
Combinatorial Cascading Bandits

Branislav Kveton
Adobe Research

San Jose, CA
kveton@adobe.com

Zheng Wen
Yahoo Labs

Sunnyvale, CA
zhengwen@yahoo-inc.com

Azin Ashkan
Technicolor Research

Los Altos, CA
azin.ashkan@technicolor.com

Csaba Szepesvári
Department of Computing Science

University of Alberta
szepesva@cs.ualberta.ca

Abstract

We propose combinatorial cascading bandits, a class of partial monitoring prob-
lems where at each step a learning agent chooses a tuple of ground items subject
to constraints and receives a reward if and only if the weights of all chosen items
are one. The weights of the items are binary, stochastic, and drawn independently
of each other. The agent observes the index of the first chosen item whose weight
is zero. This observation model arises in network routing, for instance, where the
learning agent may only observe the first link in the routing path which is down,
and blocks the path. We propose a UCB-like algorithm for solving our problems,
CombCascade; and prove gap-dependent and gap-free upper bounds on its n-step
regret. Our proofs build on recent work in stochastic combinatorial semi-bandits
but also address two novel challenges of our setting, a non-linear reward function
and partial observability. We evaluate CombCascade on two real-world problems
and show that it performs well even when our modeling assumptions are violated.
We also demonstrate that our setting requires a new learning algorithm.

1 Introduction

Combinatorial optimization [16] has many real-world applications. In this work, we study a class of
combinatorial optimization problems with a binary objective function that returns one if and only if
the weights of all chosen items are one. The weights of the items are binary, stochastic, and drawn
independently of each other. Many popular optimization problems can be formulated in our setting.
Network routing is a problem of choosing a routing path in a computer network that maximizes the
probability that all links in the chosen path are up. Recommendation is a problem of choosing a list
of items that minimizes the probability that none of the recommended items are attractive. Both of
these problems are closely related and can be solved using similar techniques (Section 2.3).

Combinatorial cascading bandits are a novel framework for online learning of the aforementioned
problems where the distribution over the weights of items is unknown. Our goal is to maximize the
expected cumulative reward of a learning agent in n steps. Our learning problem is challenging for
two main reasons. First, the reward function is non-linear in the weights of chosen items. Second,
we only observe the index of the first chosen item with a zero weight. This kind of feedback arises
frequently in network routing, for instance, where the learning agent may only observe the first link
in the routing path which is down, and blocks the path. This feedback model was recently proposed
in the so-called cascading bandits [10]. The main difference in our work is that the feasible set can
be arbitrary. The feasible set in cascading bandits is a uniform matroid.

1

Stochastic online learning with combinatorial actions has been previously studied with semi-bandit
feedback and a linear reward function [8, 11, 12], and its monotone transformation [5]. Established
algorithms for multi-armed bandits, such as UCB1 [3], KL-UCB [9], and Thompson sampling [18, 2];
can be usually easily adapted to stochastic combinatorial semi-bandits. However, it is non-trivial to
show that the algorithms are statistically efficient, in the sense that their regret matches some lower
bound. Kveton et al. [12] recently showed this for CombUCB1, a form of UCB1. Our analysis builds
on this recent advance but also addresses two novel challenges of our problem, a non-linear reward
function and partial observability. These challenges cannot be addressed straightforwardly based on
Kveton et al. [12, 10].

We make multiple contributions. In Section 2, we define the online learning problem of combinato-
rial cascading bandits and propose CombCascade, a variant of UCB1, for solving it. CombCascade
is computationally efficient on any feasible set where a linear function can be optimized efficiently.
A minor-looking improvement to the UCB1 upper confidence bound, which exploits the fact that the
expected weights of items are bounded by one, is necessary in our analysis. In Section 3, we derive
gap-dependent and gap-free upper bounds on the regret of CombCascade, and discuss the tightness
of these bounds. In Section 4, we evaluate CombCascade on two practical problems and show that
the algorithm performs well even when our modeling assumptions are violated. We also show that
CombUCB1 [8, 12] cannot solve some instances of our problem, which highlights the need for a new
learning algorithm.

