it fits the personalized
service requirement in many applications such as clinical trials, online recommendation, and online
hiring in crowdsourcing. Existing works try to reduce the regret of contextual bandits by leveraging
the structure of the context-reward models such as linearity [5] or similarity [6], and more recent
work [7] focuses on computationally efficient algorithms with minimum regret. For Markovian
context arrivals, algorithms such as UCRL [8] for more general reinforcement learning problem can
be used to achieve logarithmic regret.

However, traditional contextual bandit models do not capture an important characteristic of real
systems: in addition to time, there is usually a cost associated with the resource consumed by each
action and the total cost is limited by a budget in many applications. Taking crowdsourcing [9] as
an example, the budget constraint for a given set of tasks will limit the number of workers that an
employer can hire. Another example is the clinical trials [10], where each treatment is usually costly
and the budget of a trial is limited. Although budget constraints have been studied in non-contextual
bandits where logarithmic or sublinear regret is achieved [11, 12, 13, 14, 15, 16], as we will see
later, these results are inapplicable in the case with observable contexts.
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In this paper, we study contextual bandit problems with budget and time constraints, referred to
as constrained contextual bandits, where the agent is given a budget B and a time-horizon T . In
addition to a reward, a cost is incurred whenever an action is taken under a context. The bandit
process ends when the agent runs out of either budget or time. The objective of the agent is to
maximize the expected total reward subject to the budget and time constraints. We are interested in
the regime where B and T grow towards infinity proportionally.

The above constrained contextual bandit problem can be viewed as a special case of Resourceful
Contextual Bandits (RCB) [17]. In [17], RCB is studied under more general settings with possibly
infinite contexts, random costs, and multiple budget constraints. A Mixture Elimination algorithm is
proposed and shown to achieve O(

√
T ) regret. However, the benchmark for the definition of regret

in [17] is restricted to within a finite policy set. Moreover, the Mixture Elimination algorithm suffers
high complexity and the design of computationally efficient algorithms for such general settings is
still an open problem.

To tackle this problem, motivated by certain applications, we restrict the set of parameters in our
model as follows: we assume finite discrete contexts, fixed costs, and a single budget constraint. This
simplified model is justified in many scenarios such as clinical trials [10] and rate selection in wire-
less networks [18]. More importantly, these simplifications allow us to design easily-implementable
algorithms that achieve O(log T ) regret (except for a set of parameters of zero Lebesgue measure,
which we refer to as boundary cases), where the regret is defined more naturally as the performance
gap between the proposed algorithm and the oracle, i.e., the optimal algorithm with known statistics.

Even with simplified assumptions considered in this paper, the exploration-exploitation tradeoff is
still challenging due to the budget and time constraints. The key challenge comes from the complex-
ity of the oracle algorithm. With budget and time constraints, the oracle algorithm cannot simply
take the action that maximizes the instantaneous reward. In contrast, it needs to balance between
the instantaneous and long-term rewards based on the current context and the remaining budget. In
principle, dynamic programming (DP) can be used to obtain this balance. However, using DP in
our scenario incurs difficulties in both algorithm design and analysis: first, the implementation of
DP is computationally complex due to the curse of dimensionality; second, it is difficult to obtain
a benchmark for regret analysis, since the DP algorithm is implemented in a recursive manner and
its expected total reward is hard to be expressed in a closed form; third, it is difficult to extend the
DP algorithm to the case with unknown statistics, due to the difficulty of evaluating the impact of
estimation errors on the performance of DP-type algorithms.

To address these difficulties, we first study approximations of the oracle algorithm when the system
statistics are known. Our key idea is to approximate the oracle algorithm with linear programming
(LP) that relaxes the hard budget constraint to an average budget constraint. When fixing the average
budget constraint at B/T , this LP approximation provides an upper bound on the expected total
reward, which serves as a good benchmark in regret analysis. Further, we propose an Adaptive
Linear Programming (ALP) algorithm that adjusts the budget constraint to the average remaining
budget bτ/τ , where τ is the remaining time and bτ is the remaining budget. Note that although the
idea of approximating a DP problem with an LP problem has been widely studied in literature (e.g.,
[17, 19]), the design and analysis of ALP here is quite different. In particular, we show that ALP
achieves O(1) regret, i.e., its expected total reward is within a constant independent of T from the
optimum, except for certain boundaries. This ALP approximation and its regret analysis make an
important step towards achieving logarithmic regret for constrained contextual bandits.

