
A Applications to Latent Variable Models
In the sequel, we introduce two latent variable models as examples. To apply the high dimensional
EM algorithm in §2.1 and the methods for asymptotic inference in §2.2, we only need to specify the
forms of Qn(·; ·) defined in (2.1), Mn(·) in Algorithms 2 and 3, and Tn(·) in (2.4) for each model.
Gaussian Mixture Model: Let y

1

, . . . ,yn be the n i.i.d. realizations of Y 2 Rd and
Y = Z · �⇤

+ V . (A.1)
Here Z is a Rademacher random variable, i.e., P(Z = +1) = P(Z = �1) = 1/2, and V ⇠

N(0,�2

· Id) is independent of Z, where � is the standard deviation. We suppose � is known. In high
dimensional settings, we assume that �⇤

2 Rd is sparse. To avoid the degenerate case in which the
two Gaussians in the mixture are identical, here we suppose that �⇤

6= 0.
For the E-step (line 4 of Algorithm 1), we have

Qn(�
0
;�) = �

1

2n

n
X

i=1

!�(yi) · kyi � �0
k

2

2

+

⇥

1� !�(yi)
⇤

· kyi + �0
k

2

2

, (A.2)

where !�(y) =
1

1 + exp

�

�h�,yi/�2

� .

The maximization implementation (Algorithm 2) of the M-step takes the form

Mn(�) =
2

n

n
X

i=1

!�(yi) · yi �
1

n

n
X

i=1

yi. (A.3)

Meanwhile, for the gradient ascent implementation (Algorithm 3) of the M-step, we have

Mn(�) = � + ⌘ ·r
1

Qn(�;�), where r
1

Qn(�;�) =
1

n

n
X

i=1

⇥

2 · !�(yi)� 1

⇤

· yi � �.

Here ⌘ > 0 is the stepsize. For asymptotic inference, Tn(·) in (2.4) takes the form

Tn(�) =
1

n

n
X

i=1

⌫�(yi) · yi · y
>
i � Id,

where ⌫�(y) =
4/�2

⇥

1 + exp

�

�2 · h�,yi/�2

�⇤

·

⇥

1 + exp

�

2 · h�,yi/�2

�⇤ .

Mixture of Regression Model: We assume that Y 2 R and X 2 Rd satisfy
Y = Z ·X>�⇤

+ V, (A.4)
where X ⇠ N(0, Id), V ⇠ N(0,�2

) and Z is a Rademacher random variable. Here X , V and Z are
independent. In the high dimensional regime, we assume �⇤

2 Rd is sparse. To avoid the degenerate
case, we suppose �⇤

6= 0. In addition, we assume that � is known. For the E-step (line 4 of Algorithm
1), we have

Qn(�
0
;�) = �

1

2n

n
X

i=1

!�(xi, yi) ·
�

yi � hxi,�
0
i

�

2

+

⇥

1� !�(xi, yi)
⇤

·

�

yi + hxi,�
0
i

�

2

, (A.5)

where !�(x, y) =
1

1 + exp

�

�y · h�,xi/�2

� .

For the maximization implementation (Algorithm 2) of the M-step (line 5 of Algorithm 1), we have
that Mn(�) = argmax�0 Qn(�0

;�) satisfies

b

⌃ ·Mn(�) =
1

n

n
X

i=1

⇥

2 · !�(xi, yi)� 1

⇤

· yi · xi, where b

⌃ =

1

n

n
X

i=1

xi · x
>
i . (A.6)

However, in high dimensional regimes, the sample covariance matrix b

⌃ is not invertible. To estimate
the inverse covariance matrix of X , we use the CLIME estimator proposed by [7], i.e.,

b

⇥ = argmin

⇥2Rd⇥d

k⇥k

1,1, subject to
�

�b

⌃ ·⇥� Id

�

�

1,1  �
CLIME, (A.7)

where k ·k
1,1 and k ·k1,1 are the sum and maximum of the absolute values of all entries respectively,

and �CLIME > 0 is a tuning parameter. Based on (A.6), we modify the maximization implementation
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of the M-step to be

Mn(�) = b

⇥ ·

1

n

n
X

i=1

⇥

2 · !�(xi, yi)� 1

⇤

· yi · xi. (A.8)

For the gradient ascent implementation (Algorithm 3) of the M-step, we have
Mn(�) = � + ⌘ ·r

1

Qn(�;�), (A.9)

where r
1

Qn(�,�) =
1

n

n
X

i=1

⇥

2 · !�(xi, yi) · yi · xi � xi · x
>
i · �

⇤

.

Here ⌘ > 0 is the stepsize. For asymptotic inference, Tn(·) in (2.4) takes the form

Tn(�) =
1

n

n
X

i=1

⌫�(xi, yi) · xi · x
>
i · y2i �

1

n

n
X

i=1

xi · x
>
i ,

where ⌫�(x, y) =
4/�2

⇥

1 + exp

�

�2 · y · h�,xi/�2

�⇤

·

⇥

1 + exp

�

2 · y · h�,xi/�2

�⇤ .

It is worth noting that, for the maximization implementation of the M-step, the CLIME estimator
in (A.7) requires that ⌃�1 is sparse, where ⌃ is the population covariance of X . Since we assume
X ⇠ N(0, Id), this requirement is satisfied. Nevertheless, for more general settings where ⌃ does
not possess such a structure, the gradient ascent implementation of the M-step is a better choice, since
it does not require inverse covariance estimation and is also more efficient in computation.

B Derivation of the EM Algorithm
Recall that in §2.1, we assume that h�(y) is obtained by marginalizing over an unobserved latent
variable Z 2 Z , i.e.,

h�(y) =

Z

Z
f�(y, z) dz. (B.1)

Let k�(z | y) be the density of Z conditioning on the observed variable Y = y, i.e.,
k�(z | y) = f�(y, z)/h�(y). (B.2)

Given the n observations y
1

, . . . ,yn of Y , the EM algorithm aims at maximizing the log-likelihood

`n(�) =
n
X

i=1

log h�(yi). (B.3)

Due to the unobserved latent variable Z, it is difficult to directly evaluate `n(�). Instead, we turn to
consider the difference between `n(�) and `n(�0

). Let k�(z | y) be the density of Z conditioning
on the observed variable Y = y, i.e.,

k�(z | y) = f�(y, z)/h�(y). (B.4)
According to (B.1) and (B.3), we have

1

n
·

⇥

`n(�)� `n(�
0
)

⇤

=

1

n

n
X

i=1

log

⇥

h�(yi)/h�0
(yi)

⇤

=

1

n

n
X

i=1

log



Z

Z

f�(yi, z)

h�0
(yi)

dz

�

=

1

n

n
X

i=1

log



Z

Z
k�0

(z | yi) ·
f�(yi, z)

f�0
(yi, z)

dz

�

�

1

n

n
X

i=1

Z

Z
k�0

(z | yi) · log



f�(yi, z)

f�0
(yi, z)

�

dz,

(B.5)
where the third equality follows from (B.4) and the inequality is obtained from Jensen’s inequality.
On the right-hand side of (B.5) we have

1

n

n
X

i=1

Z

Z
k�0

(z | yi) · log



f�(yi, z)

f�0
(yi, z)

�

dz

=

1

n

n
X

i=1

Z

Z
k�0

(z | yi) · log f�(yi, z) dz

| {z }

Qn(�;�
0
)

�

1

n

n
X

i=1

Z

Z
k�0

(z | yi) · log f�0
(yi, z) dz. (B.6)
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We define the first term on the right-hand side of (B.6) to be Qn(�;�0
). Correspondingly, we define

its expectation to be Q(�;�0
). Note the second term on the right-hand side of (B.6) does not depend

on �. Hence, given some fixed �0, we can maximize the lower bound function Qn(�;�0
) over � to

obtain a sufficiently large `n(�)� `n(�0
). Based on such an observation, at the t-th iteration of the

classical EM algorithm, we evaluate Qn

�

�;�(t)
�

at the E-step and then perform max� Qn

�

�;�(t)
�

at the M-step. See [18] for more details.

C High Dimensional EM Algorithm with Resampling
To simplify the technical analysis of the high dimensional algorithm, here we introduce its resampling
version (Algorithm 4).
Algorithm 4 High Dimensional EM Algorithm with Resampling.
1: Parameter: Sparsity Parameter bs, Maximum Number of Iterations T
2: Initialization: bS init  supp

�
�init, bs

�
, �(0)  trunc

�
�init, bS init

�
,

Initialization:
�
supp(·, ·) and trunc(·, ·) are defined in (2.2) and (2.3)

 

Initialization: Split the Dataset into T Subsets of Size n/T
Initialization:

�
Without loss of generality, we assume n/T is an integer

 

3: For t = 0 to T � 1

4: E-step: Evaluate Qn/T

�
�;�(t)

�
with the t-th Data Subset

5: M-step: �(t+0.5)  Mn/T

�
�(t)

�
�
Mn/T (·) is implemented as in Algorithm 2 or 3 with Qn(·; ·) replaced by Qn/T (·; ·)

 

6: T-step: bS(t+0.5)  supp

�
�(t+0.5), bs

�
, �(t+1)  trunc

�
�(t+0.5), bS(t+0.5)

�

7: End For
8: Output: b�  �(T )

D Decorrelated Score Statistic: An Intuitive Explanation
The intuition for the decorrelated score statistic in (2.7) can be understood as follows. Since `n(�)
is the log-likelihood, its score function is r`n(�) and the Fisher information at �⇤ is I(�⇤

) =

�E�⇤
⇥

r

2`n(�⇤
)

⇤�

n, where E�⇤
(·) means the expectation is taken under the model with parameter

�⇤. The following key theorem, which restates Theorem 2.1, reveals the connection ofr
1

Qn(·; ·) in
(2.5) and Tn(·) in (2.7) with the score function and Fisher information, which forms the foundation
of our inferential method.
Theorem D.1. For the true parameter �⇤ and any � 2 Rd, it holds that
r

1

Qn(�;�) = r`n(�)/n, and E�⇤
⇥

Tn(�
⇤
)

⇤

= �I(�⇤
) = E�⇤

⇥

r

2`n(�
⇤
)

⇤�

n. (D.1)

Proof. See §I.1 for details.

Recall that the log-likelihood `n(�) defined in (B.3) is difficult to evaluate due to the unobserved
latent variable. Theorem D.1 provides a feasible way to calculate or estimate the corresponding score
function and Fisher information, since Qn(·; ·) and Tn(·) have closed forms. The geometric intuition
behind Theorem D.1 can be understood as follows. By (B.5) and (B.6) we have

`n(�) � `n(�
0
) + n ·Qn(�;�

0
)�

n
X

i=1

Z

Z
k�0

(z | yi) · log f�0
(yi, z) dz. (D.2)

By (D.1), both sides of (D.2) have the same gradient with respect to � at �0
= �. Furthermore, by

(B.6), (D.2) becomes an equality for �0
= �. Therefore, the lower bound function on the right-hand

side of (D.2) is tangent to `n(�) at �0
= �. Meanwhile, according to (2.4), Tn(�) defines a modified

curvature for the right-hand side of (D.2), which is obtained by taking derivative with respect to �,
then setting �0

= � and taking the second order derivative with respect to �. The second equation in
(D.1) shows that the obtained curvature equals the curvature of `n(�) at � = �⇤ in expectation (up
to a renormalization factor of n). Therefore,r

1

Qn(�;�) gives the score function and Tn(�⇤
) gives

a good estimate of the Fisher information I(�⇤
). Since �⇤ is unknown in practice, later we will use

Tn

�

b�
�

or Tn

�

b�
0

�

to approximate Tn(�⇤
).