2 Combinatorial Cascading Bandits

This section introduces our learning problem, its applications, and also our proposed algorithm. We
discuss the computational complexity of the algorithm and then introduce the co-called disjunctive
variant of our problem. We denote random variables by boldface letters. The cardinality of set A is
|A| and we assume that min ; = +1. The binary and operation is denoted by ^, and the binary or

is _.

2.1 Setting

We model our online learning problem as a combinatorial cascading bandit. A combinatorial cas-
cading bandit is a tuple B = (E,P,⇥), where E = {1, . . . , L} is a finite set of L ground items, P
is a probability distribution over a binary hypercube {0, 1}E , ⇥ ✓ ⇧

⇤
(E), and:

⇧

⇤
(E) = {(a1, . . . , ak) : k � 1, a1, . . . , ak 2 E, ai 6= aj for any i 6= j}

is the set of all tuples of distinct items from E. We refer to ⇥ as the feasible set and to A 2 ⇥ as a
feasible solution. We abuse our notation and also treat A as the set of items in solution A. Without
loss of generality, we assume that the feasible set ⇥ covers the ground set, E = [⇥.

Let (wt)
n
t=1 be an i.i.d. sequence of n weights drawn from distribution P , where wt 2 {0, 1}E . At

time t, the learning agent chooses solution At = (at1, . . . ,a
t
|At|) 2 ⇥ based on its past observations

and then receives a binary reward:

rt = min

e2At

wt(e) =
^

e2At

wt(e)

as a response to this choice. The reward is one if and only if the weights of all items in At are one.
The key step in our solution and its analysis is that the reward can be expressed as rt = f(At,wt),
where f : ⇥⇥ [0, 1]E ! [0, 1] is a reward function, which is defined as:

f(A,w) =
Y

e2A

w(e) , A 2 ⇥ , w 2 [0, 1]E .

At the end of time t, the agent observes the index of the first item in At whose weight is zero, and
+1 if such an item does not exist. We denote this feedback by Ot and define it as:

Ot = min

�
1 k |At| : wt(a

t
k) = 0

.

Note that Ot fully determines the weights of the first min {Ot, |At|} items in At. In particular:

wt(a
t
k) = 1{k < Ot} k = 1, . . . ,min {Ot, |At|} . (1)

2

Accordingly, we say that item e is observed at time t if e = atk for some 1 k min {Ot, |At|}.
Note that the order of items in At affects the feedback Ot but not the reward rt. This differentiates
our problem from combinatorial semi-bandits.

The goal of our learning agent is to maximize its expected cumulative reward. This is equivalent to
minimizing the expected cumulative regret in n steps:

R(n) = E [

Pn
t=1 R(At,wt)] ,

where R(At,wt) = f(A⇤,wt) � f(At,wt) is the instantaneous stochastic regret of the agent at
time t and A⇤

= argmaxA2⇥ E [f(A,w)] is the optimal solution in hindsight of knowing P . For
simplicity of exposition, we assume that A⇤, as a set, is unique.

A major simplifying assumption, which simplifies our optimization problem and its learning, is that
the distribution P is factored:

P (w) =
Q

e2E Pe(w(e)) , (2)

where Pe is a Bernoulli distribution with mean w̄(e). We borrow this assumption from the work of
Kveton et al. [10] and it is critical to our results. We would face computational difficulties without
it. Under this assumption, the expected reward of solution A 2 ⇥, the probability that the weight of
each item in A is one, can be written as E [f(A,w)] = f(A, w̄), and depends only on the expected
weights of individual items in A. It follows that:

A⇤
= argmaxA2⇥ f(A, w̄) .

In Section 4, we experiment with two problems that violate our independence assumption. We also
discuss implications of this violation.

