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Proof of Lemma 1 and Lemma 2

In this section we let Xt, t P N` denote a realization from Corp.

Lemma 1. For any n P N`, any 1 ď i ă n and any ε ą 0, we have

ppXn P BpXi, εq|X1, . . . , Xn´1q ă
2π2ε2r`1

2r ` 1

where BpXi, εq “ tX P p0, 1q : dpX,Xiq ă εu.

Proof. By definition of the Corp, for ε small enough, we have

ppXn P BpXi, εq|X1, . . . , Xn´1q

“C

ż

sin
`

Xn´Xi

˘

ăε

Πn´1
j“1 sin2r

`

πXn ´ πXj

˘

dXn

«C

ż

|Xn´Xi|ăε

Πn´1
j“1 sin2r

`

πXn ´ πXj

˘

dXn,

where C is the normalizing constant. When Xi P pε, 1´ εq, the following is true,

ż Xi`ε

Xi´ε

Πn´1
j“1 sin2r

`

πXn ´ πXj

˘

dXn

ď

ż Xi`ε

Xi´ε

sin2r
`

πXn ´ πXi

˘

dXn

“2

ż ε

0

sin2r
pπxqdx

ă2

ż ε

0

x2rdx

“
2π2ε2r`1

2r ` 1
.
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When Xi P p0, εq, the following is true,
ˆ
ż Xi`ε

0

`

ż 1

1´ε`Xi

˙

Πn´1
j“1 sin2r

`

πXn ´ πXj

˘

dXn

ď

ż Xi`ε

0

sin2r
`

πXn ´ πXi

˘

dXn `

ż 1

1´ε`Xi

sin2
`

π ´ πXn ` πXi

˘

dXn

“

ˆ
ż ε

0

`

ż Xi

0

˙

sin2r
pπxqdx`

ż ε

Xi

sin2r
pπxqdx

ă
2π2ε2r`1

2r ` 1

The proof for Xi P p1´ ε, 1q is the same as above and hence is neglected here.

Lemma 2. For any n P N`, ppXt1 , . . . , Xtkq (due to the exchangeability, we can assume X1 ă

X2 ă ¨ ¨ ¨ ă Xn without loss of generality) is maximized when and only when

dpXi, Xi´1q “ sin
` 1

n` 1

˘

for all 2 ď i ď n. (1)

Proof. The log of the density is given up to a constant by

lpX1, . . . , Xnq9
ÿ

iąj

c log

„

sin2
`

πXi ´ πXj

˘



.

The first order derivatives are given by

Bl

BXi
“

n
ÿ

j‰i

2cπ sin
`

πXi ´ πXj

˘

cos
`

πXi ´ πXj

˘

sin2
`

πXi ´ πXj

˘

“

n
ÿ

j‰i

2cπ cot
`

πXi ´ πXj

˘

(2)

For any X1 ă X2 ă ¨ ¨ ¨ ă Xn satisfying condition dpXi, Xi´1q “ sin
`

1
n`1

˘

, (2) can be rewritten
as

n
ÿ

j‰i

2cπ cot
`

πXi ´ πXj

˘

“

n
ÿ

j‰i

2cπ cot

ˆ

i´ j

n
π

˙

“

i´1
ÿ

j“1

2cπ cot

ˆ

j

n
π

˙

`

n
ÿ

j“i`1

2cπ cot

ˆ

´
j ´ i

n
π

˙

“

i´1
ÿ

j“1

2cπ cot

ˆ

j

n
π

˙

`

n
ÿ

j“i`1

2cπ cot

ˆ

n´ j ` i

n
π

˙

“

n´1
ÿ

j“1

2cπ cot

ˆ

j

n
π

˙

“0

Hence (1) satisfies the first order condition. The second order derivatives are given by

B2l

BXiBXj
“ 2cπ

B

„

cot
`

πXi ´ πXj

˘



BXj
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for i ‰ j and

B2l

BX2
i

“

n
ÿ

j‰i

2cπ

B

„

cot
`

πXi ´ πXj

˘



BXj

“

n
ÿ

j‰i

B2l

BXiBXj

Hence the Hessian matrix is positive semi-definite, indicating that (1) is a global maxima. Note also
that the Hessian matrix is rank-deficit, indicating that the solution to this maximization problem is
not unique.