In the presence of the high dimensional nuisance parameter �⇤
2 Rd�1, the classical score test is no

longer applicable. In detail, the score test for H
0

: ↵⇤
= 0 relies on the following Taylor expansion
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of the score function @`n(·)/@↵

1

p

n
·

@`n
�

�
0

�

@↵
=

1

p

n
·

@`n(�⇤
)

@↵
+

1

p

n
·

@2`n(�⇤
)

@↵@�
· (� � �⇤

) +R. (D.3)

Here �⇤
=

⇥

0, (�⇤
)

>⇤>, R denotes the remainder term and �
0

=

�

0,�>�>, where � is an estimator
of the nuisance parameter �⇤. The asymptotic normality of 1/

p

n · @`n
�

�
0

��

@↵ in (D.3) relies on
the fact that 1/

p

n ·@`n
�

�⇤
0

��

@↵ and
p

n · (���⇤
) are jointly normal asymptotically and R is oP(1).

In low dimensional settings, such a necessary condition holds for � being the maximum likelihood
estimator. However, in high dimensional settings, the maximum likelihood estimator cannot guarantee
that R is oP(1), since k� � �⇤

k

2

can be large due to the curse of dimensionality. Meanwhile, for �
being sparsity-type estimators, in general the asymptotic normality of

p

n · (� � �⇤
) does not hold.

For example, let � be b�, where b� 2 Rd�1 is the subvector of b�, i.e., the estimator attained by the
proposed high dimensional EM algorithm. Note that b� has many zero entries due to the truncation
step. As n ! 1, some entries of

p

n · (

b� � �⇤
) have limiting distributions with point mass at

zero. Clearly, this limiting distribution is not Gaussian with nonzero variance. In fact, for a similar
setting of high dimensional linear regression, [15] illustrate that for �] being a subvector of the Lasso
estimator and �⇤ being the corresponding subvector of the true parameter, the limiting distribution of
p

n · (�] � �⇤
) is not Gaussian.

The decorrelated score function defined in (2.5) successfully addresses the above issues. In detail,
according to (D.1) in Theorem D.1 we have

p

n · Sn

�

b�
0

,�
�

=

1

p

n
·

@`n
�

b�
0

�

@↵
�

1

p

n
· w

�

b�
0

,�
�>

·

@`n
�

b�
0

�

@�
. (D.4)

Intuitively, if we replace w
�

b�
0

,�
�

with w 2 Rd�1 that satisfies

w

>
·

@2`n(�⇤
)

@2�
=

@2`n(�⇤
)

@↵@�
, (D.5)

we have the following Taylor expansion of the decorrelated score function

1

p

n
·

@`n
�

b�
0

�

@↵
�

w

>
p

n
·

@`n
�

b�
0

�

@�
=

(i)
z }| {

1

p

n
·

@`n(�⇤
)

@↵
�

w

>
p

n
·

@`n(�⇤
)

@�
(D.6)

+

1

p

n
·

@2`n(�⇤
)

@↵@�
· (

b� � �⇤
)�

w

>
p

n
·

@2`n(�⇤
)

@2�
· (

b� � �⇤
)

| {z }

(ii)

+

eR,

where term (ii) is zero by (D.5). Therefore, we no longer require the asymptotic normality of b� � �⇤.
Also, we will prove that the new remainder term eR in (D.6) is oP(1), since b� has a fast statistical
rate of convergence. Now we only need to find the w that satisfies (D.5). Nevertheless, it is difficult
to calculate the second order derivatives in (D.5), because it is hard to evaluate `n(·). According to
(D.1), we use the submatrices of Tn(·) to approximate the derivatives in (D.5). Since

⇥

Tn(�)
⇤

�,�
is

not invertible in high dimensions, we use the Dantzig selector in (2.6) to approximately solve the
linear system in (D.5). Based on this intuition, we can expect that

p

n · Sn

�

b�
0

,�
�

is asymptotically
normal, since term (i) in (D.6) is a (rescaled) average of n i.i.d. random variables for which we can
apply the central limit theorem. Besides, we will prove that �

⇥

Tn

�

b�
0

�⇤

↵|� in (2.7) is a consistent

estimator of
p

n · Sn

�

b�
0

,�
�

’s asymptotic variance. Hence, we can expect that the decorrelated score
statistic in (2.7) is asymptotically N(0, 1).

From a high-level perspective, we can view w
�

b�
0

,�
�>

· @`n
�

b�
0

�

/@� in (D.4) as the projection of
@`n

�

b�
0

�

/@↵ onto the span of @`n
�

b�
0

�

/@�, where w
�

b�
0

,�
�

is the projection coefficient. Intuitively,
such a projection guarantees that in (D.4), Sn

�

b�
0

,�
�

is orthogonal (uncorrelated) with @`n
�

b�
0

�

/@�,
i.e., the score function with respect to the nuisance parameter �. In this way, the projection corrects
the effects of the high dimensional nuisance parameter. According to this intuition of decorrelation,
we name Sn

�

b�
0

,�
�

as the decorrelated score function.
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E Implications for Specific Models: Computation and Estimation
To establish the corresponding results for specific models under the unified framework, we only need
to establish Conditions 3.1-3.3 and determine the key quantities R, �

1

, �
2

, ⌫, µ,  and ✏. Recall that
Conditions 3.1 and 3.2 and the models analyzed in our paper are identical to those in [2]. Meanwhile,
note that Conditions 3.1 and 3.2 only involve the population version lower bound function Q(·; ·) and
M-step M(·). Since [2] prove that the quantities in Conditions 3.1 and 3.2 are independent of the
dimension d and sample size n, their corresponding results can be directly adapted. To establish the
final results, it still remains to verify Condition 3.3 for each high dimensional latent variable model.
Gaussian Mixture Model: The following lemma, which is proved by [2], verifies Conditions 3.1 and
3.2 for Gaussian mixture model. Recall that � is the standard deviation of each individual Gaussian
distribution within the mixture.
Lemma E.1. Suppose that we have k�⇤

k

2

/� � r, where r > 0 is a sufficiently large constant that
denotes the minimum signal-to-noise ratio. There exists some constant C > 0 such that Conditions
Lipschitz-Gradient-1(�

1

,B) and Concavity-Smoothness(µ, ⌫,B) hold with
�
1

= exp

�

�C · r2
�

, µ = ⌫ = 1, B =

�

� : k� � �⇤
k

2

 R
 

with R =  · k�⇤
k

2

,  = 1/4.
(E.1)

Proof. See the proof of Corollary 1 in [2] for details.

Now we verify Condition 3.3 for the maximization implementation of the M-step (Algorithm 2).
Lemma E.2. For the maximization implementation of the M-step (Algorithm 2), we have that for a
sufficiently large n and B specified in (E.1), Condition Statistical-Error(✏, �, s, n,B) holds with

✏ = C ·

�

k�⇤
k1 + �

�

·

r

log d+ log(2/�)

n
. (E.2)

Proof. See §H.4 for a detailed proof.

The next theorem establishes the implication of Theorem 3.4 for Gaussian mixture model.
Theorem E.3. We consider the maximization implementation of M-step (Algorithm 2). We assume
k�⇤
k

2

/� � r holds with a sufficiently large r > 0, and B and R are as defined in (E.1). We suppose
the initialization �init of Algorithm 4 satisfies

�

��init

��⇤
�

�

2

 R/2. Let the sparsity parameter bs be

bs =
l

C 0
·max

n

16 ·

⇥

exp

�

C · r2
�

� 1

⇤�2

, 100/9
o

· s⇤
m

(E.3)

with C specified in (E.1) and C 0
� 1. Let the total number of iterations T in Algorithm 4 be

T =

&

log

�

C 0
·R

�⇥

�

GMM

(s⇤) ·
p

log d/n
⇤ 

C · r2/2

'

, (E.4)

where �

GMM

(s⇤) =
�

p

bs+ C 00
·

p

s⇤
�

·

�

k�⇤
k1 + �

�

.

Meanwhile, we suppose the dimension d is sufficiently large such that T in (E.4) is upper bounded
by
p

d, and the sample size n is sufficiently large such that

C 0
·�

GMM

(s⇤) ·

r

log d · T

n
 min

n

⇥

1� exp

�

�C · r2/2
�⇤

2

·R, 9/40 · k�⇤
k

2

o

. (E.5)

We have that, with probability at least 1� 2 · d�1/2, the final estimator b� = �(T ) satisfies
�

�

b� � �⇤�
�

2



C 0
·�

GMM

(s⇤)

1� exp

�

�C · r2/2
�

·

r

log d · T

n
. (E.6)

Proof. First we plug the quantities in (E.1) and (E.2) into Theorem 3.4. Recall that Theorem 3.4
requires Condition Statistical-Error(✏, �/T, bs, n/T,B). Thus we need to replace � and n with �/T
and n/T in the definition of ✏ in (E.2). Then we set � = 2 · d�1/2. Since T is specified in (E.4)
and the dimension d is sufficiently large such that T 

p

d, we have log

⇥

2/(�/T )
⇤

 log d in the
definition of ✏. By (E.3) and (E.5), we can then verify the assumptions in (3.8) and (3.9). Finally, by
plugging in T in (E.4) into (3.10) and taking t = T , we can verify that in (3.9) the optimization error
term is smaller than the statistical error term up to a constant factor. Therefore, we obtain (E.6).
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To see the statistical rate of convergence with respect to s⇤, d and n, for the moment we assume that
R, r, k�⇤

k1, k�⇤
k

2

and � are constants. From (E.3) and (E.4), we obtain bs = C · s⇤ and therefore
�

GMM

(s⇤) = C 0
·

p

s⇤, which implies T = C 000
· log

⇥

C 00
·

p

n/(s⇤ · log d)
⇤

. Hence, by (E.6) we
have that, with high probaibility,

�

�

b� � �⇤�
�

2

 C ·

r

s⇤ · log d · log n

n
.

Because the minimax lower bound for estimating an s⇤-sparse d-dimensional vector is
p

s⇤ · log d/n,
the rate of convergence in (E.6) is optimal up to a factor of log n. Such a logarithmic factor results
from the resampling scheme in Algorithm 4, since we only utilize n/T samples within each iteration.
We expect that by directly analyzing Algorithm 1 we can eliminate such a logarithmic factor, which
however incurs extra technical complexity for the analysis.
Mixture of Regression Model: The next lemma, proved by [2], verifies Conditions 3.1 and 3.2
for mixture of regression model. Recall that �⇤ is the regression coefficient and � is the standard
deviation of the Gaussian noise.
Lemma E.4. Suppose k�⇤

k

2

/� � r, where r > 0 is a sufficiently large constant that
denotes the required minimum signal-to-noise ratio. Conditions Lipschitz-Gradient-1(�

1

,B),
Lipschitz-Gradient-2(�

2

,B) and Concavity-Smoothness(µ, ⌫,B) hold with
�
1

2 (0, 1/2), �
2

2 (0, 1/4), µ = ⌫ = 1,

B =

�

� : k� � �⇤
k

2

 R
 

with R =  · k�⇤
k

2

,  = 1/32. (E.7)

Proof. See the proof of Corollary 3 in [2] for details.