Several interesting online learning problems can be formulated as combinatorial cascading bandits.
Consider the problem of learning routing paths in Simple Mail Transfer Protocol (SMTP) that max-
imize the probability of e-mail delivery. The ground set in this problem are all links in the network
and the feasible set are all routing paths. At time t, the learning agent chooses routing path At and
observes if the e-mail is delivered. If the e-mail is not delivered, the agent observes the first link in
the routing path which is down. This kind of information is available in SMTP. The weight of item
e at time t is an indicator of link e being up at time t. The independence assumption in (2) requires
that all links fail independently. This assumption is common in the existing network routing models
[6]. We return to the problem of network routing in Section 4.2.

2.2 CombCascade Algorithm

Our proposed algorithm, CombCascade, is described in Algorithm 1. This algorithm belongs to the
family of UCB algorithms. At time t, CombCascade operates in three stages. First, it computes the
upper confidence bounds (UCBs) Ut 2 [0, 1]E on the expected weights of all items in E. The UCB
of item e at time t is defined as:

Ut(e) = min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

, (3)

where ˆws(e) is the average of s observed weights of item e, Tt(e) is the number of times that item e

is observed in t steps, and ct,s =
p
(1.5 log t)/s is the radius of a confidence interval around ˆws(e)

after t steps such that w̄(e) 2 [

ˆws(e) � ct,s, ˆws(e) + ct,s] holds with a high probability. After the
UCBs are computed, CombCascade chooses the optimal solution with respect to these UCBs:

At = argmaxA2⇥ f(A,Ut) .

Finally, CombCascade observes Ot and updates its estimates of the expected weights based on the
weights of the observed items in (1), for all items atk such that k Ot.

For simplicity of exposition, we assume that CombCascade is initialized by one sample w0 ⇠ P . If
w0 is unavailable, we can formulate the problem of obtaining w0 as an optimization problem on ⇥

with a linear objective [12]. The initialization procedure of Kveton et al. [12] tracks observed items
and adaptively chooses solutions with the maximum number of unobserved items. This approach is
computationally efficient on any feasible set ⇥ where a linear function can be optimized efficiently.

CombCascade has two attractive properties. First, the algorithm is computationally efficient, in the
sense that At = argmaxA2⇥

P
e2A log(Ut(e)) is the problem of maximizing a linear function on

3

Algorithm 1 CombCascade for combinatorial cascading bandits.
// Initialization
Observe w0 ⇠ P
8e 2 E : T0(e) 1

8e 2 E :

ˆw1(e) w0(e)

for all t = 1, . . . , n do
// Compute UCBs
8e 2 E : Ut(e) = min

�
ˆwTt�1(e)(e) + ct�1,Tt�1(e), 1

// Solve the optimization problem and get feedback
At argmaxA2⇥ f(A,Ut)

Observe Ot 2 {1, . . . , |At| ,+1}
// Update statistics
8e 2 E : Tt(e) Tt�1(e)
for all k = 1, . . . ,min {Ot, |At|} do
e atk
Tt(e) Tt(e) + 1

ˆwTt(e)(e)
Tt�1(e) ˆwTt�1(e)(e) + 1{k < Ot}

Tt(e)

⇥. This problem can be solved efficiently for various feasible sets ⇥, such as matroids, matchings,
and paths. Second, CombCascade is sample efficient because the UCB of solution A, f(A,Ut), is a
product of the UCBs of all items in A, which are estimated separately. The regret of CombCascade
does not depend on |⇥| and is polynomial in all other quantities of interest.

2.3 Disjunctive Objective

Our reward model is conjuctive, the reward is one if and only if the weights of all chosen items are
one. A natural alternative is a disjunctive model rt = maxe2At wt(e) =

W
e2At

wt(e), the reward
is one if the weight of any item in At is one. This model arises in recommender systems, where the
recommender is rewarded when the user is satisfied with any recommended item. The feedback Ot

is the index of the first item in At whose weight is one, as in cascading bandits [10].