Using the insights from the case with known statistics, we study algorithms for constrained contex-
tual bandits with unknown expected rewards. Complicated interactions between information acqui-
sition and decision making arise in this case. Fortunately, the ALP algorithm has a highly desirable
property that it only requires the ordering of the expected rewards and can tolerate certain estimation
errors of system parameters. This property allows us to combine ALP with estimation methods that
can efficiently provide a correct rank of the expected rewards. In this paper, we propose a UCB-ALP
algorithm by combining ALP with the upper-confidence-bound (UCB) method [4]. We show that
UCB-ALP achieves O(log T ) regret except for certain boundary cases, where its regret is O(

√
T ).

We note that UCB-type algorithms are proposed in [20] for non-contextual bandits with concave
rewards and convex constraints, and further extended to linear contextual bandits. However, [20]
focuses on static contexts1 and achieves O(

√
T ) regret in our setting since it uses a fixed budget

constraint in each round. In comparison, we consider random context arrivals and use an adaptive

1After the online publication of our preliminary version, two recent papers [21, 22] extend their previous
work [20] to the dynamic context case, where they focus on possibly infinite contexts and achieve O(

√
T )

regret, and [21] restricts to a finite policy set as [17].
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budget constraint to achieve logarithmic regret. To the best of our knowledge, this is the first work
that shows how to achieve logarithmic regret in constrained contextual bandits. Moreover, the pro-
posed UCB-ALP algorithm is quite computationally efficient and we believe these results shed light
on addressing the open problem of general constrained contextual bandits.

Although the intuition behind ALP and UCB-ALP is natural, the rigorous analysis of their regret is
non-trivial since we need to consider many interacting factors such as action/context ranking errors,
remaining budget fluctuation, and randomness of context arrival. We evaluate the impact of these
factors using a series of novel techniques, e.g., the method of showing concentration properties under
adaptive algorithms and the method of bounding estimation errors under random contexts. For the
ease of exposition, we study the ALP and UCB-ALP algorithms in unit-cost systems with known
context distribution in Sections 3 and 4, respectively. Then we discuss the generalization to systems
with unknown context distribution in Section 5 and with heterogeneous costs in Section 6, which
are much more challenging and the details can be found in the supplementary material.

2 System Model

We consider a contextual bandit problem with a context set X = {1, 2, . . . , J} and an action set
A = {1, 2, . . . ,K}. At each round t, a context Xt arrives independently with identical distribution
P{Xt = j} = πj , j ∈ X , and each action k ∈ A generates a non-negative reward Yk,t. Under a
given context Xt = j, the reward Yk,t’s are independent random variables in [0, 1]. The conditional
expectation E[Yk,t|Xt = j] = uj,k is unknown to the agent. Moreover, a cost is incurred if action k
is taken under context j. To gain insight into constrained contextual bandits, we consider fixed and
known costs in this paper, where the cost is cj,k > 0 when action k is taken under context j. Similar
to traditional contextual bandits, the contextXt is observable at the beginning of round t, while only
the reward of the action taken by the agent is revealed at the end of round t.

At the beginning of round t, the agent observes the context Xt and takes an action At from {0}∪A,
where “0” represents a dummy action that the agent skips the current context. Let Yt and Zt be the
reward and cost for the agent in round t, respectively. If the agent takes an action At = k > 0,
then the reward is Yt = Yk,t and the cost is Zt = cXt,k. Otherwise, if the agent takes the dummy
action At = 0, neither reward nor cost is incurred, i.e., Yt = 0 and Zt = 0. In this paper, we focus
on contextual bandits with a known time-horizon T and limited budget B. The bandit process ends
when the agent runs out of the budget or at the end of time T .

A contextual bandit algorithm Γ is a function that maps the historical observations Ht−1 =
(X1, A1, Y1; X2, A2, Y2; . . . ;Xt−1, At−1, Yt−1) and the current context Xt to an action At ∈
{0} ∪ A. The objective of the algorithm is to maximize the expected total reward UΓ(T,B) for
a given time-horizon T and a budget B, i.e.,

maximizeΓ UΓ(T,B) = EΓ

[ T∑
t=1

Yt
]

subject to
T∑
t=1

Zt ≤ B,

where the expectation is taken over the distributions of contexts and rewards. Note that we consider
a “hard” budget constraint, i.e., the total costs should not be greater than B under any realization.