The following lemma establishes Condition 3.3 for the two implementations of the M-step.
Lemma E.5. For B specified in (E.7), we have the following results.
• For the maximization implementation of the M-step (line 5 of Algorithm 4), we have that Condition

Statistical-Error(✏, �, s, n,B) holds with

✏ = C ·

h

max

�

k�⇤
k

2

2

+ �2, 1
 

+ k�⇤
k

2

i

·

r

log d+ log(4/�)

n
(E.8)

for sufficiently large sample size n and constant C > 0.
• For the gradient ascent implementation, Condition Statistical-Error(✏, �, s, n,B) holds with

✏ = C · ⌘ ·max

�

k�⇤
k

2

2

+ �2, 1,
p

s · k�⇤
k

2

 

·

r

log d+ log(4/�)

n
(E.9)

for sufficiently large sample size n and C > 0, where ⌘ denotes the stepsize in Algorithm 3.

Proof. See §H.5 for a detailed proof.

The next theorem establishes the implication of Theorem 3.4 for mixture of regression model.
Theorem E.6. Let k�⇤

k

2

/� � r with r > 0 sufficiently large. Assuming that B and R are specified
in (E.7) and the initialization �init satisfies

�

��init

� �⇤
�

�

2

 R/2, we have the following results.
• For the maximization implementation of the M-step (Algorithm 2), let bs and T be

bs =
⌃

C ·max

�

16, 132/31
 

· s⇤
⌥

, T =

&

log

�

C 0
·R

�⇥

�

MR

1

(s⇤) ·
p

log d/n
⇤ 

log

p

2

'

,

where �

MR

1

(s⇤) =
�

p

bs+ C 00
·

p

s⇤
�

·

h

max

�

k�⇤
k

2

2

+ �2, 1
 

+ k�⇤
k

2

i

, and C � 1.

We suppose d and n are sufficiently large such that T 
p

d and

C ·�

MR

1

(s⇤) ·

r

log d · T

n
 min

n

�

1� 1/
p

2

�

2

·R, 3/8 · k�⇤
k

2

o

.

Then with probability at least 1� 4 · d�1/2, the final estimator b� = �(T ) satisfies
�

�

b� � �⇤�
�

2

 C 0
·�

MR

1

(s⇤) ·

r

log d · T

n
. (E.10)

15



• For the gradient ascent implementation of the M-step (Algorithm 3) with stepsize set to ⌘ = 1, let
bs and T be

bs =
⌃

C ·max

�

16/9, 132/31
 

· s⇤
⌥

, T =

&

log

�

C 0
·R

�⇥

�

MR

2

(s⇤) ·
p

log d/n
⇤ 

log 2

'

,

where �

MR

2

(s⇤) =
�

p

bs+ C 00
·

p

s⇤
�

·max

n

k�⇤
k

2

2

+ �2, 1,
p

bs · k�⇤
k

2

o

, and C � 1.

We suppose d and n are sufficiently large such that T 
p

d and

C ·�

MR

2

(s⇤) ·

r

log d · T

n
 min

�

R/4, 3/8 · k�⇤
k

2

 

.

Then with probability at least 1� 4 · d�1/2, the final estimator b� = �(T ) satisfies
�

�

b� � �⇤�
�

2

 C 0
·�

MR

2

(s⇤) ·

r

log d · T

n
. (E.11)

Proof. The proof is similar to Theorem E.3.

To understand the intuition of Theorem E.6, we suppose that k�⇤
k

2

, �, R and r are constants, which
implies bs = C · s⇤ and �

MR

1

(s⇤) = C 0
·

p

s⇤, �MR

2

(s⇤) = C 00
· s⇤. Therefore, for the maximization

and gradient ascent implementations of the M-step, we have T = C 0
· log

⇥

n/(s⇤ · log d)
⇤

and
T = C 00

· log

�

n
�⇥

(s⇤)2 · log d
⇤ 

correspondingly. Hence, by (E.10) in Theorem E.6 we have that,
for the maximization implementation of the M-step,

�

�

b� � �⇤�
�

2

 C ·

r

s⇤ · log d · log n

n
(E.12)

holds with high probability. Meanwhile, from (E.11) in Theorem E.6 we have that, for the gradient
ascent implementation of the M-step,

�

�

b� � �⇤�
�

2

 C 0
· s⇤ ·

r

log d · log n

n
(E.13)

holds with high probability. The statistical rates in (E.12) and (E.13) attain the
p

s⇤ · log d/n minimax
lower bound up to factors of

p

log n and
p

s⇤ · log n respectively and are therefore near-optimal. Note
that the statistical rate of convergence attained by the gradient ascent implementation of the M-step is
slower by a

p

s⇤ factor than the rate of the maximization implementation. However, our discussion
in §A illustrates that, for mixture of regression model, the gradient ascent implementation does not
involve estimating the inverse covariance of X in (A.4). Hence, the gradient ascent implementation
is more computationally efficient, and is also applicable to the settings in which X has more general
covariance structures.

F Implications for Specific Models: Inference
To establish the high dimensional inference results for each model, we only need to verify Conditions
4.1-4.4 and determine the key quantities ⇣EM, ⇣G, ⇣T and ⇣L. In the following, we focus on Gaussian
mixture and mixture of regression models.
Gaussian Mixture Model: The following lemma verifies Conditions 4.1 and 4.2.
Lemma F.1. We have that Conditions 4.1 and 4.2 hold with

⇣EM

=

p

bs ·�GMM

(s⇤)

1� exp

�

�C · r2/2
�

·

r

log d · T

n
, and ⇣G =

�

k�⇤
k1 + �

�

·

r

log d

n
,

where bs, �GMM

(s⇤), r and T are as defined in Theorem E.3.

Proof. See §I.5 for a detailed proof.

By our discussion that follows Theorem E.3, we have that bs and �

GMM

(s⇤) are of the same order
as s⇤ and

p

s⇤ respectively, and T is roughly of the order
p

log n. Therefore, ⇣EM is roughly of the
order s⇤ ·

p

log d/n · log n. The following lemma verifies Condition 4.3 for Gaussian mixture model.
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Lemma F.2. We have that Condition 4.3 holds with

⇣T =

�

k�⇤
k

2

1 + �2

��

�2

·

r

log d

n
.

Proof. See §I.6 for a detailed proof.

The following lemma establishes Condition 4.4 for Gaussian mixture model.
Lemma F.3. We have that Condition 4.4 holds with

⇣L =

�

k�⇤
k

2

1 + �2

�

3/2�
�4

·

�

log d+ log n
�

3/2
.

Proof. See §I.7 for a detailed proof.

Equipped with Lemmas F.1-F.3, we establish the inference results for Gaussian mixture model.
Theorem F.4. Under Assumption 4.5, we have that for n ! 1, (4.7) holds for Gaussian mixture
model.
In fact, for Gaussian mixture model we can make (4.6) in Assumption 4.5 more transparent by
plugging in ⇣EM, ⇣G, ⇣T and ⇣L specified above. Particularly, for simplicity we assume all quantities
except s⇤w, s⇤, d and n are constants. Then we can verify that (4.6) holds if

max

�

s⇤w, s⇤
 

2

· (s⇤)2 · (log d)5 = o
⇥

n/(log n)2
⇤

. (F.1)
According to the discussion following Theorem E.3, we require s⇤ · log d = o(n/ log n) for the
estimator b� to be consistent. In comparison, (F.1) illustrates that high dimensional inference requires
a higher sample complexity than parameter estimation. In the context of high dimensional generalized
linear models, [26, 32] also observe the same phenomenon.
Mixture of Regression Model: The following lemma verifies Conditions 4.1 and 4.2. Recall that bs,
T , �MR

1

(s⇤) and �

MR

2

(s⇤) are defined in Theorem E.6, while � denotes the standard deviation of
the Gaussian noise in mixture of regression model.
Lemma F.5. We have that Conditions 4.1 and 4.2 hold with

⇣EM

=

p

bs ·�MR

(s⇤) ·

r

log d · T

n
, and ⇣G = max

n

k�⇤
k

2

2

+ �2, 1,
p

s⇤ · k�⇤
k

2

o

·

r

log d

n
,

where we have �MR

(s⇤) = �

MR

1

(s⇤) for the maximization implementation of the M-step (Algorithm
2), and �

MR

(s⇤) = �

MR

2

(s⇤) for the gradient ascent implementation of the M-step (Algorithm 3).

Proof. See §I.8 for a detailed proof.

By our discussion that follows Theorem E.6, we have that bs is of the same order as s⇤. For the
maximization implementation of the M-step (Algorithm 2), we have that �MR

(s⇤) = �

MR

1

(s⇤) is of
the same order as

p

s⇤. Meanwhile, for the gradient ascent implementation in Algorithm 3, we have
that �MR

(s⇤) = �

MR

2

(s⇤) is of the same order as s⇤. Hence, ⇣EM is of the order s⇤ ·
p

log d/n · log n

or (s⇤)3/2 ·
p

log d/n · log n correspondingly, since T is roughly of the order
p

log n. The next lemma
establishes Condition 4.3 for mixture of regression model.
Lemma F.6. We have that Condition 4.3 holds with

⇣T =

�

log n+ log d
�

·

⇥�

log n+ log d
�

· k�⇤
k

2

1

+ �2

⇤�

�2

·

r

log d

n
.

Proof. See §I.9 for a detailed proof.

The following lemma establishes Condition 4.4 for mixture of regression model.
Lemma F.7. We have that Condition 4.4 holds with

⇣L =

�

k�⇤
k

1

+ �
�

3

·

�

log n+ log d
�

3

/�4.

Proof. See §I.10 for a detailed proof.

Equipped with Lemmas F.5-F.7, we are now ready to establish the high dimensional inference results
for mixture of regression model.
Theorem F.8. For mixture of regression model, under Assumption 4.5, (4.7) holds as n!1.
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Similar to the discussion that follows Theorem F.4, we can make (4.6) in Assumption 4.5 more
explicit by plugging in ⇣EM, ⇣G, ⇣T and ⇣L specified in Lemmas F.5-F.7. Assuming all quantities
except s⇤w, s⇤, d and n are constants, we have that (4.6) holds if

max

�

s⇤w, s⇤
 

2

· (s⇤)4 · (log d)8 = o
⇥

n/(log n)2
⇤

.

In contrast, for high dimensional estimation, we only require (s⇤)2 · log d = o(n/ log n) to ensure
the consistency of b� by our discussion following Theorem E.6.

G Proof of Main Results
We lay out a proof sketch of the main theory. First we prove the results in Theorem 3.4 for parameter
estimation and computation. Then we establish the results in Theorem 4.6 for inference.