Let f_ : ⇥⇥ [0, 1]E! [0, 1] be a reward function, which is defined as f_(A,w) = 1�Q
e2A(1�

w(e)). Then under the independence assumption in (2), E [f_(A,w)] = f_(A, w̄) and:

A⇤
= argmax

A2⇥
f_(A, w̄) = argmin

A2⇥

Y

e2A

(1� w̄(e)) = argmin

A2⇥
f(A, 1� w̄) .

Therefore, A⇤ can be learned by a variant of CombCascade where the observations are 1 �wt and
each UCB Ut(e) is substituted with a lower confidence bound (LCB) on 1� w̄(e):

Lt(e) = max

�
1� ˆwTt�1(e)(e)� ct�1,Tt�1(e), 0

.

Let R(At,wt) = f(At, 1 �wt) � f(A⇤, 1 �wt) be the instantaneous stochastic regret at time t.
Then we can bound the regret of CombCascade as in Theorems 1 and 2. The only difference is that
�e,min and f⇤ are redefined as:

�e,min = minA2⇥:e2A,�A>0 f(A, 1� w̄)� f(A⇤, 1� w̄) , f⇤
= f(A⇤, 1� w̄) .

3 Analysis

We prove gap-dependent and gap-free upper bounds on the regret of CombCascade in Section 3.1.
We discuss these bounds in Section 3.2.

3.1 Upper Bounds

We define the suboptimality gap of solution A = (a1, . . . , a|A|) as �A = f(A⇤, w̄)� f(A, w̄) and
the probability that all items in A are observed as pA =

Q|A|�1
k=1 w̄(ak). For convenience, we define

4

shorthands f⇤
= f(A⇤, w̄) and p⇤= pA⇤ . Let ˜E = E \A⇤ be the set of suboptimal items, the items

that are not in A⇤. Then the minimum gap associated with suboptimal item e 2 ˜E is:

�e,min = f(A⇤, w̄)�maxA2⇥:e2A,�A>0 f(A, w̄) .

Let K = max {|A| : A 2 ⇥} be the maximum number of items in any solution and f⇤ > 0. Then
the regret of CombCascade is bounded as follows.

Theorem 1. The regret of CombCascade is bounded as R(n) K

f⇤

X

e2Ẽ

4272

�e,min
log n+

⇡2

3

L.

Proof. The proof is in Appendix A. The main idea is to reduce our analysis to that of CombUCB1 in
stochastic combinatorial semi-bandits [12]. This reduction is challenging for two reasons. First, our
reward function is non-linear in the weights of chosen items. Second, we only observe some of the
chosen items.

Our analysis can be trivially reduced to semi-bandits by conditioning on the event of observing all
items. In particular, let Ht = (A1,O1, . . . ,At�1,Ot�1,At) be the history of CombCascade up to
choosing solution At, the first t � 1 observations and t actions. Then we can express the expected
regret at time t conditioned on Ht as:

E [R(At,wt) |Ht] = E [�At(1/pAt)1{�At > 0, Ot � |At|} |Ht]

and analyze our problem under the assumption that all items in At are observed. This reduction is
problematic because the probability pAt can be low, and as a result we get a loose regret bound.

We address this issue by formalizing the following insight into our problem. When f(A, w̄)⌧ f⇤,
CombCascade can distinguish A from A⇤ without learning the expected weights of all items in A.
In particular, CombCascade acts implicitly on the prefixes of suboptimal solutions, and we choose
them in our analysis such that the probability of observing all items in the prefixes is “close” to f⇤,
and the gaps are “close” to those of the original solutions.

Lemma 1. Let A = (a1, . . . , a|A|) 2 ⇥ be a feasible solution and Bk = (a1, . . . , ak) be a prefix of
k |A| items of A. Then k can be set such that �Bk � 1

2�A and pBk � 1
2f

⇤.