Sampling from Corp

The sampling method can be easily summarized as,

Step 1 Sample X1 from Unif(0,1);
Step 2 Repeatedly sample Xi from ppXi|X1, . . . , Xi´1q until desired sample size reached.

The difficulty arises in step 2 since

ppXi|X1, . . . , Xi´1q9Πi´1
j“1 sin2r

`

πXi ´ πXj

˘

1XiPp0,1q

is multi-modal and not analytically integrable. Fortunately, sampling from the above univariate
distribution can be done by rejection sampling. The only trick here is to find a proper proposal
distribution. Naı̈vely using a uniform would result in very high rejection rate as i grows larger.

Assuming without loss of generosity that X1 ă X2 ă . . . ă Xi´1, it can be easily checked that
there is one local mode within each interval of pXj , Xj`1q, for 1 ď j ď i´ 2. We denote the mode
by pj and the interval by Sj . There is also one mode on p0, X1q

Ť

pXi´1, 1q. We denote this mode
by pi´1, and this interval by Si´1. Sampling from this conditional distribution can be summarized
as,

Step 1 Sample k from Multinomialipaaa) where aj “
ş

Sj
ppXi|X1, . . . , Xi´1qdXi for j “

1, . . . , i´ 1. These integration is done using numerical method;
Step 2 Use Unif(Sk) as the proposal distribution and calculate pk using numerical maximization

method. Use rejection sampling to sample Xi from the truncated conditional distribution
pSk
pXi|X1, . . . , Xi´1q.

Prediction

Assume m new data zzzi, for i “ 1, . . . ,m, are partially observed and the missing entries are to
be predicted. Letting zzzOi denote the observed data vector and zzzMi denote the missing part. We
approximate the predictive distribution by assuming that these zzzi’s are conditionally independent.
For ease of notation, we focus on discussing the prediction algorithm for one partially observed new
data vector pzzzO, zzzM q.

Sample from the posterior predictive distribution Instead of sampling from
ppzzzM |zzzO, x̂xx,yyy1:n, Θ̂q, we sample from ppzzzM , xz|zzzO, x̂xx,yyy1:n, Θ̂q, which can be factorized into two
parts ppzzzM |xz, zzzO, x̂xx,yyy1:n, Θ̂q and ppxz|zzzO, x̂xx,yyy1:n, Θ̂q. The first part is simply a conditional Gaus-
sian distribution and can be easily sampled. We use the Metropolis Hasting algorithm to sample
from the intractable second part, using Unif(0,1) as the proposal distribution. Note that Unif(0,1)
is a natural choice, since it is the prior distribution of x. It can be easily generalized to a piecewise
uniform distribution, as what we did in sampling Corp, to decrease the rejection rate.

Find the MAP MCMC can be infeasible in some applications due to its expensive computation.
A straightforward solution is to use EM algorithm treating xz as an augmented variable, which will
give us a point estimate of zzzM . We propose another heuristic algorithm that would give us instead
of point estimate a distribution of zzzM . The algorithm is very simple and is summarized as follows,

3



Step 1. Find x̂z by maximizing ppxz|zzzO, x̂xx,yyy1:n, Θ̂q;

Step 2. Return ppzzzM |x̂z, zzzO, x̂xx,yyy1:n, Θ̂q, which is simply a multivariate Gaussian.

Simulation Results

Figure 1: Visualization of two simulation experiments where the data (triangles) are simulated from
a rotated sine curve with Gaussian noises (top), an arc with Gaussian noises (bottom). The dotted
shading denotes the 95% posterior predictive uncertainty band of py1, y2q under electroGP. The black
curve denotes the posterior mean curve under electroGP and the red curve denotes the P-curve.
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