G.1 Proof of Results for Computation and Estimation
Proof of Theorem 3.4: First we introduce some notations. Recall that the trunc(·, ·) function is
defined in (2.3). We define �(t+0.5),�(t+1)

2 Rd as
�(t+0.5)

= M
�

�(t)
�

, �(t+1)

= trunc

�

�(t+0.5), bS(t+0.5)
�

. (G.1)
As defined in (3.1) or (3.2), M(·) is the population version M-step with the maximization or gradient
ascent implementation. Here b

S

(t+0.5) denotes the set of index j’s with the top bs largest
�

��(t+0.5)
j

�

�’s.
It is worth noting b

S

(t+0.5) is calculated based on �(t+0.5) in the truncation step (line 6 of Algorithm
4), rather than based on �(t+0.5) defined in (G.1).
Our goal is to characterize the relationship between

�

��(t+1)

� �⇤
�

�

2

and
�

��(t)
� �⇤

�

�

2

. According
to the definition of the truncation step (line 6 of Algorithm 4) and triangle inequality, we have
�

��(t+1)

� �⇤�
�

2

=

�

�

�

trunc

�

�(t+0.5), bS(t+0.5)
�

� �⇤
�

�

�

2



�

�

�

trunc

�

�(t+0.5), bS(t+0.5)
�

� trunc

�

�(t+0.5), bS(t+0.5)
�

�

�

�

2

+

�

�

�

trunc

�

�(t+0.5), bS(t+0.5)
�

� �⇤
�

�

�

2

=

�

�

�

trunc

�

�(t+0.5), bS(t+0.5)
�

� trunc

�

�(t+0.5), bS(t+0.5)
�

�

�

�

2

| {z }

(i)

+

�

��(t+1)

� �⇤�
�

2

| {z }

(ii)

, (G.2)

where the last equality is obtained from (G.1). According to the definition of the trunc(·, ·) function
in (2.3), the two terms within term (i) both have support bS(t+0.5) with cardinality bs. Thus, we have
�

�

�

trunc

�

�(t+0.5), bS(t+0.5)
�

� trunc

�

�(t+0.5), bS(t+0.5)
�

�

�

�

2

=

�

�

�

�

�(t+0.5)
� �(t+0.5)

�

bS(t+0.5)

�

�

�

2



p

bs ·
�

�

�

�

�(t+0.5)
� �(t+0.5)

�

bS(t+0.5)

�

�

�

1



p

bs ·
�

��(t+0.5)
� �(t+0.5)

�

�

1.
(G.3)

Since we have �(t+0.5)
= Mn

�

�(t)
�

and �(t+0.5)
= M

�

�(t)
�

, we can further establish an upper
bound for the right-hand side by invoking Condition 3.3.
Our subsequent proof will establish an upper bound for term (ii) in (G.2) in two steps. We first
characterize the relationship between

�

��(t+1)

��⇤
�

�

2

and
�

��(t+0.5)
��⇤

�

�

2

and then the relationship
between

�

��(t+0.5)
� �⇤

�

�

2

and
�

��(t)
� �⇤

�

�

2

. The next lemma accomplishes the first step. Recall
that bs is the sparsity parameter in Algorithm 4, while s⇤ is the sparsity level of the true parameter �⇤.
Lemma G.1. Suppose that we have

�

��(t+0.5)
� �⇤�

�

2

  · k�⇤
k

2

(G.4)
for some  2 (0, 1). Assuming that we have

bs �
4 · (1 + )2

(1� )2
· s⇤, and

p

bs ·
�

��(t+0.5)
� �(t+0.5)

�

�

1 
(1� )2

2 · (1 + )
· k�⇤

k

2

, (G.5)
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then it holds that
�

��(t+1)

� �⇤�
�

2



C ·

p

s⇤
p

1� 
·

�

��(t+0.5)
� �(t+0.5)

�

�

1 +

�

1 + 4 ·

p

s⇤/bs
�

1/2
·

�

��(t+0.5)
� �⇤�

�

2

.

(G.6)

Proof. The proof is based on fine-grained analysis of the relationship between b

S

(t+0.5) and the true
support S⇤. In particular, we focus on three index sets, namely, I

1

= S

⇤
\

b

S

(t+0.5), I
2

= S

⇤
\

b

S

(t+0.5)

and I

3

=

b

S

(t+0.5)
\S

⇤. Among them, I
2

characterizes the similarity between b

S

(t+0.5) and S

⇤, while
I

1

and I

3

characterize their difference. The key proof strategy is to represent the three distances in
(G.6) with the `

2

-norms of the restrictions of �(t+0.5) and �⇤ on the three index sets. In particular, we
focus on

�

��(t+0.5)
I1

�

�

2

and
�

��⇤
I1

�

�

2

. In order to quantify these `
2

-norms, we establish a fine-grained
characterization for the absolute values of �(t+0.5)’s entries that are selected and eliminated within
the truncation operation �(t+1)

 trunc

�

�(t+0.5), bS(t+0.5)
�

. See §H.1 for a detailed proof.

Lemma G.1 is central to the proof of Theorem 3.4. In detail, the assumption in (G.4) guarantees
�(t+0.5) is within the basin of attraction. In (G.5), the first assumption ensures the sparsity parameter
bs in Algorithm 4 is set to be sufficiently large, while second ensures the statistical error is sufficiently
small. These assumptions will be verified in the proof of Theorem 3.4. The intuition behind (G.6)
is as follows. Let S(t+0.5)

= supp

�

�(t+0.5), bs
�

, where supp(·, ·) is defined in (2.2). By triangle
inequality, the left-hand side of (G.6) satisfies
�

��(t+1)

� �⇤�
�

2



�

�

�

�(t+1)

� trunc

�

�(t+0.5),S(t+0.5)
�

�

�

�

2

| {z }

(i)

+

�

�

�

trunc

�

�(t+0.5),S(t+0.5)
�
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�

�

�

2

| {z }

(ii)

.

(G.7)
Intuitively, the two terms on right-hand side of (G.6) reflect terms (i) and (ii) in (G.7) correspondingly.
In detail, for term (i) in (G.7), recall that according to (G.1) and line 6 of Algorithm 4 we have

�(t+1)

= trunc

�

�(t+0.5), bS(t+0.5)
�

, where b

S

(t+0.5)
= supp

�

�(t+0.5), bs
�

.

As the sample size n is sufficiently large, �(t+0.5) and �(t+0.5) are close, since they are at-
tained by the population version and sample version M-steps correspondingly. Hence, S(t+0.5)

=

supp

�

�(t+0.5), bs
�

and b

S

(t+0.5)
= supp

�

�(t+0.5), bs
�

should be similar. Thus, in term (i), �(t+1)

=

trunc

�

�(t+0.5), bS(t+0.5)
�

should be close to trunc

�

�(t+0.5),S(t+0.5)
�

up to some statistical error,
which is reflected by the first term on the right-hand side of (G.6).
Also, we turn to quantify the relationship between

�

��(t+0.5)
� �⇤

�

�

2

in (G.6) and term (ii) in (G.7).
The truncation in term (ii) preserves the top bs coordinates of �(t+0.5) with the largest magnitudes
while setting others to zero. Intuitively speaking, the truncation incurs additional error to �(t+0.5)’s
distance to �⇤. Meanwhile, note that when �(t+0.5) is close to �⇤, S(t+0.5) is similar to S

⇤. Therefore,
the incurred error can be controlled, because the truncation does not eliminate many relevant entries.
In particular, as shown in the second term on the right-hand side of (G.6), such incurred error decays
as bs increases, since in this case b

S

(t+0.5) includes more entries. According to the discussion for term
(i) in (G.7), S(t+0.5) is similar to b

S

(t+0.5), which implies that S(t+0.5) should also cover more entries.
Thus, fewer relevant entries are wrongly eliminated by the truncation and hence the incurred error is
smaller. The extreme case is that, when bs!1, term (ii) in (G.7) becomes

�

��(t+0.5)
��⇤

�

�

2

, which
indicates that no additional error is incurred by the truncation. Correspondingly, the second term on
the right-hand side of (G.6) also becomes

�

��(t+0.5)
� �⇤

�

�

2

.
Next, we turn to characterize the relationship between

�

��(t+0.5)
� �⇤

�

�

2

and
�

��(t)
� �⇤

�

�

2

. Recall
�(t+0.5)

= M
�

�(t)
�

is defined in (G.1). The next lemma, which is adapted from Theorems 1 and 3 in
[2], characterizes the contraction property of the population version M-step defined in (3.1) or (3.2).
Lemma G.2. Under the assumptions of Theorem 3.4, the following results hold for �(t)

2 B.
• For the maximization implementation of the M-step (Algorithm 2), we have

�

��(t+0.5)
� �⇤�

�

2

 (�
1

/⌫) ·
�

��(t)
� �⇤�

�

2

. (G.8)
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• For the gradient ascent implementation of the M-step (Algorithm 3), we have
�

��(t+0.5)
� �⇤�

�

2



⇣

1� 2 ·

⌫ � �
2

⌫ + µ

⌘

·

�

��(t)
� �⇤�

�

2

. (G.9)

Here �
1

, �
2

, µ and ⌫ are defined in Conditions 3.1 and 3.2.

Proof. The proof strategy is to first characterize the M-step using Q(·;�⇤
). According to Condition

Concavity-Smoothness(µ, ⌫,B), �Q(·;�⇤
) is ⌫-strongly convex and µ-smooth, and thus enjoys

desired optimization guarantees. Then Condition Lipschitz-Gradient-1(�
1

,B) or Lipschitz-Gradient-
2(�

2

,B) is invoked to characterize the difference between Q(·;�⇤
) and Q

�

·;�(t)
�

. We provide the
proof in §H.2 for the sake of completeness.

Equipped with Lemmas G.1 and G.2, we are now ready to prove Theorem 3.4.

Proof. To unify the subsequent proof for the maximization and gradient implementations of the
M-step, we employ ⇢ 2 (0, 1) to denote ⇢

1

:= �
1

/⌫ in (G.8) or ⇢
2

:= 1� 2 · (⌫ � �
2

)/(⌫ + µ) in
(G.9). In the following we stick to the former one to avoid confusion. The proof for the letter one is
exactly the same. By the definitions of �(t+0.5) and �(t+0.5) in (G.1) and Algorithm 4, Condition
Statistical-Error(✏, �/T, bs, n/T,B) implies
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(G.10)

occurs with probability at least 1� �. Conditioning on E , in the following we prove that
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(G.11)
by mathematical induction.
Before we lay out the proof, we first prove �(0)

2 B. Recall �init is the initialization of Algorithm 4
and R is the radius of the basin of attraction B. By the assumption of Theorem 3.4, we have
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Therefore, (G.12) implies
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. Invoking the auxiliary
result in Lemma H.1, we obtain
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Here the second inequality is from (G.12) as well as the assumption in (3.8), which implies s⇤/bs 
(1� )2

�⇥

4 · (1 + )2
⇤

 1/4. Thus, (G.13) implies �(0)

2 B. In the sequel, we prove that (G.11)
holds for t = 1. By invoking Lemma G.2 and setting t = 0 in (G.8), we obtain
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where the second inequality is from (G.13). Hence, the assumption in (G.4) of Lemma G.1 holds for
�(0.5). Furthermore, by the assumptions in (3.8) and (3.9) of Theorem 3.4, we can also verify that the
assumptions in (G.5) of Lemma G.1 hold conditioning on the event E defined in (G.10). By invoking
Lemma G.1 we have that (G.6) holds for t = 0. Further plugging

�
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1  ✏ in
(G.10) into (G.6) with t = 0, we obtain
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Setting t = 0 in (G.8) of Lemma G.2 and then plugging (G.8) into (G.14), we obtain
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For t = 0, plugging (G.3) into term (i) in (G.2), and (G.15) into term (ii) in (G.2), and then applying
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1  ✏ with t = 0 in (G.10), we obtain
�

��(1)

� �⇤�
�

2



p

bs ·
�

��(0.5)
� �(0.5)

�

�

1 +

C ·

p

s⇤
p

1� 
· ✏+

�

1 + 4 ·

p

s⇤/bs
�

1/2
· ⇢ ·

�

��(0)

� �⇤�
�

2



�

p

bs+ C/
p

1�  ·

p

s⇤
�

· ✏+
�

1 + 4 ·

p

s⇤/bs
�

1/2
· ⇢ ·

�

��(0)

� �⇤�
�

2

. (G.16)

By our assumption that bs � 16 · (1/⇢� 1)
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· s⇤ in (3.8), we have
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(G.16). Hence, from (G.16) we obtain
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which implies that (G.11) holds for t = 1, since we have 1�

p

⇢ < 1 in (G.11).
Suppose we have that (G.11) holds for some t � 1. By (G.11) we have
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where the second inequality is from (G.13) and our assumption
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where the third inequality is from ⇢ 2 (0, 1). Following the same proof for (G.17), we obtain
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Here the second inequality is obtained by plugging in (G.11) for t. Hence we have that (G.11) holds
for t+ 1. By induction, we conclude that (G.11) holds conditioning on the event E defined in (G.10),
which occurs with probability at least 1 � �. By plugging the specific definitions of ⇢ into (G.11),
and applying

�

��(0)

� �⇤
�

�

2

 R in (G.13) to the right-hand side of (G.11), we obtain (3.10). The
results of the gradient descent implementation follows from the same proof with ⇢ = ⇢

2

.

