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1 Expectation Maximization for Disease Trajectory Model

1.1 Objective

We include the derivation of the EM objective for convenience. Recall that the model for marker y;;
given parameters O and latent variables {z;, b;, f;} is
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Let X; = {f;, Tip, Z;, } denote individual i’s observation times and features, then marginalizing the
joint likelihood gives us
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Moving from Eq. 2] to Eq. [3] we evaluate the innermost integral using the fact that the GP prior
over f; is conjugate to Eq. ielding a new multivariate normal [1]]. To evaluate the next integral in
Eq. we again have that the normal prior over b; is conjugate to the multivariate normal obtained by
marginalizing over f;, which gives us the multivariate normal shown in Eq. [3| where the covariance
function is defined as
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We see that the observed-data log-likelihood for individual ¢ is defined by a mixture of multivariate
normals where each subtype is associated with a class in the mixture. The mixing probabilities are
defined by the multinomial logistic regression. The mean of the multivariate normal is defined by the
population and subpopulation models, and the covariance is defined by the individual and structured
noise models. The observed-data log-likelihood for all individuals is therefore

M G
£(©)=) log lz Ty @) N (35 @p (5) Ay + @2 () Fu K (Fi,ﬁ»))] N©)
i=1

Ziil



1.2 Expectation Step

All parameters related to b; and fi are limited to the covariance kernel and are therefore not opti-
mized using EM. We therefore only need to consider the mechanism indicators z; as unobserved
in the expectation step. Because z; is discrete, its posterior is simply computed using the joint
probability of z; and g;. Let 7, denote the posterior probability that individual 7 has mechanism
g €{1,...,G}, then we have
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1.3 Maximization Step

In the maximization step, we maximize the expected complete-data log likelihood with respect to
©5. We can write the complete-data log likelihood as
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The expectation is taken with respect to the posterior over z;.

To maximize this objective with respect to ., we can focus on the first term in the sum above.
By writing the log probabilities in full form we have
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Taking the expectation of this expression with respect to the posterior over z; amounts to replacing
the indicator function I (z; = g) with the posterior probability 7;,. We can maximize this expression
with respect to the multinomial logistic regression parameters . using gradient-based methods.

The second term in the complete-data log-likelihood involves the population feature-coefficient map
A and the subpopulation model coefficients Bl;g. These two sets of parameters are coupled in the
exponential term of the multivariate normal, and therefore must be optimized jointly. To optimize
these parameters, we first note that the multivariate normal log-likelihood can be rewritten as a
weighted least squares problem. To see this, we first write out the second term in Equation [/|using
the log of the multivariate normal density.
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where the constant C; is the log normalizing constant, which does not contain the parameters of
interest. Maximizing this expression with respective 3, foreach g € {1,..., G} and A is equivalent

to minimizing the negative value of the quadratic. Let W; = K (t:, t_;)_l, then we can write the
negative of the quadratic term as a weighted least squares objective with weight matrix W;. Given

A, we can optimize 51;G in closed form using the standard weighted normal equations. Similarly,

given [31.¢, we can optimize A. This suggests an alternating strategy wherein we iteratively refine
the subtype parameters given the control parameters and vice versa.

Given a current estimate of A, the sufficient statistics needed to optimize 3, are computed for each
individual 7 belonging to subtype g. These statistics are
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To maximize ﬁg we leverage two facts from statistics. First, the sufficient statistics required to com-
pute the maximum likelihood estimate from M independent weighted linear regressions is simply
the sum of the individual sufficient statistics. Second, when maximizing an expected complete-data

log-likelihood, we can replace the sufficient statistics with expected sufficient statistics. In this case,
we multiply ngl) and néﬂ) by the posterior probability over I(z; = g). We can therefore compute

the optimal value for 3, using
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Similarly, given a current estimate of ELG, the sufficient statistics needed to optimize A are
computed across all individuals. Let A denote the vectorization of the feature-coefficient map
matrix (i.e. the column vector obtained by stacking the columns of A) and let @ff”’) (f;) =

[<I>p (fz) Tip,1s--> Pp (t_;) xl-pyqp} , then the sufficient statistics for optimizing A are
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where the expectation in the second sufficient statistic is taken with respect to the posterior over z;.
Given these sufficient statistics, the optimal value for A is
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2 Prediction

Our prediction §(¢;) for the value of the trajectory at time ¢} is the expectation of the marker y;

under the posterior predictive conditioned on observed markers 7, measured at times #; thus far.
This requires evaluating the following expression:
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where E* denotes an expectation conditioned on ¥;, X;, ©. In moving from Eq. [T6|to[I7] we have
written the integral as an expectation and substituted the inner expectation with the mean of the
normal distribution in Eq.[I] From Eq. [I7]to[I8] we use linearity of expectation. Eqs. [[9][23] and [30]
below show how the expectations in Eq. [I8|are computed.