Then we count the number of times that the prefixes can be chosen instead of A⇤ when all items in
the prefixes are observed. The last remaining issue is that f(A,Ut) is non-linear in the confidence
radii of the items in A. Therefore, we bound it from above based on the following lemma.

Lemma 2. Let 0 p1, . . . , pK 1 and u1, . . . , uK � 0. Then:
QK

k=1 min {pk + uk, 1}
QK

k=1 pk +

PK
k=1 uk .

This bound is tight when p1, . . . , pK = 1 and u1, . . . , uK = 0.

The rest of our analysis is along the lines of Theorem 5 in Kveton et al. [12]. We can achieve linear
dependency on K, in exchange for a multiplicative factor of 534 in our upper bound.

We also prove the following gap-free bound.

Theorem 2. The regret of CombCascade is bounded as R(n) 131

s
KLn log n

f⇤ +

⇡2

3

L.

Proof. The proof is in Appendix B. The key idea is to decompose the regret of CombCascade into
two parts, where the gaps �At are at most ✏ and larger than ✏. We analyze each part separately and
then set ✏ to get the desired result.

3.2 Discussion

In Section 3.1, we prove two upper bounds on the n-step regret of CombCascade:

Theorem 1: O(KL(1/f⇤
)(1/�) log n) , Theorem 2: O(

p
KL(1/f⇤

)n log n) ,

where � = mine2Ẽ �e,min. These bounds do not depend on the total number of feasible solutions
|⇥| and are polynomial in any other quantity of interest. The bounds match, up to O(1/f⇤

) factors,

5

Step n
2k 4k 6k 8k 10k

R
eg

re
t

0

20

40

60

80
7w = (0:4; 0:4; 0:2; 0:2)

CombCascade
CombUCB1

Step n
2k 4k 6k 8k 10k

R
eg

re
t

0
100
200
300
400
500

7w = (0:4; 0:4; 0:9; 0:1)

Step n
2k 4k 6k 8k 10k

R
eg

re
t

0
20
40
60
80

100
7w = (0:4; 0:4; 0:3; 0:3)

Figure 1: The regret of CombCascade and CombUCB1 in the synthetic experiment (Section 4.1). The
results are averaged over 100 runs.

the upper bounds of CombUCB1 in stochastic combinatorial semi-bandits [12]. Since CombCascade
receives less feedback than CombUCB1, this is rather surprising and unexpected. The upper bounds
of Kveton et al. [12] are known to be tight up to polylogarithmic factors. We believe that our upper
bounds are also tight in the setting similar to Kveton et al. [12], where the expected weight of each
item is close to 1 and likely to be observed.

The assumption that f⇤ is large is often reasonable. In network routing, the optimal routing path is
likely to be reliable. In recommender systems, the optimal recommended list often does not satisfy
a reasonably large fraction of users.

4 Experiments

We evaluate CombCascade in three experiments. In Section 4.1, we compare it to CombUCB1 [12],
a state-of-the-art algorithm for stochastic combinatorial semi-bandits with a linear reward function.
This experiment shows that CombUCB1 cannot solve all instances of our problem, which highlights
the need for a new learning algorithm. It also shows the limitations of CombCascade. We evaluate
CombCascade on two real-world problems in Sections 4.2 and 4.3.

4.1 Synthetic

In the first experiment, we compare CombCascade to CombUCB1 [12] on a synthetic problem. This
problem is a combinatorial cascading bandit with L = 4 items and ⇥ = {(1, 2), (3, 4)}. CombUCB1
is a popular algorithm for stochastic combinatorial semi-bandits with a linear reward function. We
approximate maxA2⇥ f(A,w) by minA2⇥

P
e2A(1 � w(e)). This approximation is motivated by

the fact that f(A,w) =
Q

e2A w(e) ⇡ 1�P
e2A(1� w(e)) as mine2E w(e)! 1. We update the

estimates of w̄ in CombUCB1 as in CombCascade, based on the weights of the observed items in (1).