G.2 Proof of Results for Inference
Proof of Theorem 4.6: We establish the asymptotic normality of the decorrelated score statistic
defined in (2.7) in two steps. We first prove the asymptotic normality of
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, where b�
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is
defined in (2.7) and Sn(·, ·) is defined in (2.5). Then we prove that �
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Lemma G.3. Under the assumptions of Theorem 4.6, we have that for n!1,
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Proof. Our proof consists of two steps. Note that by the definition in (2.5) we have
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In other words, replacing b�
0

and w
�

b�
0

,�
�

in (G.19) with the corresponding population quantities �⇤

and w

⇤ only introduces an oP(1) error term. Meanwhile, by Theorem D.1 we haver
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)/n. Recall that `n(·) is the log-likelihood defined in (B.3), which implies that in (G.20)
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is a (rescaled) average of n i.i.d. random variables. At the second step, we calculate the mean and
variance of each term within this average and invoke the central limit theorem. Finally we combine
these two steps by invoking Slutsky’s theorem. See §I.3 for a detailed proof.

The next lemma establishes the consistency of �
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Lemma G.4. Under the assumptions of Theorem 4.6, we have
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Proof. For notational simplicity, we abbreviate w
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in the definition of
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. By
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First, we establish the relationship between b

w

0

and w

⇤ by analyzing the Dantzig selector in (2.6).
Meanwhile, by Theorem D.1 we have E�⇤
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). Then by triangle inequality we have
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We prove term (i) is oP(1) by quantifying the Lipschitz continuity of Tn(·) using Condition 4.4. We
then prove term (ii) is oP(1) by concentration analysis. Together with the result on the relationship
between b

w

0

and w

⇤ we establish (G.21). See §I.4 for a detailed proof.

Combining Lemmas G.3 and G.4 using Slutsky’s theorem, we obtain Theorem 4.6.

H Proof of Results for Computation and Estimation
We provide the detailed proof of the main results in §3 for computation and parameter estimation. We
first lay out the proof for the general framework, and then the proof for specific models.

H.1 Proof of Lemma G.1

Proof. Recall �(t+0.5) and �(t+1) are defined in (G.1). Note that in (G.4) of Lemma G.1 we assume
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For notational simplicity, we define
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Note that ✓ and ✓⇤ are unit vectors, while ✓ is not, since it is obtained by normalizing �(t+0.5) with
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Here the first equality is from supp(✓⇤
) = S

⇤, the second equality is from (H.5) and the last inequality
is from Cauchy-Schwarz inequality. Furthermore, from (H.6) we have

�

2



⇣

�

�✓I1

�

�

2

·

�

�✓⇤
I1

�

�

2

+

�

�✓I2

�

�

2

·

�

�✓⇤
I2

�

�

2

⌘

2



�

�✓I1

�

�

2

2

·

⇣

�

�✓⇤
I1

�

�

2

2

+

�

�✓⇤
I2

�

�

2

2

⌘

+

�

�✓I2

�

�

2

2

·

⇣

�

�✓⇤
I1

�

�

2

2

+

�

�✓⇤
I2

�

�

2

2

⌘

=

�

�✓I1

�

�

2

2

+

�

�✓I2

�

�

2

2

 1�

�

�✓I3

�

�

2

2

. (H.7)

To obtain the second inequality, we expand the square and apply 2ab  a2 + b2. In the equality and
the last inequality of (H.7), we use the fact that ✓⇤ and ✓ are both unit vectors.
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because from (H.5) we have I
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Equipped with (H.9), we now quantify the relationship between
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where second inequality is obtained from (H.9), while the first and third are from triangle inequality.
Plugging (H.11) into (H.7), we obtain
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We can verify that a sufficient condition for (H.13) to hold is that

� �

p

s⇤ · e✏+
⇥

s⇤ · e✏2 �
�

s⇤/bs+ 1

�

·

�

s⇤ · e✏2 � s⇤/bs
�⇤

1/2

s⇤/bs+ 1

=

p

s⇤ · e✏+
⇥

�

�

s⇤ · e✏
�

2

�

bs+
�

s⇤/bs+ 1

�

·

�

s⇤/bs
�⇤

1/2

s⇤/bs+ 1

, (H.14)
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which is obtained by solving for � in (H.13). When we are solving for � in (H.13), we use the fact
that
p

s⇤ · e✏  �, which holds because
p

s⇤ · e✏ 
p

bs · e✏ = 2 ·

p

bs ·
�

��(t+0.5)
� �(t+0.5)

�

�

1
�

��(t+0.5)
�

�

2



1� 

1 + 
 �. (H.15)

The first inequality is from our assumption in (G.5) that s⇤/bs  (1� )2/
⇥

4 · (1 + )2
⇤

< 1. The
equality is from the definition of e✏ in (H.10). The second inequality follows from our assumption in
(G.5) that

p

bs ·
�

��(t+0.5)
� �(t+0.5)

�

�

1 
(1� )2

2 · (1 + )
· k�⇤

k

2

and the first inequality in (H.2). To prove the last inequality in (H.15), we note that (H.1) implies
�

��(t+0.5)
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�

2

2

+ k�⇤
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2

2

� 2 ·

⌦

�(t+0.5),�⇤↵
=

�

��(t+0.5)
� �⇤�

�

2

2

 2 · k�⇤
k

2

2

.

This together with (H.3) implies

� =

⌦

✓,✓⇤↵
=

⌦

�(t+0.5),�⇤↵

�
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· k�⇤
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2
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�
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2

+ k�⇤
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2

2

� 2 · k�⇤
k

2

2

2 ·

�

��(t+0.5)
�
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2

· k�⇤
k

2

�

(1� )2 + 1� 2

2 · (1 + )
=

1� 

1 + 
, (H.16)

where in the second inequality we use both sides of (H.2). In summary, we have that (H.15) holds.
Now we verify that (H.14) holds. By (H.15) we have

p

bs · e✏ 
1� 

1 + 
< 1 <

p

(s⇤ + bs)/bs,

which implies e✏ 
p

s⇤ + bs/bs. For the right-hand side of (H.14) we have
p

s⇤ · e✏+
⇥

�

�

s⇤ · e✏
�

2

�

bs+
�

s⇤/bs+ 1

�

·

�

s⇤/bs
�⇤

1/2

s⇤/bs+ 1



p

s⇤ · e✏+
⇥�
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�

·

�

s⇤/bs
�⇤

1/2

s⇤/bs+ 1

 2 ·

p

s⇤/(s⇤ + bs), (H.17)

where the last inequality is obtained by plugging in e✏ 
p

s⇤ + bs/bs. Meanwhile, note that we have

2 ·

p

s⇤/(s⇤ + bs)  2 ·

q

1

�⇥

1 + 4 · (1 + )2/(1� )2
⇤

 (1� )/(1 + )  �, (H.18)

where the first inequality is from our assumption in (G.5) that s⇤/bs  (1� )2/
⇥

4 · (1 + )2
⇤

, while
the last inequality is from (H.16). Combining (H.17) and (H.18), we then obtain (H.14). By (H.14)
we further establish (H.13), i.e., the right-hand side of (H.12) is upper bounded by �, which implies

�

�✓I1

�

�

2

 �. (H.19)
Furthermore, according to (H.6) we have
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(H.20)

where in the last inequality we use the fact ✓⇤ and ✓ are unit vectors. Now we solve for
�

�✓⇤
I1

�

�

2

in
(H.20). According to (H.19) and the fact that

�
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2
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= 1, on the right-hand side of (H.20)
we have
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Further by solving for
�

�✓⇤
I1

�

�

2

in the above inequality, we obtain
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(H.21)
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where in the second inequality we use the fact that �  1, which follows from its definition, while in
the last inequality we plug in (H.12). Then combining (H.12) and (H.21), we obtain
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(H.22)

Note that by (G.1) and the definition of ✓ in (H.3), we have

�(t+1)
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Therefore, we have
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,

where the second and third equalities follow from (H.5). Let � =

�

��(t+0.5)
�

�

2

· k�⇤
k

2

. Plugging
(H.22) into the right-hand side of the above inequality and then multiplying � on both sides, we
obtain
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�(t+1),�⇤↵ (H.23)
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For term (i) in (H.23), note that
p

1��

2



p

2 · (1��). By (H.3) and the definition that � =

⌦

✓,✓⇤↵, for term (i) we have
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(H.24)
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For term (ii) in (H.23), by the definition of e✏ in (H.10) we have
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q

�

��(t+0.5)
�

�

2

· k�⇤
k

2

· 2 ·

�

��(t+0.5)
� �(t+0.5)

�

�

1
�

�

��(t+0.5)
�

�

2

= 2 ·

�

��(t+0.5)
� �(t+0.5)

�

�

1 ·

q

k�⇤
k

2

�

�

��(t+0.5)
�

�

2



2

p

1� 
·

�

��(t+0.5)
� �(t+0.5)

�

�

1,

(H.25)
where the last inequality is obtained from (H.2). Plugging (H.24) and (H.25) into (H.23), we obtain
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Meanwhile, according to (G.1) we have that �(t+1) is obtained by truncating �(t+0.5), which implies
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Subtracting two times both sides of (H.26) from (H.27), we obtain
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We can easily verify that the above inequality implies
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Taking square roots of both sides and utilizing the fact that
p

a2 + b2  a+ b (a, b > 0), we obtain
�
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+
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p

s⇤
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1� 
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� �(t+0.5)

�

�

1,

where C > 0 is an constant. Here we utilize the fact that s⇤/bs 
p

s⇤/bs and

1 + 2 ·

p

s⇤/bs+ 2 · s⇤/bs  5,

both of which follow from our assumption that s⇤/bs  (1 � )2
�⇥

4 · (1 + )2
⇤

< 1 in (G.5). By
(H.28) we conclude the proof of Lemma G.1.

H.2 Proof of Lemma G.2
In the following, we prove (G.8) and (G.9) for the maximization and gradient ascent implementation
of the M-step correspondingly.
Proof of (G.8): To prove (G.8) for the maximization implementation of the M-step (Algorithm 2),
note that by the self-consistency property [18] we have

�⇤
= argmax

�
Q(�;�⇤

). (H.29)

Hence, �⇤ satisfies the following first-order optimality condition
⌦

� � �⇤,r
1

Q(�⇤
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↵

 0, for all �,
where r

1

Q(·, ·) denotes the gradient taken with respect to the first variable. In particular, it implies
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Meanwhile, by (G.1) and the definition of M(·) in (3.1), we have
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�
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Q
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Hence we have the following first-order optimality condition
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Combining (H.30) and (H.31), we then obtain
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In the following, we establish upper and lower bounds for both sides of (H.32) correspondingly. By
applying Condition Lipschitz-Gradient-1(�

1

,B), for the right-hand side of (H.32) we have
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where the last inequality is from (3.3). Meanwhile, for the left-hand side of (H.32), we have
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(H.34)
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(H.35)
by (3.6) in Condition Concavity-Smoothness(µ, ⌫,B). By adding (H.34) and (H.35), we obtain
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Plugging (H.33) and (H.36) into (H.32), we obtain
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which implies (G.8) in Lemma G.2.
Proof of (G.9): We turn to prove (G.9). The self-consistency property in (H.29) implies that �⇤ is
the maximizer of Q(·;�⇤

). Furthermore, (3.5) and (3.6) in Condition Concavity-Smoothness(µ, ⌫,B)
ensure that �Q(·;�⇤

) is µ-smooth and ⌫-strongly convex. By invoking standard optimization results
for minimizing strongly convex and smooth objective functions, e.g., in [21], for stepsize ⌘ =

2/(⌫ + µ), we have
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i.e., the gradient ascent step decreases the distance to �⇤ by a multiplicative factor. Hence, for the
gradient ascent implementation of the M-step, i.e., M(·) defined in (3.2), we have
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, (H.38)

where the last inequality is from (H.37) and (3.4) in Condition Lipschitz-Gradient-2(�
2

,B). Plugging
⌘ = 2/(⌫ + µ) into (H.38), we obtain
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,

which implies (G.9). Thus, we conclude the proof of Lemma G.2.