We measure the performance of the algorithm Γ by comparing it with the oracle, which is the optimal
algorithm with known statistics, including the knowledge of πj’s, uj,k’s, and cj,k’s. Let U∗(T,B)
be the expected total reward obtained by the oracle algorithm. Then, the regret of the algorithm Γ is
defined as

RΓ(T,B) = U∗(T,B)− UΓ(T,B).

The objective of the algorithm is then to minimize the regret. We are interested in the asymptotic
regime where the time-horizon T and the budget B grow to infinity proportionally, i.e., with a fixed
ratio ρ = B/T .

3 Approximations of the Oracle

In this section, we study approximations of the oracle, where the statistics of bandits are known
to the agent. This will provide a benchmark for the regret analysis and insights into the design of
constrained contextual bandit algorithms.
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As a starting point, we focus on unit-cost systems, i.e., cj,k = 1 for each j and k, from Section 3 to
Section 5, which will be relaxed in Section 6. In unit-cost systems, the quality of action k under con-
text j is fully captured by its expected reward uj,k. Let u∗j be the highest expected reward under con-
text j, and k∗j be the best action for context j, i.e., u∗j = maxk∈A uj,k and k∗j = arg maxk∈A uj,k.
For ease of exposition, we assume that the best action under each context is unique, i.e., uj,k < u∗j
for all j and k 6= k∗j . Similarly, we also assume u∗1 > u∗2 > . . . > u∗J for simplicity.

With the knowledge of uj,k’s, the agent knows the best action k∗j and its expected reward u∗j under
any context j. In each round t, the task of the oracle is deciding whether to take action k∗Xt or not
depending on the remaining time τ = T − t+ 1 and the remaining budget bτ .

The special case of two-context systems (J = 2) is trivial, where the agent just needs to procrastinate
for the better context (see Appendix D of the supplementary material). When considering more
general cases with J > 2, however, it is computationally intractable to exactly characterize the
oracle solution. Therefore, we resort to approximations based on linear programming (LP).

3.1 Upper Bound: Static Linear Programming

We propose an upper bound for the expected total reward U∗(T,B) of the oracle by relaxing the
hard constraint to an average constraint and solving the corresponding constrained LP problem.
Specifically, let pj ∈ [0, 1] be the probability that the agent takes action k∗j for context j, and 1− pj
be the probability that the agent skips context j (i.e., taking action At = 0). Denote the probability
vector as p = (p1, p2, . . . , pJ). For a time-horizon T and budget B, consider the following LP
problem:

(LPT,B) maximizep
J∑
j=1

pjπju
∗
j , (1)

subject to
J∑
j=1

pjπj ≤ B/T, (2)

p ∈ [0, 1]J .

Define the following threshold as a function of the average budget ρ = B/T :

j̃(ρ) = max{j :

j∑
j′=1

πj′ ≤ ρ} (3)

with the convention that j̃(ρ) = 0 if π1 > ρ. We can verify that the following solution is optimal for
LPT,B :

pj(ρ) =


1, if 1 ≤ j ≤ j̃(ρ),
ρ−

∑j̃(ρ)

j′=1
πj′

πj̃(ρ)+1
, if j = j̃(ρ) + 1,

0, if j > j̃(ρ) + 1.

(4)

Correspondingly, the optimal value of LPT,B is

v(ρ) =

j̃(ρ)∑
j=1

πju
∗
j + pj̃(ρ)+1(ρ)πj̃(ρ)+1u

∗
j̃(ρ)+1

. (5)

This optimal value v(ρ) can be viewed as the maximum expected reward in a single round with
average budget ρ. Summing over the entire horizon, the total expected reward becomes Û(T,B) =
Tv(ρ), which is an upper bound of U∗(T,B).
Lemma 1. For a unit-cost system with known statistics, if the time-horizon is T and the budget is
B, then Û(T,B) ≥ U∗(T,B).

The proof of Lemma 1 is available in Appendix A of the supplementary material. With Lemma 1, we
can bound the regret of any algorithm by comparing its performance with the upper bound Û(T,B)

instead of U∗(T,B). Since Û(T,B) has a simple expression, as we will see later, it significantly
reduces the complexity of regret analysis.
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3.2 Adaptive Linear Programming

Although the solution (4) provides an upper bound on the expected reward, using such a fixed
algorithm will not achieve good performance as the ratio bτ/τ , referred to as average remaining
budget, fluctuates over time. We propose an Adaptive Linear Programming (ALP) algorithm that
adjusts the threshold and randomization probability according to the instantaneous value of bτ/τ .