Computing the population prediction is straightforward as all quantities are observed. To compute
the subpopulation prediction, we need to compute the marginal posterior over z;, which we used in
the expectation step above (Eq.[6). The expected subtype coefficients are therefore
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To compute the individual prediction, note that by conditioning on z; and integrating over f;, the

innermost integral from Eq.[2|and the prior over b; form the likelihood and prior of a Bayesian linear
regression. Let Ky = Kou(fi, t_;) + 021, then the posterior over b; conditioned on z; is:
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Just as in Eq.|3] we have integrated over f; moving its effect from the mean of the normal distribution

to the covariance. Because the prior over b; is conjugate to the likelihood on the right side of Eq.
the posterior can be written in closed form as a normal distribution with the following mean and
variance (see e.g. [2]).
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We are interested in the posterior expectation of this normal distribution, but have conditioned on
z;. We can derive the unconditional posterior mean of b by computing the expectation of u; with
respect to the posterior over z; (Eq. @) The only term involving z; in py is ﬂ; Furthermore, 11
is linear in Ezi so we can simply replace ,6_’; with its expectation under the posterior, which we’ve
already computed in Eq. This gives us
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Finally, to compute the structured noise prediction, recall from Equation [2]that when conditioned on
z; and b; the GP prior and marker likelihood (Eq. |1)) form a standard GP regression (see e.g. [1]). To

see this, note that by conditioning on z; and b; we can compute the residuals of the observed marker
values:
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To explain the remaining variation we use f; (ﬁ), which we know has a Gaussian process prior with
OU covariance kernel. Moreover, given f;(;) the residuals 7; are normally distributed.
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To compute the value of the latent function at a new point ¢, we use the posterior predictive
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The posterior predictive is itself a GP. The mean of this GP is used to predict new observations in
GP regression [1]]. Using standard results from [1]] we have that the conditional expectation of f;(¢)
given z; and b; is
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Just as with b;, we need to take the expectation of this expression with respect to the posteriors over
z; and b; to obtain the unconditional posterior expectation. This is easy to do because the expression

above is linear in both Ezi and I;i so we can simply replace them with their expectations computed
in Eq.[I9)and Eq. 23| respectively:
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3 Will a mixture model suffice?

A natural question one might ask is whether a B-spline mixture model would sufficiently explain
the variability across individuals. In other words, is it necessary to include the individual-specific
components that adjust for long-term and short-term deviations from the subtype trajectory in the
proposed model? We fit a B-spline mixture model that is similar to the proposed model but that
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Figure 1: Comparison of sample subtypes learned by (a) a B-spline mixture model without a personalization
component, and (b) the proposed model.
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Figure 2: In panel (a), we show examples of individuals with trajectories that do not fit any of the subtypes
learned by the mixture model. In panel (b), we show the first (blue) and second (green) most likely subtypes
assigned by the mixture model to two individuals with a recovering trajectory (top row) and two individuals with
arapidly declining trajectory (bottom row). Finally, in panel (c), we show the most likely subtypes assigned by
the proposed model to the same individuals. For all predictions in panels (b) and (c), the individuals were not
included in the training set of the model that was used.

does not account for individual-specific long-term and short-term components. This is also similar
to the approach by Proust-Lima et al. [3]], a commonly used technique that accounts for population
heterogeneity using a mixture model. In Figures [Th and [Tp, we plot the subtypes learned from a
random fold of our data using the B-spline mixture model and the proposed model respectively.
We used BIC to determine the number of subtypes used in the B-spline mixture model. We find
that a model that does not account for individual-specific variability is unable to recover clinically-
salient subtypes that capture the different kinds of trajectories clinicians expect to see. In particular,
Figure [Tp highlights in red two types of trajectories that the B-spline mixture model (Figure [Th) is
unable to learn: a rapidly declining subtype and recovering subtype.

In Figure [Zh, we show data from several example individuals that fall under these subtypes. Figures
[2b and 2k show the most likely (blue) and second most likely (green) subtypes assigned by the B-
spline mixture model and the proposed model on two example patients from each of the two groups



shown in [Zh. We note that in all four cases, there are no suitable subtypes in the B-spline mixture
model. On the other hand, the proposed model recovers subtypes that generalize well and are able to
capture the trajectories of the individuals shown. The behavior of the B-spline mixture model is not
surprising because it has limited means for explaining away individual-specific long-term and short-
term deviations from the subtype. This issue has also been discussed by Schulam et al. [4] in the
context of subtype discovery. It is worth noting that since BIC was used for model selection, simply
increasing the number of subtypes in the B-spline mixture model would not address this issue.
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