H.3 Auxiliary Lemma for Proving Theorem 3.4
The following lemma characterizes the initialization step in line 2 of Algorithm 4.
Lemma H.1. Suppose that we have
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Proof. Following the same proof of Lemma G.1 with both �(t+0.5) and �(t+0.5) replaced with �init,
�(t+1) replaced with �(0) and b

S

(t+0.5) replaced with b

S

init, we reach the conclusion.

H.4 Proof of Lemma E.2
Proof. Recall that Q(·; ·) is the expectation of Qn(·; ·). According to (A.2) and (3.1), we have

M(�) = E
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with !�(·) being the weight function defined in (A.2), which together with (A.3) implies
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27



Recall yi is the i-th realization of Y , which follows the mixture distribution. For any u > 0, we have
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. (H.40)

Based on (H.39), we apply the symmetrization result in Lemma J.4 to the right-hand side of (H.40).
Then we have
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(H.41)
where ⇠

1

, . . . , ⇠n are i.i.d. Rademacher random variables that are independent of y
1

, . . . ,yn. Then
we invoke the contraction result in Lemma J.5 by setting

f(yi,j) = yi,j , F = {f},  i(v) =
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2 · !�(yi)� 1

⇤

· v, and �(v) = exp(u · v),

where u is the variable of the moment generating function in (H.40). From the definition of !�(·) in
(A.2) we have
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Therefore, by Lemma J.5 we obtain
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for the right-hand side of (H.41), where j 2 {1, . . . , d}. Here note that in Gaussian mixture model we
have yi,j = zi ·�⇤

j + vi,j , where zi is a Rademacher random variable and vi,j ⇠ N(0,�2

). Therefore,
according to Example 5.8 in [28] we have kzi ·�⇤

j k 2  |�⇤
j | and kvi,jk 2  C ·�. Hence by Lemma

J.1 we have
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Since |⇠i · yi,j | = |yi,j |, ⇠i · yi,j and yi,j have the same  
2

-norm. Because ⇠i is a Rademacher random
variable independent of yi,j , we have E(⇠i · yi,j) = 0. By Lemma 5.5 in [28], we obtain
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Hence, for the right-hand side of (H.42) we have
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Here the last inequality is obtained by plugging (H.43) with u0
= 2 · u/n and u0

= �2 · u/n
respectively into the two terms. Plugging (H.44) into (H.42) and then into (H.41), we obtain
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By Chernoff bound we have that, for all u > 0 and v > 0,
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Minimizing the right-hand side over u we obtain
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Setting the right-hand side to be �, we have that
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holds for some constants C, C 0 and C 00, which completes the proof of Lemma E.2.

H.5 Proof of Lemma E.5
In the sequel, we first establish the result for the maximization implementation of the M-step and
then for the gradient ascent implementation.
Maximization Implementation: For the maximization implementation we need to estimate the
inverse covariance matrix ⇥

⇤
= ⌃

�1 with the CLIME estimator b⇥ defined in (A.7). The following
lemma from [7] quantifies the statistical rate of convergence of b⇥. Recall that k · k

1,1 is defined as
the maximum of the row `

1

-norms of a matrix.
Lemma H.2. For ⌃ = Id and �CLIME
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holds with probability at least 1� �, where C and C 0 are positive constants.

Proof. See the proof of Theorem 6 in [7] for details.

Now we are ready to prove (E.8) of Lemma E.5.

Proof. Recall that Q(·; ·) is the expectation of Qn(·; ·). According to (A.5) and (3.1), we have
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with !�(·, ·) being the weight function defined in (A.5), which together with (A.8) implies
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Here b

⇥ is the CLIME estimator defined in (A.7). For notational simplicity, we denote
!i = 2 · !�(xi, yi)� 1, and ! = 2 · !�(X, Y )� 1. (H.46)

It is worth noting that both !i and ! depend on �. Note that we have
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Analysis of Term (i): For term (i) in (H.47), recall that by our model assumption we have ⌃ = Id,
which implies ⇥⇤

= ⌃

�1

= Id. By Lemma H.2, for a sufficiently large sample size n, we have that
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holds with probability at least 1� �/4.
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Analysis of Term (ii): For term (ii) in (H.47), we have that for u > 0,
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where ⇠
1

, . . . , ⇠n are i.i.d. Rademacher random variables. The last inequality follows from Lemma
J.4. Furthermore, for the right-hand side of (H.49), we invoke the contraction result in Lemma J.5 by
setting

f(yi · xi,j) = yi · xi,j , F = {f},  i(v) = !i · v, and �(v) = exp(u · v),

where u is the variable of the moment generating function in (H.49). From the definitions in (A.5)
and (H.46) we have |!i| =
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By Lemma J.5, we obtain
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for j 2 {1, . . . , d} on the right-hand side of (H.49). Recall that in mixture of regression model
we have yi = zi · h�⇤,xii + vi, where zi is a Rademacher random variable, vi ⇠ N(0,�2

), and
xi ⇠ N(0, Id). Then by Example 5.8 in [28] we have kzi · h�⇤,xiik 2 = kh�⇤,xiik 2  C ·k�⇤
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Note that we have kxi,jk 2  C 00 since xi,j ⇠ N(0, 1). Therefore, by Lemma J.2 we have
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Since ⇠i is a Rademacher random variable independent of yi · xi,j , we have E(⇠i · yi · xi,j) = 0.
Hence, by Lemma 5.15 in [28], we obtain
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The last inequality is obtained by plugging (H.51) with u0
= 2·u/n and u0

= �2·u/n correspondingly
into the two terms. Here |u|  C 0
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. Plugging (H.52) into (H.50) and further
into (H.49), we obtain
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By Chernoff bound we have that, for all v > 0 and |u|  C 0
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Minimizing over u on its right-hand side we have that, for 0 < v  C 00
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Setting the right-hand side of the above inequality to be �/2, we have that
�

�

�

�

1

n

n
X

i=1

!i · yi · xi � E(! · Y ·X)

�

�

�

�

1
 v = C ·max

�

k�⇤
k

2

2

+ �2, 1
 

·

r

log d+ log(4/�)

n

(H.53)
holds with probability at least 1� �/2 for a sufficiently large n.
Analysis of Term (iii): For term (iii) in (H.47), by Lemma H.2 we have
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with probability at least 1� �/4 for a sufficiently large n.
Analysis of Term (iv): For term (iv) in (H.47), recall that by (H.45) and (H.46) we have
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where the first inequality follows from triangle inequality and k · k1  k · k2, the second inequality
is from the proof of (G.8) in Lemma G.2 with �(t+0.5) replaced with � and the fact that �

1

/⌫ < 1

in (G.8), and the third inequality holds since in Condition Statistical-Error(✏, �, s, n,B) we suppose
that � 2 B, and for mixture of regression model B is specified in (E.7).
Plugging (H.48), (H.53), (H.54) and (H.55) into (H.47), by union bound we have that
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holds with probability at least 1� �. Therefore, we conclude the proof of (E.8) in Lemma E.5.

Gradient Ascent Implementation: In the following, we prove (E.9) in Lemma E.5.

Proof. Recall that Q(·; ·) is the expectation of Qn(·; ·). According to (A.5) and (3.2), we have
M(�) = � + ⌘ · E
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2 · !�(X, Y ) · Y ·X � �
⇤
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with !�(·, ·) being the weight function defined in (A.5), which together with (A.9) implies
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Here ⌘ > 0 denotes the stepsize in Algorithm 3.
Analysis of Term (i): For term (i) in (H.56), we redefine !i and ! in (H.46) as

!i = 2 · !�(xi, yi), and ! = 2 · !�(X, Y ). (H.57)
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 2. Following the same way we establish the upper bound of term
(ii) in (H.47), under the new definitions of !i and ! in (H.57) we have that
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·
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log d+ log(4/�)

n
holds with probability at least 1� �/2.
Analysis of Term (ii): For term (ii) in (H.56), we have
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(ii).a

· k�k
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(ii).b

.

For term (ii).a, recall by our model assumption we have E
�

X ·X>�
= Id and xi’s are the independent

realizations of X . Hence we have
�
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>
i � Id
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1,1
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max
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xi,j · xi,k � E(Xj ·Xk)

�
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�

.

Since Xj , Xk ⇠ N(0, 1), according to Example 5.8 in [28] we have kXjk 2 = kXkk 2  C. By
Lemma J.2, Xj ·Xk is a sub-exponential random variable with kXj ·Xkk 1  C 0. Moreover, we
have

�

�Xj ·Xk � E(Xj ·Xk)
�

�

 1
 C 00 by Lemma J.3. Then by Bernstein’s inequality (Proposition

5.16 in [28]) and union bound, we have
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�

�C · n · v2
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for 0 < v  C 0 and a sufficiently large sample size n. Setting its right-hand side to be �/2, we have
�
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holds with probability at least 1� �/2. For term (ii).b we have k�k
1



p

s · k�k
2

, since in Condition
Statistical-Error(✏, �, s, n,B) we assume k�k

0

 s. Furthermore, we have k�k
2
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k

2

+ k�⇤
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�k
2

 (1+1/32) ·k�⇤
k

2

, because in Condition Statistical-Error(✏, �, s, n,B) we assume that � 2 B,
and for mixture of regression model B is specified in (E.7).
Plugging the above results into the right-hand side of (H.56), by union bound we have that
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holds with probability at least 1� �. Therefore, we conclude the proof of (E.9) in Lemma E.5.

I Proof of Results for Inference
In the following, we provide the detailed proof of the theoretical results for asymptotic inference in
§4. We first present the proof of the general results, and then the proof for specific models.

I.1 Proof of Theorem 2.1
Proof. In the sequel we establish the two equations in (2.8) respectively.
Proof of the First Equation: According to the definition of the lower bound function Qn(·; ·) in
(2.1), we have

Qn(�
0
;�) =

1

n

n
X

i=1

Z

Z
k�(z | yi) · log f�0

(yi, z) dz. (I.1)

Here k�(z | yi) is the density of the latent variable Z conditioning on the observed variable Y = yi

under the model with parameter �. Hence we obtain
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n
X

i=1

Z

Z
k�(z | yi) ·

@f�(yi, z)/@�

f�(yi, z)
dz =

1

n

n
X
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Z

Z

@f�(yi, z)/@�

h�(yi)
dz, (I.2)

where h�(yi) is the marginal density function of Y evaluated at yi, and the second equality follows
from the fact that

k�(z | yi) = f�(yi, z)/h�(yi), (I.3)
since k�(z | yi) is the conditional density. According to the definition in (B.3), we have

r`n(�) =
n
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@ log h�(yi)
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n
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@h�(yi)/@�

h�(yi)
=

n
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Z
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@f�(yi, z)/@�

h�(yi)
dz, (I.4)

where the last equality is from (B.1). Comparing (I.2) and (I.4), we obtain r
1

Qn(�;�) =

r`n(�)/n.
Proof of the Second Equation: For the second equation in (D.1), by (I.1) and (I.3) we have

Qn(�
0
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1
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n
X
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Z
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· log f�0
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By calculation we obtain
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=

1

n

n
X

i=1

Z

Z

@f�(yi, z)/@�

f�(yi, z)
⌦

(

@f�(yi, z)/@� · h�(yi)
⇥

h�(yi)
⇤

2

�

f�(yi, z) · @h�(yi)/@�
⇥

h�(yi)
⇤

2

)

dz.