We experiment with three different settings of w̄ and report our results in Figure 1. The settings of
w̄ are reported in our plots. We assume that wt(e) are distributed independently, except for the last
plot where wt(3) = wt(4). Our plots represent three common scenarios that we encountered in our
experiments. In the first plot, argmaxA2⇥ f(A, w̄) = argminA2⇥

P
e2A(1� w̄(e)). In this case,

both CombCascade and CombUCB1 can learn A⇤. The regret of CombCascade is slightly lower than
that of CombUCB1. In the second plot, argmaxA2⇥ f(A, w̄) 6= argminA2⇥

P
e2A(1 � w̄(e)). In

this case, CombUCB1 cannot learn A⇤ and therefore suffers linear regret. In the third plot, we violate
our modeling assumptions. Perhaps surprisingly, CombCascade can still learn the optimal solution
A⇤, although it suffers higher regret than CombUCB1.

4.2 Network Routing

In the second experiment, we evaluate CombCascade on a problem of network routing. We experi-
ment with six networks from the RocketFuel dataset [17], which are described in Figure 2a.

Our learning problem is formulated as follows. The ground set E are the links in the network. The
feasible set ⇥ are all paths in the network. At time t, we generate a random pair of starting and end
nodes, and the learning agent chooses a routing path between these nodes. The goal of the agent is
to maximizes the probability that all links in the path are up. The feedback is the index of the first
link in the path which is down. The weight of link e at time t, wt(e), is an indicator of link e being

6

Network Nodes Links
1221 108 153
1239 315 972
1755 87 161
3257 161 328
3967 79 147
6461 141 374

Step n
60k 120k 180k 240k 300k

R
eg

re
t

0

2k

4k

6k

8k
1221
1755
3967

Step n
60k 120k 180k 240k 300k

R
eg

re
t

0

10k

20k

30k
1239
3257
6461

(a) (b)
Figure 2: a. The description of six networks from our network routing experiment (Section 4.2). b.
The n-step regret of CombCascade in these networks. The results are averaged over 50 runs.

up at time t. We model wt(e) as an independent Bernoulli random variable wt(e) ⇠ B(

¯w(e)) with
mean ¯w(e) = 0.7 + 0.2 local(e), where local(e) is an indicator of link e being local. We say that
the link is local when its expected latency is at most 1 millisecond. About a half of the links in our
networks are local. To summarize, the local links are up with probability 0.9; and are more reliable
than the global links, which are up only with probability 0.7.

Our results are reported in Figure 2b. We observe that the n-step regret of CombCascade flattens as
time n increases. This means that CombCascade learns near-optimal policies in all networks.

4.3 Diverse Recommendations

In our last experiment, we evaluate CombCascade on a problem of diverse recommendations. This
problem is motivated by on-demand media streaming services like Netflix, which often recommend
groups of movies, such as “Popular on Netflix” and “Dramas”. We experiment with the MovieLens
dataset [13] from March 2015. The dataset contains 138k people who assigned 20M ratings to 27k
movies between January 1995 and March 2015.

Our learning problem is formulated as follows. The ground set E are 200 movies from our dataset:
25 most rated animated movies, 75 random animated movies, 25 most rated non-animated movies,
and 75 random non-animated movies. The feasible set ⇥ are all K-permutations of E where K/2
movies are animated. The weight of item e at time t, wt(e), indicates that item e attracts the user at
time t. We assume that wt(e) = 1 if and only if the user rated item e in our dataset. This indicates
that the user watched movie e at some point in time, perhaps because the movie was attractive. The
user at time t is drawn randomly from our pool of users. The goal of the learning agent is to learn a
list of items A⇤

= argmaxA2⇥ E [f_(A,w)] that maximizes the probability that at least one item
is attractive. The feedback is the index of the first attractive item in the list (Section 2.3). We would
like to point out that our modeling assumptions are violated in this experiment. In particular, wt(e)
are correlated across items e because the users do not rate movies independently. The result is that
A⇤ 6= argmaxA2⇥ f_(A, w̄). It is NP-hard to compute A⇤. However, E [f_(A,w)] is submodular
and monotone in A, and therefore a (1 � 1/e) approximation to A⇤ can be computed greedily. We
denote this approximation by A⇤ and show it for K = 8 in Figure 3a.

