A Applications to Latent Variable Models

In the sequel, we introduce two latent variable models as examples. To apply the high dimensional
EM algorithm in §2.1 and the methods for asymptotic inference in §2.2, we only need to specify the
forms of @, (+; -) defined in (2.1), M,,(-) in Algorithms 2 and 3, and T, (-) in (2.4) for each model.
Gaussian Mixture Model: Let y1, .. .,y,, be the n i.i.d. realizations of Y € R¢ and

Y=Z-p8"+V. (A.1)
Here Z is a Rademacher random variable, i.e., P(Z = +1) = P(Z = —1) = 1/2,and V ~
N (0,02 -1,) is independent of Z, where ¢ is the standard deviation. We suppose o is known. In high
dimensional settings, we assume that 3* € R? is sparse. To avoid the degenerate case in which the
two Gaussians in the mixture are identical, here we suppose that 3* # 0.

For the E-step (line 4 of Algorithm 1), we have
1 n
Qn(B8) = —5- > walyi) - lyi = B3+ [1 - ws(yi)] - lyi + 8113, (A2)
i=1

1

~ 1+exp(—(B,y)/0?)
The maximization implementation (Algorithm 2) of the M-step takes the form

where wg(y)

2 © 1O
My(B) = =3 wa(yi) ¥i= — > ¥i (A3)
i=1 i=1
Meanwhile, for the gradient ascent implementation (Algorithm 3) of the M-step, we have

n

M,(B) =B+n-ViQ.(B;8), where V1Q,(8;8) = %2[2 cwaly:) — 1] - yi — B.

i=1
Here 1 > 0 is the stepsize. For asymptotic inference, T, (-) in (2.4) takes the form

1 n
T.(8)= > valyi) yi'yi — I
i=1

4/0?
[1+exp(—2-(B,y)/0?)] - [1+exp(2-(B,y)/0?)]
Mixture of Regression Model: We assume that Y € R and X € R satisfy
Y=2Z-X"8"+V, (A.4)

where X ~ N(0,1;),V ~ N(0,0?) and Z is a Rademacher random variable. Here X, V and Z are
independent. In the high dimensional regime, we assume 3* € R is sparse. To avoid the degenerate
case, we suppose 3* # 0. In addition, we assume that o is known. For the E-step (line 4 of Algorithm
1), we have

Qn(8;8) = —% Zwﬁ(xiayi) (yi — <Xi,5/>)2 + [1 - wa(xivi)] - (i + <Xia/6/>)2v (A5)

where vg(y) =

1

1+ exp(—y - (8,x)/0?)
For the maximization implementation (Algorithm 2) of the M-step (line 5 of Algorithm 1), we have
that M,,(B) = argmaxg Q,(8'; B) satisfies

~ 1 n N 1 n
.M, (8) = 52[2 cwe(xi,y:) — 1] - y; - x;,  where X = EZXZ- -x, . (A.6)

=1 i=1

where wg(x,y) =

However, in high dimensional regimes, the sample covariance matrix 3 is not invertible. To estimate
the inverse covariance matrix of X, we use the CLIME estimator proposed by [7], i.e.,

o= argmin [|@|11, subject to Hfl -0 — Id” < \CLIME (A7)

OcRdxd 060,00
where || - ||1,1 and || - || oo, 00 are the sum and maximum of the absolute values of all entries respectively,
and A°MME > () is a tuning parameter. Based on (A.6), we modify the maximization implementation



of the M-step to be

n

~ 1
My(B) =03 (2 walxi i) = 1] i - xi. (A8)
i=1
For the gradient ascent implementation (Algorithm 3) of the M-step, we have
M, (B) = B+n-ViQn(B: ), (A.9)
1 n
where V1Qn(B,8) = — > [2-walxi,yi) i xi —xi-x] - B
i=1

Here n > 0 is the stepsize For asymptotic inference, 7, () in (2.4) takes the form

E Vﬁ waz c X i _75 X - za

4/0

[1+exp(—2-y-(B,x)/0?)] - [1+exp(2-y-(B,x)/0?)]

It is worth noting that, for the maximization implementation of the M-step, the CLIME estimator
in (A.7) requires that X! is sparse, where X is the population covariance of X. Since we assume
X ~ N(0,1,), this requirement is satisfied. Nevertheless, for more general settings where X does
not possess such a structure, the gradient ascent implementation of the M-step is a better choice, since
it does not require inverse covariance estimation and is also more efficient in computation.

B Derivation of the EM Algorithm

where vg(x,y) =

Recall that in §2.1, we assume that hg(y) is obtained by marginalizing over an unobserved latent
variable Z € Z, i.e.,

= / faly, ) dz. (B.1)
z
Let kg(z | y) be the density of Z conditioning on the observed variable Y =y, i.e.,
ka(z |y) = faly,2)/ha(y) (B.2)
Given the n observations y1, . ..,y, of Y, the EM algorithm aims at maximizing the log-likelihood
B)=> logha(yi). (B.3)

Due to the unobserved latent variable Z, it is difficult to directly evaluate ¢,,(3). Instead, we turn to
consider the difference between ¢,,(3) and ¢,,(3’). Let kg(z | y) be the density of Z conditioning
on the observed variable Y =y, i.e.,

ka(z|y) = fa(y,z)/ha(y). (B.4)
According to (B.1) and (B.3), we have

%' [6a(8) = £(8")] = %Zlog[hﬁ (vi)/ha (y:)] = %Zlog [ fﬁ(yi’z)dz}

i—1 i—1 zZ hﬁ’ (YZ)

vawumfw“} Z/wummqiuﬂu

B (yZa
(B.5)

where the third equality follows from (B.4) and the inequality is obtained from Jensen’s inequality.
On the right-hand side of (B.5) we have