Specifically, when the remaining time is τ and the remaining budget is bτ = b, we consider an LP
problem LPτ,b which is the same as LPT,B except that B/T in Eq. (2) is replaced with b/τ . Then,
the optimal solution for LPτ,b can be obtained by replacing ρ in Eqs. (3), (4), and (5) with b/τ . The
ALP algorithm then makes decisions based on this optimal solution.

ALP Algorithm: At each round twith remaining budget bτ = b, obtain pj(b/τ)’s by solvingLPτ,b;
take action At = k∗Xt with probability pXt(b/τ), and At = 0 with probability 1− pXt(b/τ).

The above ALP algorithm only requires the ordering of the expected rewards instead of their accurate
values. This highly desirable feature allows us to combine ALP with classic MAB algorithms such as
UCB [4] for the case without knowledge of expected rewards. Moreover, this simple ALP algorithm
achieves very good performance within a constant distance from the optimum, i.e., O(1) regret,
except for certain boundary cases. Specifically, for 1 ≤ j ≤ J , let qj be the cumulative probability
defined as qj =

∑j
j′=1 πj′ with the convention that q0 = 0. The following theorem states the near

optimality of ALP.
Theorem 1. Given any fixed ρ ∈ (0, 1), the regret of ALP satisfies:
1) (Non-boundary cases) if ρ 6= qj for any j ∈ {1, 2, . . . , J − 1}, then RALP(T,B) ≤ u∗1−u

∗
J

1−e−2δ2
,

where δ = min{ρ− qj̃(ρ), qj̃(ρ)+1 − ρ}.
2) (Boundary cases) if ρ = qj for some j ∈ {1, 2, . . . , J − 1}, then RALP(T,B) ≤ Θ(o)

√
T +

u∗1−u
∗
J

1−e−2(δ′)2 , where Θ(o) = 2(u∗1 − u∗J)
√
ρ(1− ρ) and δ′ = min{ρ− qj̃(ρ)−1, qj̃(ρ)+1 − ρ}.

Theorem 1 shows that ALP achieves O(1) regret except for certain boundary cases, where it still
achieves O(

√
T ) regret. This implies that the regret due to the linear relaxation is negligible in most

cases. Thus, when the expected rewards are unknown, we can achieve low regret, e.g., logarithmic
regret, by combining ALP with appropriate information-acquisition mechanisms.

Sketch of Proof: Although the ALP algorithm seems fairly intuitive, its regret analysis is non-
trivial. The key to the proof is to analyze the evolution of the remaining budget bτ by mapping
ALP to “sampling without replacement”. Specifically, from Eq. (4), we can verify that when the
remaining time is τ and the remaining budget is bτ = b, the system consumes one unit of budget with
probability b/τ , and consumes nothing with probability 1 − b/τ . When considering the remaining
budget, the ALP algorithm can be viewed as “sampling without replacement”. Thus, we can show
that bτ follows the hypergeometric distribution [23] and has the following properties:
Lemma 2. Under the ALP algorithm, the remaining budget bτ satisfies:
1) The expectation and variance of bτ are E[bτ ] = ρτ and Var(bτ ) = T−τ

T−1 τρ(1− ρ), respectively.
2) For any positive number δ satisfying 0 < δ < min{ρ, 1− ρ}, the tail distribution of bτ satisfies

P{bτ < (ρ− δ)τ} ≤ e−2δ2τ and P{bτ > (ρ+ δ)τ} ≤ e−2δ2τ .

Then, we prove Theorem 1 based on Lemma 2. Note that the expected total reward under ALP
is UALP(T,B) = E

[∑T
τ=1 v(bτ/τ)

]
, where v(·) is defined in (5) and the expectation is taken

over the distribution of bτ . For the non-boundary cases, the single-round expected reward satisfies
E[v(bτ/τ)] = v(ρ) if the threshold j̃(bτ/τ) = j̃(ρ) for all possible bτ ’s. The regret then is bounded
by a constant because the probability of the event j̃(bτ/τ) 6= j̃(ρ) decays exponentially due to the
concentration property of bτ . For the boundary cases, we show the conclusion by relating the regret
with the variance of bτ . Please refer to Appendix B of the supplementary material for details.