Here ⌦ denotes the vector outer product. Note that in (I.5) we have
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, (I.6)

where v

⌦2 denotes v ⌦ v. Here eS�(·, ·) is defined as

eS�(y, z) =
@ log f�(y, z)

@�
=

@f�(y, z)/@�

f�(y, z)
2 Rd, (I.7)
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i.e., the score function for the complete likelihood, which involves both the observed variable Y and
the latent variable Z. Meanwhile, in (I.5) we have
Z

Z

@f�(yi, z)/@�

f�(yi, z)
⌦

f�(yi, z) · @h�(yi)/@�
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h�(yi)
⇤

2
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h�(yi)
dz

�⌦2

, (I.8)

where in the last equality we utilize the fact that
Z

Z
f�(yi, z) dz = h�(yi), (I.9)

because h�(·) is the marginal density function of Y . By (I.3) and (I.7), for the right-hand side of (I.8)
we have

E�

h
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� Y = yi

i
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Z

@f�(yi, z)/@�
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· k�(z | yi) dz =
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Z
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h�(yi)
dz. (I.10)

Plugging (I.10) into (I.8) and then plugging (I.6) and (I.8) into (I.5) we obtain
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.

Setting � = �⇤ in the above equality, we obtain
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Meanwhile, for � = �⇤, by the property of Fisher information we have
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Here the last equality is obtained by taking � = �⇤ in
@ log h�(Y )
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,

where the second equality follows from (I.9), the third equality follows from (I.3), while the second
last equality follows from (I.7). Combining (I.11) and (I.12), by the law of total variance we have
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In the following, we prove
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According to (I.1) we have
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(I.15)

Let e`(�) = log f�(Y ,Z) be the complete log-likelihood, which involves both the observed variable
Y and the latent variable Z, and eI(�) be the corresponding Fisher information. By setting � = �⇤

in (I.15) and taking expectation, we obtain
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Since eS�(Y ,Z) defined in (I.7) is the score function for the complete log-likelihood e`(�), according
to the relationship between the score function and Fisher information, we have

eI(�⇤
) = Cov�⇤

h

eS�⇤
(Y ,Z)

i

,

which together with (I.16) implies (I.14). By further plugging (I.14) into (I.13), we obtain
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1,2Qn(�
⇤
;�⇤
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= �I(�⇤
),

which establishes the first equality of the second equation in (D.1). In addition, the second equality of
the second equation in (D.1) follows from the property of Fisher information. Thus, we conclude the
proof of Theorem D.1.

I.2 Auxiliary Lemmas for Proving Theorem 4.6
In this section, we lay out several lemmas on the Dantzig selector defined in (2.6). The first lemma,
which is from [5], characterizes the cone condition for the Dantzig selector.
Lemma I.1. Any feasible solution w in (2.6) satisfies
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where w(�,�) is the minimizer of (2.6), Sw is the support of w and Sw is its complement.

Proof. See Lemma B.3 in [5] for a detailed proof.

In the sequel, we focus on analyzing w
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. The results for w
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can be obtained similarly.
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Here S

⇤
w is the support of w⇤ defined in (4.1).

Lemma I.2. Under Assumption 4.5 and Conditions 4.1, 4.3 and 4.4, for a sufficiently large sample
size n, we have b⇢

min

� ⇢
min

/2 > 0 with high probability, where ⇢
min

is specified in (4.4).

Proof. By triangle inequality we have
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where C is defined in (I.17).
Analysis of Term (i): For term (i) in (I.18), by (4.4) in Assumption 4.5 we have
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Analysis of Term (ii): For term (ii) in (I.18) we have
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By the definition of C in (I.17), for any v 2 C we have
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Therefore, the right-hand side of (I.20) is upper bounded by
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For term (ii).a, by Theorem D.1 and Condition 4.3 we have
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Hence, term (ii) in (I.18) is oP(1). Since ⇢
min

is an constant, for a sufficiently large n we have that
term (ii) is upper bounded by ⇢

min

/2 with high probability. Further by plugging this and (I.19) into
(I.18), we conclude that b⇢
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/2 holds with high probability.

The next lemma quantifies the statistical accuracy of w
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, where w(·, ·) is defined in (2.6).
Lemma I.3. Under Assumption 4.5 and Conditions 4.1-4.4, for � specified in (4.5) we have that
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Proof. For � specified in (4.5), we verify that w⇤ is a feasible solution in (2.6) with high probability.
For notational simplicity, we define the following event
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By the definition of w⇤ in (4.1), we have
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(I.22)
where the last inequality is from triangle inequality and Hölder’s inequality. Note that we have
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On the right-hand side, by Theorem D.1 and Condition 4.3 we have
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while by Conditions 4.1 and 4.4 we have
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Plugging the above equations into (I.23) and further plugging (I.23) into (I.22), by (4.5) we have
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holds with high probability for a sufficiently large constant C � 1. In other words, E occurs with
high probability. The subsequent proof will be conditioning on E and the following event
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which also occurs with high probability according to Lemma I.2. Here b⇢
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is defined in (I.17).
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where the last inequality follows from (2.6) and (I.21). Moreover, by (I.17) and (I.24) we have
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Meanwhile, by Lemma I.1 we have
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Plugging the above inequality into (I.26), we obtain
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Note that by (I.25), the left-hand side of (I.27) is upper bounded by
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By (I.27) and (I.28), we then obtain kbw �w
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conditioning on E and E
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of which hold with high probability. Note that the proof for w

�

b�
0

,�
�

follows similarly. Therefore,
we conclude the proof of Lemma I.3.

I.3 Proof of Lemma G.3
Proof. Our proof strategy is as follows. First we prove that
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where �⇤ is the true parameter and w
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Proof of (I.29): For (I.29), by the definition of the decorrelated score function in (2.5) we have
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Analysis of Term (i): For term (i) in (I.31), we have
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For the right-hand side of (I.32), we have
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where the second equality is from s⇤w · � · ⇣G = o(1/
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Analysis of Term (ii): By triangle inequality, term (ii) in (I.31) is upper bounded by
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which implies the first equality in (I.35). The last equality in (I.35) follows from ⇣EM
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For the first term on the right-hand side of (I.37), by triangle inequality we have
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where the last inequality in (I.39) holds because �] is defined as an intermediate value between �⇤
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By triangle inequality and Lemma I.3, the first term in (I.40) is upper bounded by
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By (4.6) in Assumption 4.5, since s⇤w · � = o(1), we have
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we turn to prove the second part on asymptotic normality.
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Here the second equality is from the fact that the covariance of the score function equals the Fisher
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where the second and third equalities are from (4.1) and (4.2). Hence, by the central limit theorem
we obtain (I.30). Finally, combining (I.29) and (I.30) by invoking Slutsky’s theorem, we obtain
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which concludes the proof of Lemma G.3.

I.4 Proof of Lemma G.4

Proof. Throughout the proof, we abbreviate w
�

b�
0

,�
�

as bw
0

. Our proof is under the null hypothesis
where �⇤

=

⇥

↵⇤, (�⇤
)

>⇤> with ↵⇤
= 0. Recall that w⇤ is defined in (4.1). Then by the definitions

of
⇥

Tn

�

b�
0

�⇤

↵|� and
⇥

I(�⇤
)

⇤

↵|� in (2.7) and (4.2), we have
⇥

Tn

�

b�
0

�⇤

↵|� =

�

1,�bw>
0

�

· Tn

�

b�
0

�

·

�

1,�bw>
0

�>

=

⇥

Tn

�

b�
0

�⇤

↵,↵
� 2 ·

b

w

>
0

·

⇥

Tn

�

b�
0

�⇤

�,↵
+

b

w

>
0

·

⇥

Tn

�

b�
0

�⇤

�,�
·

b

w

0

,
⇥

I(�⇤
)

⇤

↵|� =

⇥

I(�⇤
)

⇤

↵,↵
�

⇥

I(�⇤
)

⇤>
�,↵

·

⇥

I(�⇤
)

⇤�1

�,�
·

⇥

I(�⇤
)

⇤

�,↵

=

⇥

I(�⇤
)

⇤

↵,↵
� 2 · (w

⇤
)

>
·

⇥

I(�⇤
)

⇤

�,↵
+ (w

⇤
)

>
·

⇥

I(�⇤
)

⇤

�,�
·w

⇤.

By triangle inequality, we have
�

�

�

⇥

Tn

�

b�
0

�⇤

↵|� +

⇥

I(�⇤
)

⇤

↵|�

�

�

�



�

�

�

⇥

Tn

�

b�
0

�⇤

↵,↵
+

⇥

I(�⇤
)

⇤

↵,↵

�

�

�

| {z }

(i)

+2 ·

�

�

�

b

w

>
0

·

⇥

Tn

�

b�
0

�⇤

�,↵
+ (w

⇤
)

>
·

⇥

I(�⇤
)

⇤

�,↵

�

�

�

| {z }

(ii)

+

�

�

�

b

w

>
0

·

⇥

Tn

�

b�
0

�⇤

�,�
·

b

w

0

+ (w

⇤
)

>
·

⇥

I(�⇤
)

⇤

�,�
·w

⇤
�

�

�

| {z }

(iii)

. (I.42)

39



Analysis of Term (i): For term (i) in (I.42), by Theorem D.1 and triangle inequality we have
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(I.43)
For term (i).a in (I.43), by Condition 4.4 we have
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Note that we have
�
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.
Hence, by Condition 4.1 we have
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Moreover, combining (I.44) and (I.45), by (4.6) in Assumption 4.5 we have
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Meanwhile, for term (i).b in (I.43) we have
�

�

�

⇥

Tn(�
⇤
)

⇤

↵,↵
�

�

E�⇤
⇥

Tn(�
⇤
)

⇤ 

↵,↵

�

�

�



�

�Tn(�
⇤
)� E�⇤

⇥

Tn(�
⇤
)

⇤

�

�

1,1 = OP
�

⇣T
�

= oP(1),

(I.47)
where the second last equality follows from Condition 4.3, while the last equality holds because our
assumption in (4.6) of Assumption 4.5 implies
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for � specified in (4.5).
Analysis of Term (ii): For term (ii) in (I.42), by Theorem D.1 and triangle inequality, we have
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By Hölder’s inequality, term (ii).a in (I.48) is upper bounded by
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By Lemma I.3, we have kbw
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⇤
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where the second equality follows from (I.46) and (I.47). Therefore, term (ii).a is oP(1), since (4.6)
in Assumption 4.5 implies s⇤w · � = o(1). Meanwhile, by Hölder’s inequality, term (ii).b in (I.48) is
upper bounded by
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By Lemma I.3, we have kbw
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where C > 0 is some constant. Therefore, from (I.49) we have that term (ii).b in (I.48) is OP(s
⇤
w · �).