Our results are reported in Figure 3b. Similarly to Figure 2b, the n-step regret of CombCascade is
a concave function of time n for all studied K. This indicates that CombCascade solutions improve
over time. We note that the regret does not flatten as in Figure 2b. The reason is that CombCascade
does not learn A⇤. Nevertheless, it performs well and we expect comparably good performance in
other domains where our modeling assumptions are not satisfied. Our current theory cannot explain
this behavior and we leave it for future work.

5 Related Work

Our work generalizes cascading bandits of Kveton et al. [10] to arbitrary combinatorial constraints.
The feasible set in cascading bandits is a uniform matroid, any list of K items out of L is feasible.
Our generalization significantly expands the applicability of the original model and we demonstrate
this on two novel real-world problems (Section 4). Our work also extends stochastic combinatorial
semi-bandits with a linear reward function [8, 11, 12] to the cascade model of feedback. A similar
model to cascading bandits was recently studied by Combes et al. [7].

7

Movie title Animation
Pulp Fiction No
Forrest Gump No
Independence Day No
Shawshank Redemption No
Toy Story Yes
Shrek Yes
Who Framed Roger Rabbit? Yes
Aladdin Yes

Step n
20k 40k 60k 80k 100k

R
eg

re
t

0

2k

4k

6k

8k
K = 8
K = 12
K = 16

(a) (b)
Figure 3: a. The optimal list of 8 movies in the diverse recommendations experiment (Section 4.3).
b. The n-step regret of CombCascade in this experiment. The results are averaged over 50 runs.

Our generalization is significant for two reasons. First, CombCascade is a novel learning algorithm.
CombUCB1 [12] chooses solutions with the largest sum of the UCBs. CascadeUCB1 [10] chooses K
items out of L with the largest UCBs. CombCascade chooses solutions with the largest product of
the UCBs. All three algorithms can find the optimal solution in cascading bandits. However, when
the feasible set is not a matroid, it is critical to maximize the product of the UCBs. CombUCB1 may
learn a suboptimal solution in this setting and we illustrate this in Section 4.1.

Second, our analysis is novel. The proof of Theorem 1 is different from those of Theorems 2 and 3
in Kveton et al. [10]. These proofs are based on counting the number of times that each suboptimal
item is chosen instead of any optimal item. They can be only applied to special feasible sets, such a
matroid, because they require that the items in the feasible solutions are exchangeable. We build on
the recent work of Kveton et al. [12] to achieve linear dependency on K in Theorem 1. The rest of
our analysis is novel.

Our problem is a partial monitoring problem where some of the chosen items may be unobserved.
Agrawal et al. [1] and Bartok et al. [4] studied partial monitoring problems and proposed learning
algorithms for solving them. These algorithms are impractical in our setting. As an example, if we
formulate our problem as in Bartok et al. [4], we get |⇥| actions and 2

L unobserved outcomes; and
the learning algorithm reasons over |⇥|2 pairs of actions and requires O(2

L
) space. Lin et al. [15]

also studied combinatorial partial monitoring. Their feedback is a linear function of the weights of
chosen items. Our feedback is a non-linear function of the weights.

Our reward function is non-linear in unknown parameters. Chen et al. [5] studied stochastic combi-
natorial semi-bandits with a non-linear reward function, which is a known monotone function of an
unknown linear function. The feedback in Chen et al. [5] is semi-bandit, which is more informative
than in our work. Le et al. [14] studied a network optimization problem where the reward function
is a non-linear function of observations.