4 UCB-ALP Algorithm for Constrained Contextual Bandits

Now we get back to the constrained contextual bandits, where the expected rewards are unknown
to the agent. We assume the agent knows the context distribution as [17], which will be relaxed in
Section 5. Thanks to the desirable properties of ALP, the maxim of “optimism under uncertainty”
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[8] is still applicable and ALP can be extended to the bandit settings when combined with estimation
policies that can quickly provide correct ranking with high probability. Here, combining ALP with
the UCB method [4], we propose a UCB-ALP algorithm for constrained contextual bandits.

4.1 UCB: Notations and Property

Let Cj,k(t) be the number of times that action k ∈ A has been taken under context j up to round t.
If Cj,k(t − 1) > 0, let ūj,k(t) be the empirical reward of action k under context j, i.e., ūj,k(t) =

1
Cj,k(t−1)

∑t−1
t′=1 Yt′1(Xt′ = j, At′ = k), where 1(·) is the indicator function. We define the UCB

of uj,k at t as ûj,k(t) = ūj,k(t) +
√

log t
2Cj,k(t−1) for Cj,k(t − 1) > 0, and ûj,k(t) = 1 for Cj,k(t −

1) = 0. Furthermore, we define the UCB of the maximum expected reward under context j as
û∗j (t) = maxk∈A ûj,k(t). As suggested in [24], we use a smaller coefficient in the exploration term√

log t
2Cj,k(t−1) than the traditional UCB algorithm [4] to achieve better performance.

We present the following property of UCB that is important in regret analysis.
Lemma 3. For two context-action pairs, (j, k) and (j′, k′), if uj,k < uj′,k′ , then for any t ≤ T ,

P{ûj,k(t) ≥ ûj′,k′(t)|Cj,k(t− 1) ≥ `j,k} ≤ 2t−1, (6)

where `j,k = 2 log T
(uj′,k′−uj,k)2 .

Lemma 3 states that for two context-action pairs, the ordering of their expected rewards can be iden-
tified correctly with high probability, as long as the suboptimal pair has been executed for sufficient
times (on the order of O(log T )). This property has been widely applied in the analysis of UCB-
based algorithms [4, 13], and its proof can be found in [13, 25] with a minor modification on the
coefficients.

4.2 UCB-ALP Algorithm

We propose a UCB-based adaptive linear programming (UCB-ALP) algorithm, as shown in Algo-
rithm 1. As indicated by the name, the UCB-ALP algorithm maintains UCB estimates of expected
rewards for all context-action pairs and then implements the ALP algorithm based on these esti-
mates. Note that the UCB estimates û∗j (t)’s may be non-decreasing in j. Thus, the solution of
LPτ,b based on û∗j (t) depends on the actual ordering of û∗j (t)’s and may be different from Eq. (4).
We use p̂j(·) rather than pj(·) to indicate this difference.

Algorithm 1 UCB-ALP
Input: Time-horizon T , budget B, and context distribution πj’s;
Init: τ = T , b = B;

Cj,k(0) = 0, ūj,k(0) = 0, ûj,k(0) = 1, ∀j ∈ X and ∀k ∈ A; û∗j (0) = 1, ∀j ∈ X ;
for t = 1 to T do
k∗j (t)← arg maxk ûj,k(t), ∀j;
û∗j (t)← û∗j,k∗j (t)(t);
if b > 0 then

Obtain the probabilities p̂j(b/τ)’s by solving LPτ,b with u∗j replaced by û∗j (t);
Take action k∗Xt(t) with probability p̂Xt(b/τ);

end if
Update τ , b, Cj,k(t), ūj,k(t), and ûj,k(t).

end for

4.3 Regret of UCB-ALP

We study the regret of UCB-ALP in this section. Due to space limitations, we only present a sketch
of the analysis. Specific representations of the regret bounds and proof details can be found in the
supplementary material.

Recall that qj =
∑j
j′=1 πj′ (1 ≤ j ≤ J) are the boundaries defined in Section 3. We show that

as the budget B and the time-horizon T grow to infinity in proportion, the proposed UCB-ALP
algorithm achieves logarithmic regret except for the boundary cases.
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Theorem 2. Given πj’s, uj,k’s and a fixed ρ ∈ (0, 1), the regret of UCB-ALP satisfies:
1) (Non-boundary cases) if ρ 6= qj for any j ∈ {1, 2, . . . , J − 1}, then the regret of UCB-ALP is
RUCB−ALP(T,B) = O

(
JK log T

)
.