By (4.6) in Assumption 4.5, we have s⇤w · � = o(1). Thus, we conclude that term (ii).b is oP(1). For
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term (ii).c, we have
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Here the first and second inequalities are from Hölder’s inequality and triangle inequality, the first
equality follows from (I.46) and (I.47), and the second equality holds because (4.6) in Assumption
4.5 implies
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for � specified in (4.5).
Analysis of Term (iii): For term (iii) in (I.42), by (D.1) in Theorem D.1 we have
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For term (iii).a in (I.51), we have
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From (4.6) in Assumption 4.5 we have, for � specified in (4.5), terms (i)-(iv) are all upper bounded
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· s⇤w · � = o(1). Hence, we conclude term (iii).a in (I.51) is oP(1). Also, for term
(iii).b in (I.51), we have
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where the last equality follows from Lemma I.3 and (I.50). Moreover, by (4.6) in Assumption 4.5
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that term (iii).b in (I.51) is oP(1). Combining the above analysis for terms (i)-(iii) in (I.42), we obtain
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Thus we conclude the proof of Lemma G.4.
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I.5 Proof of Lemma F.1

Proof. According to Algorithm 4, the final estimator b� = �(T ) has bs nonzero entries. Meanwhile,
we have k�⇤
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I.6 Proof of Lemma F.2
Proof. Recall that for Gaussian mixture model we have
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where !�(·) is defined in (A.2). Hence, by calculation we have
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For notational simplicity we define
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Then by the definition of Tn(·) in (2.4), from (I.53) and (I.54) we have
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Applying the symmetrization result in Lemma J.4 to the right-hand side, we have that for u > 0,
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where ⇠

1

, . . . , ⇠n are i.i.d. Rademacher random variables that are independent of y
1

, . . . ,yn. Then
we invoke the contraction result in Lemma J.5 by setting
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where u is the variable of the moment generating function in (I.56). By the definition in (I.55) we
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Therefore, applying the contraction result in Lemma J.5 to the right-hand side of (I.56), we obtain
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(I.57)
Note that E�⇤

(⇠i · yi,j · yi,k) = 0, since ⇠i is a Rademacher random variable independent of yi,j · yi,k.
Recall that in Gaussian mixture model we have yi,j = zi · �⇤

j + vi,j , where zi is a Rademacher
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random variable and vi,j ⇠ N(0,�2

). Hence, by Example 5.8 in [28], we have kzi · �⇤
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j |
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Since |⇠i · yi,j · yi,k| = |yi,j · yi,k|, by definition ⇠i · yi,j · yi,k and yi,j · yi,k have the same  
1

-norm.
By Lemma J.2 we have
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Then by Lemma 5.15 in [28], we obtain
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for all |u0
|  C 00��
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. Note that on the right-hand side of (I.57), we have

E�⇤

⇢

exp



u · 4/�2

·

�

�

�

�

1

n

n
X

i=1

⇠i · yi,j · yi,k

�

�

�

�

��

 E�⇤

✓

max

⇢

exp



u · 4/�2

·

1

n

n
X

i=1

⇠i · yi,j · yi,k

�

, exp



�u · 4/�2

·

1

n

n
X

i=1

⇠i · yi,j · yi,k

��◆

 E�⇤

⇢

exp



u · 4/�2

·

1

n

n
X

i=1

⇠i · yi,j · yi,k

��

+ E�⇤

⇢

exp



�u · 4/�2

·

1

n

n
X

i=1

⇠i · yi,j · yi,k

��

.

(I.60)
By plugging (I.59) into the right-hand side of (I.60) with u0

= u ·4/(�2

·n) and u0
= �u ·4/(�2

·n),
from (I.57) we have that for any j, k 2 {1, . . . , d},

E�⇤

n

exp

h

u ·

�

�

�

�

Tn(�
⇤
)� E�⇤

⇥

Tn(�
⇤
)

⇤ 

j,k

�

�

�

io

(I.61)

 2 · exp

h

C · u2/n ·

�

k�⇤
k

2

1 + C 0
· �2

�

2

�

�4

i

.
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where the last inequality is obtained from (I.61). By minimizing its right-hand side over u, we
conclude that for 0 < v  C 00
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Setting the right-hand side to be �, we have that
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holds with probability at least 1� �. By setting � = 2/d, we conclude the proof of Lemma F.2.
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I.7 Proof of Lemma F.3
Proof. For any j, k 2 {1, . . . , d}, by the mean-value theorem we have
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where �] is an intermediate value between � and �⇤. According to (I.53), (I.54) and the definition of
Tn(·) in (2.4), by calculation we have
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For notational simplicity, we define the following event
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where ⌧ > 0 will be specified later. By maximal inequality we have
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Let E be the complement of E . On the right-hand side of (I.64) we have
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Analysis of Term (i): For term (i) in (I.65), we have
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where the last inequality is from union bound. By (I.63) we have |⌫�](yi)|  16/�4. Thus we obtain
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Taking v = 16 · ⌧3/�4, we have that the right-hand side is zero and hence term (i) in (I.65) is zero.
Analysis of Term (ii): Meanwhile, for term (ii) in (I.65) by maximal inequality we have
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Furthermore, by (I.58) in the proof of Lemma F.1, we have that yi,j is sub-Gaussian with kyi,jk 2 =
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Finally, by (I.64), (I.65) and maximal inequality we have

P
n

max

j,k2{1,...,d}

�

�

�

r

⇥

Tn

�

�]
�⇤

j,k

�

�

�

1
> v

o

 d2 · d · P


�

�

�

�

1

n

n
X

i=1

⌫�](yi) · yi,j · yi,k · yi,l

�

�

�

�

> v

�

 d3 · �

for v = 16 · ⌧3/�4 with ⌧ specified in (I.66). By setting � = 2 · d�4 and plugging (I.66) into (I.62),
we conclude the proof of Lemma F.3.

I.8 Proof of Lemma F.5

By the same proof of Lemma F.1 in §I.5, we obtain ⇣EM by invoking Theorem E.6. To obtain ⇣G,
note that for the gradient implementation of the M-step (Algorithm 3), we have
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I.9 Proof of Lemma F.6
Proof. Recall that for mixture of regression model, we have
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where !�(·) is defined in (A.5). Hence, by calculation we have
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For notational simplicity we define
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Then by the definition of Tn(·) in (2.4), from (I.67) and (I.68) we have
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Applying the symmetrization result in Lemma J.4 to the right-hand side, we have that for u > 0,
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where ⇠
1

, . . . , ⇠n are i.i.d. Rademacher random variables, which are independent of x
1

, . . . ,xn and
y
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, . . . , yn. Then we invoke the contraction result in Lemma J.5 by setting
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where u is the variable of the moment generating function in (I.70). By the definition in (I.69) we
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Therefore, applying Lemma J.5 to the right-hand side of (I.70), we obtain
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For notational simplicity, we define the following event
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Analysis of Term (i): For term (i) in (I.72), we have
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variable independent of xi and yi. Recall that for mixture of regression model we have yi = zi ·
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By the definition of  
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where the last inequality follows from (I.73). Therefore, by Bernstein’s inequality (Proposition 5.16
in [28]), we obtain
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for all 0  v  C · ⌧2 ·
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and a sufficiently large sample size n.
Analysis of Term (ii): For term (ii) in (I.72), by union bound we have
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Plugging (I.74) and (I.75) into (I.72), we obtain
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Note that (I.71) is obtained by applying Lemmas J.4 and J.5 with �(v) = exp(u · v). Since Lemmas
J.4 and J.5 allow any increasing convex function �(·), similar results hold correspondingly. Hence,
applying Panchenko’s theorem in Lemma J.6 to (I.71), from (I.76) we have
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Furthermore, by union bound we have
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To ensure the right-hand side is upper bounded by �, we set the second term on the right-hand side of
(I.77) to be �/2. Then we obtain

⌧ = C ·

p

log n+ 3 · log d+ log(4 · e/�).

Let the first term on the right-hand side of (I.77) be upper bounded by �/2 and plugging in ⌧ , we then
obtain
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Therefore, by setting � = 4 · e/d we have that
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holds with probability at least 1� 4 · e/d, which completes the proof of Lemma F.6.

I.10 Proof of Lemma F.7
Proof. For any j, k 2 {1, . . . , d}, by the mean-value theorem we have
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where �] is an intermediate value between � and �⇤. According to (I.67), (I.68) and the definition of
Tn(·) in (2.4), by calculation we have
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For notational simplicity, we define the following events
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where ⌧ > 0 and ⌧ 0 > 0 will be specified later. By union bound we have

P
n

�

�

�

r

⇥

Tn

�

�]
�⇤

j,k

�

�

�

1
> v

o

 d · P
⇣n

�

�

�

r

⇥

Tn

�

�]
�⇤

j,k

�

�

�

o

l
> v

⌘

= d · P


�

�

�

�

1

n

n
X

i=1

⌫�](xi, yi) · y
3

i · xi,j · xi,k · xi,l

�

�

�

�

> v

�

. (I.80)

Let E and E

0 be the complement of E and E

0 respectively. On the right-hand side we have
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Analysis of Term (i): For term (i) in (I.81), we have
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To avoid confusion, note that vi is the noise in mixture of regression model, while v appears in the
tail bound. By applying union bound to the right-hand side of the above inequality, we have
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Recall that in mixture of regression model we have yi = zi · h�⇤,xii+ vi, where zi is a Rademacher
random variable, xi ⇠ N(0, Id) and vi ⇠ N(0,�2

). Hence, we have
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· ⌧3/�4, we have that the right-hand side of (I.82) is zero. Hence
term (i) in (I.81) is zero.
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Analysis of Term (ii): For term (ii) in (I.81), by union bound we have
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Moreover, we have that xi,j is sub-Gaussian with kxi,jk 2 = C. Therefore, by Lemma 5.5 in [28]
we have
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Analysis of Term (iii): Since vi is sub-Gaussian with kvik 2 = C · �, by Lemma 5.5 in [28] and
union bound, for term (iii) in (I.81) we have
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To ensure the right-hand side of (I.81) is upper bounded by �, we set ⌧ and ⌧ 0 to be
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· � ·

p

log n+ log(4/�) (I.83)
to ensure terms (ii) and (iii) are upper bounded by �/2 correspondingly. Finally, by (I.80), (I.81) and
union bound we have
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which together with (I.78) concludes the proof of Lemma F.7.

J Auxiliary Results
In this section, we lay out several auxiliary lemmas. Lemmas J.1-J.3 provide useful properties of
sub-Gaussian random variables. Lemmas J.4 and J.5 establish the symmetrization and contraction
results. Lemma J.6 is Panchenko’s theorem. For more details of these results, see [6, 28].
Lemma J.1. Let Z
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, . . . , Zk be the k independent zero-mean sub-Gaussian random variables, for
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where C > 0 is an constant.
Lemma J.3. For Z being sub-Gaussian or sub-exponential, it holds that kZ � EZk 2  2 · kZk 2

or kZ � EZk 1  2 · kZk 1 correspondingly.
Lemma J.4. Let z
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where ⇠
1

, . . . , ⇠n are i.i.d. Rademacher random variables that are independent of z
1

, . . . , zn.
Lemma J.5. Let z
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, . . . , zn be the n independent realizations of the random vector Z 2 Z and F be
a function class defined on Z . We consider the Lipschitz functions  i(·) (i = 1, . . . , n) that satisfy
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where ⇠
1

, . . . , ⇠n are i.i.d. Rademacher random variables that are independent of z
1

, . . . , zn.
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Lemma J.6. Suppose that Z
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and Z
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are two random variables that satisfy E
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