6 Conclusions

We propose combinatorial cascading bandits, a class of stochastic partial monitoring problems that
can model many practical problems, such as learning of a routing path in an unreliable communica-
tion network that maximizes the probability of packet delivery, and learning to recommend a list of
attractive items. We propose a practical UCB-like algorithm for our problems, CombCascade, and
prove upper bounds on its regret. We evaluate CombCascade on two real-world problems and show
that it performs well even when our modeling assumptions are violated.

Our results and analysis apply to any combinatorial action set, and therefore are quite general. The
strongest assumption in our work is that the weights of items are distributed independently of each
other. This assumption is critical and hard to eliminate (Section 2.1). Nevertheless, it can be easily
relaxed to conditional independence given the features of items, along the lines of Wen et al. [19].
We leave this for future work. From the theoretical point of view, we want to derive a lower bound
on the n-step regret in combinatorial cascading bandits, and show that the factor of f⇤ in Theorems
1 and 2 is intrinsic.

8

References
[1] Rajeev Agrawal, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically

efficient adaptive allocation schemes for controlled i.i.d. processes: Finite parameter space.
IEEE Transactions on Automatic Control, 34(3):258–267, 1989.

[2] Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
problem. In Proceeding of the 25th Annual Conference on Learning Theory, pages 39.1–39.26,
2012.

[3] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002.

[4] Gabor Bartok, Navid Zolghadr, and Csaba Szepesvari. An adaptive algorithm for finite stochas-
tic partial monitoring. In Proceedings of the 29th International Conference on Machine Learn-
ing, 2012.

[5] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General frame-
work, results and applications. In Proceedings of the 30th International Conference on Ma-
chine Learning, pages 151–159, 2013.

[6] Baek-Young Choi, Sue Moon, Zhi-Li Zhang, Konstantina Papagiannaki, and Christophe Diot.
Analysis of point-to-point packet delay in an operational network. In Proceedings of the 23rd
Annual Joint Conference of the IEEE Computer and Communications Societies, 2004.

[7] Richard Combes, Stefan Magureanu, Alexandre Proutiere, and Cyrille Laroche. Learning to
rank: Regret lower bounds and efficient algorithms. In Proceedings of the 2015 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Computer Systems, 2015.

[8] Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with
unknown variables: Multi-armed bandits with linear rewards and individual observations.
IEEE/ACM Transactions on Networking, 20(5):1466–1478, 2012.

[9] Aurelien Garivier and Olivier Cappe. The KL-UCB algorithm for bounded stochastic bandits
and beyond. In Proceeding of the 24th Annual Conference on Learning Theory, pages 359–
376, 2011.

[10] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits: Learn-
ing to rank in the cascade model. In Proceedings of the 32nd International Conference on
Machine Learning, 2015.

[11] Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid
bandits: Fast combinatorial optimization with learning. In Proceedings of the 30th Conference
on Uncertainty in Artificial Intelligence, pages 420–429, 2014.

[12] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for
stochastic combinatorial semi-bandits. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, 2015.

[13] Shyong Lam and Jon Herlocker. MovieLens Dataset. http://grouplens.org/datasets/movielens/,
2015.

[14] Thanh Le, Csaba Szepesvari, and Rong Zheng. Sequential learning for multi-channel wireless
network monitoring with channel switching costs. IEEE Transactions on Signal Processing,
62(22):5919–5929, 2014.

[15] Tian Lin, Bruno Abrahao, Robert Kleinberg, John Lui, and Wei Chen. Combinatorial par-
tial monitoring game with linear feedback and its applications. In Proceedings of the 31st
International Conference on Machine Learning, pages 901–909, 2014.

[16] Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization. Dover Publica-
tions, Mineola, NY, 1998.

[17] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies with Rocketfuel.
IEEE / ACM Transactions on Networking, 12(1):2–16, 2004.

[18] William. R. Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[19] Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale combinato-
rial semi-bandits. In Proceedings of the 32nd International Conference on Machine Learning,
2015.

9