2) (Boundary cases) if ρ = qj for some j ∈ {1, 2, . . . , J − 1}, then the regret of UCB-ALP is
RUCB−ALP(T,B) = O

(√
T + JK log T

)
.

Theorem 2 differs from Theorem 1 by an additional termO(JK log T ). This term results from using
UCB to learn the ordering of expected rewards. Under UCB, each of the JK content-action pairs
should be executed roughly O(log T ) times to obtain the correct ordering. For the non-boundary
cases, UCB-ALP is order-optimal because obtaining the correct action ranking under each context
will result in O(log T ) regret [26]. Note that our results do not contradict the lower bound in [17]
because we consider discrete contexts and actions, and focus on instance-dependent regret. For
the boundary cases, we keep both the

√
T and log T terms because the constant in the log T term

is typically much larger than that in the
√
T term. Therefore, the log T term may dominate the

regret particularly when the number of context-action pairs is large for medium T . It is still an open
problem if one can achieve regret lower than O(

√
T ) in these cases.

Sketch of Proof: We bound the regret of UCB-ALP by comparing its performance with the bench-
mark Û(T,B). The analysis of this bound is challenging due to the close interactions among differ-
ent sources of regret and the randomness of context arrivals. We first partition the regret according
to the sources and then bound each part of regret, respectively.

Step 1: Partition the regret. By analyzing the implementation of UCB-ALP, we show that its
regret is bounded as

RUCB−ALP(T,B) ≤ R(a)
UCB−ALP(T,B) +R

(c)
UCB−ALP(T,B),

where the first part R(a)
UCB−ALP(T,B) =

∑J
j=1

∑
k 6=k∗j

(u∗j − uj,k)E[Cj,k(T )] is the regret from

action ranking errors within a context, and the second part R(c)
UCB−ALP(T,B) =

∑T
τ=1 E

[
v(ρ) −∑J

j=1 p̂j(bτ/τ)πju
∗
j

]
is the regret from the fluctuations of bτ and context ranking errors.

Step 2: Bound each part of regret. For the first part, we can show that R(a)
UCB−ALP(T,B) =

O(log T ) using similar techniques for traditional UCB methods [25]. The major challenge of regret
analysis for UCB-ALP then lies in the evaluation of the second part R(c)

UCB−ALP(T,B).

We first verify that the evolution of bτ under UCB-ALP is similar to that under ALP and Lemma 2
still holds under UCB-ALP. With respect to context ranking errors, we note that unlike classic UCB
methods, not all context ranking errors contribute to the regret due to the threshold structure of
ALP. Therefore, we carefully categorize the context ranking results based on their contributions. We
briefly discuss the analysis for the non-boundary cases here. Recall that j̃(ρ) is the threshold for the
static LP problem LPT,B . We define the following events that capture all possible ranking results
based on UCBs:

Erank,0(t) =
{
∀j ≤ j̃(ρ), û∗j (t) > û∗

j̃(ρ)+1
(t);∀j > j̃(ρ) + 1, û∗j (t) < û∗

j̃(ρ)+1
(t)
}
,

Erank,1(t) =
{
∃j ≤ j̃(ρ), û∗j (t) ≤ û∗j̃(ρ)+1

(t);∀j > j̃(ρ) + 1, û∗j (t) < û∗
j̃(ρ)+1

(t)
}
,

Erank,2(t) =
{
∃j > j̃(ρ) + 1, û∗j (t) ≥ û∗j̃(ρ)+1

(t)
}
.

The first event Erank,0(t) indicates a roughly correct context ranking, because under Erank,0(t) UCB-
ALP obtains a correct solution for LPτ,bτ if bτ/τ ∈ [qj̃(ρ), qj̃(ρ)+1]. The last two events Erank,s(t),
s = 1, 2, represent two types of context ranking errors: Erank,1(t) corresponds to “certain contexts
with above-threshold reward having lower UCB”, while Erank,2(t) corresponds to “certain contexts
with below-threshold reward having higher UCB”. Let T (s) =

∑T
t=1 1(Erank,s(t)) for 0 ≤ s ≤ 2.

We can show that the expected number of context ranking errors satisfies E[T (s)] = O(JK log T ),
s = 1, 2, implying that R(c)

UCB−ALP(T,B) = O(JK log T ). Summarizing the two parts, we have
RUCB−ALP(T,B) = O(JK log T ) for the non-boundary cases. The regret for the boundary cases
can be bounded using similar arguments.

Key Insights from UCB-ALP: Constrained contextual bandits involve complicated interactions
between information acquisition and decision making. UCB-ALP alleviates these interactions by
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approximating the oracle with ALP for decision making. This approximation achieves near-optimal
performance while tolerating certain estimation errors of system statistics, and thus enables the
combination with estimation methods such as UCB in unknown statistics cases. Moreover, the
adaptation property of UCB-ALP guarantees the concentration property of the system status, e.g.,
bτ/τ . This allows us to separately study the impact of action or context ranking errors and conduct
rigorous analysis of regret. These insights can be applied in algorithm design and analysis for
constrained contextual bandits under more general settings.

5 Bandits with Unknown Context Distribution

When the context distribution is unknown, a reasonable heuristic is to replace the probability πj in
ALP with its empirical estimate, i.e., π̂j(t) = 1

t

∑t
t′=1 1(Xt′ = j). We refer to this modified ALP

algorithm as Empirical ALP (EALP), and its combination with UCB as UCB-EALP.

The empirical distribution provides a maximum likelihood estimate of the context distribution and
the EALP and UCB-EALP algorithms achieve similar performance as ALP and UCB-ALP, respec-
tively, as observed in numerical simulations. However, a rigorous analysis for EALP and UCB-
EALP is much more challenging due to the dependency introduced by the empirical distribution. To
tackle this issue, our rigorous analysis focuses on a truncated version of EALP where we stop updat-
ing the empirical distribution after a given round. Using the method of bounded averaged differences
based on coupling argument, we obtain the concentration property of the average remaining budget
bτ/τ , and show that this truncated EALP algorithm achieves O(1) regret except for the boundary
cases. The regret of the corresponding UCB-based version can by bounded similarly as UCB-ALP.

6 Bandits with Heterogeneous Costs

The insights obtained from unit-cost systems can also be used to design algorithms for heteroge-
neous cost systems where the cost cj,k depends on j and k. We generalize the ALP algorithm to
approximate the oracle, and adjust it to the case with unknown expected rewards. For simplicity, we
assume the context distribution is known here, while the empirical estimate can be used to replace
the actual context distribution if it is unknown, as discussed in the previous section.

With heterogeneous costs, the quality of an action k under a context j is roughly captured by its
normalized expected reward, defined as ηj,k = uj,k/cj,k. However, the agent cannot only focus
on the “best” action, i.e., k∗j = arg maxk∈A ηj,k, for context j. This is because there may exist
another action k′ such that ηj,k′ < ηj,k∗j , but uj,k′ > uj,k∗j (and of course, cj,k′ > cj,k∗j ). If
the budget allocated to context j is sufficient, then the agent may take action k′ to maximize the
expected reward. Therefore, to approximate the oracle, the ALP algorithm in this case needs to
solve an LP problem accounting for all context-action pairs with an additional constraint that only
one action can be taken under each context. By investigating the structure of ALP in this case and
the concentration of the remaining budget, we show that ALP achieves O(1) regret in non-boundary
cases, and O(

√
T ) regret in boundary cases. Then, an ε-First ALP algorithm is proposed for the

unknown statistics case where an exploration stage is implemented first and then an exploitation
stage is implemented according to ALP.

7 Conclusion

In this paper, we study computationally-efficient algorithms that achieve logarithmic or sublinear
regret for constrained contextual bandits. Under simplified yet practical assumptions, we show
that the close interactions between the information acquisition and decision making in constrained
contextual bandits can be decoupled by adaptive linear relaxation. When the system statistics are
known, the ALP approximation achieves near-optimal performance, while tolerating certain estima-
tion errors of system parameters. When the expected rewards are unknown, the proposed UCB-ALP
algorithm leverages the advantages of ALP and UCB, and achieves O(log T ) regret except for cer-
tain boundary cases, where it achieves O(

√
T ) regret. Our study provides an efficient approach of

dealing with the challenges introduced by budget constraints and could potentially be extended to
more general constrained contextual bandits.
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