1 gl v - fB(yZ‘,Z)] ”
n;é%<”“%bwﬂ>d

= 711;,/2 kg (z | y:) - log fa(yi,z) dz —% ;/Z kg (z | y:)-log fa (yi,z)dz. (B.6)

Qn(B;8)



We define the first term on the right-hand side of (B.6) to be Q,,(3; 3’). Correspondingly, we define
its expectation to be Q(3; 3'). Note the second term on the right-hand side of (B.6) does not depend
on (3. Hence, given some fixed 3’, we can maximize the lower bound function Q,,(3; 3") over 3 to
obtain a sufficiently large £,,(3) — £,(3’). Based on such an observation, at the ¢-th iteration of the
classical EM algorithm, we evaluate @), (ﬁ; ﬁ(t)) at the E-step and then perform maxg @, (ﬁ; ﬁ(t))
at the M-step. See [18] for more details.

C High Dimensional EM Algorithm with Resampling

To simplify the technical analysis of the high dimensional algorithm, here we introduce its resampling
version (Algorithm 4).
Algorithm 4 High Dimensional EM Algorithm with Resampling.
1: Parameter: Sparsity Parameter S, Maximum Number of Iterations T’
2: Initialization: S™ « supp (,Bi“it, §) B « trunc (,Bi"it, §”‘it),
{supp(-, -) and trunc(-, -) are defined in (2.2) and (2.3)}

Split the Dataset into 7" Subsets of Size n/T'
{Without loss of generality, we assume n/T is an integer }

3: Fort =0toT — 1
4:  E-step: Evaluate Q,,,r(8; ")) with the ¢-th Data Subset
5: Mestep: B0 «— M, (BY)
{M,,7(-) is implemented as in Algorithm 2 or 3 with Q. (*; -) replaced by Q,,/7(-;) }
6 Testep: SUT09) « supp (B0 5), B  trunc(BH0D), §HH09))
7: End For _

e

: Qutput: 3 ,8<T>

D Decorrelated Score Statistic: An Intuitive Explanation

The intuition for the decorrelated score statistic in (2.7) can be understood as follows. Since ¢,,(3)
is the log-likelihood, its score function is V¥, (3) and the Fisher information at 8* is I(8*) =
—Eg- [V2€,(8%)] /n, where Eg- (-) means the expectation is taken under the model with parameter
(3*. The following key theorem, which restates Theorem 2.1, reveals the connection of V1@, (+; ) in
(2.5) and T, (+) in (2.7) with the score function and Fisher information, which forms the foundation
of our inferential method.

Theorem D.1. For the true parameter 3* and any 3 € R, it holds that
ViQu(B; B) = VL, (B)/n, and Eg.[T,(8")] = —1(8") = Eg- [V*(,(8%)] /n.  (D.1)

Proof. See §l.1 for details. O

Recall that the log-likelihood /., (3) defined in (B.3) is difficult to evaluate due to the unobserved
latent variable. Theorem D.1 provides a feasible way to calculate or estimate the corresponding score
function and Fisher information, since Q. (+;-) and T5,(-) have closed forms. The geometric intuition
behind Theorem D.1 can be understood as follows. By (B.5) and (B.6) we have

0n(B) > €a(B') +1-Qn(B:8) — Z/Zkﬁ’ (z | yi) - log fo (vi,2) dz. (D.2)
=1

By (D.1), both sides of (D.2) have the same gradient with respect to 3 at 3’ = 3. Furthermore, by
(B.6), (D.2) becomes an equality for 3’ = 3. Therefore, the lower bound function on the right-hand
side of (D.2) is tangent to ¢,,(3) at 3’ = (3. Meanwhile, according to (2.4), T;,(3) defines a modified
curvature for the right-hand side of (D.2), which is obtained by taking derivative with respect to 3,
then setting 3’ = 3 and taking the second order derivative with respect to 3. The second equation in
(D.1) shows that the obtained curvature equals the curvature of £,,(3) at 3 = 3* in expectation (up
to a renormalization factor of n). Therefore, V1@, (3; 3) gives the score function and T}, (3*) gives
a good estimate of the Fisher information I(3*). Since 3* is unknown in practice, later we will use

T, (B\) orT, (,/8\0) to approximate T}, (3*).
In the presence of the high dimensional nuisance parameter v* € R%~!, the classical score test is no
longer applicable. In detail, the score test for Hy : a* = 0 relies on the following Taylor expansion



of the score function 94,,(-)/da

1 06(Bo) 1 96,(B") , 1 .8 _ . =
i Tea VR 8a tym TBasy OTYVIVE O3

Here 8* = [O, ('y*)T] T, R denotes the remainder term and B3y = (0, ’7T) T, where 7 is an estimator
of the nuisance parameter 4*. The asymptotic normality of 1/+/n - 94, (Bo) / O in (D.3) relies on
the fact that 1/v/n- 8¢, (B5) /Oc and \/n- (5 —~*) are jointly normal asymptotically and R is op(1).
In low dimensional settings, such a necessary condition holds for % being the maximum likelihood
estimator. However, in high dimensional settings, the maximum likelihood estimator cannot guarantee
that R is op(1), since |5 — ~*||2 can be large due to the curse of dimensionality. Meanwhile, for
being sparsity-type estimators, in general the asymptotic normality of \/n - (3 — 4*) does not hold.

For example, let 4 be 4, where ¥ € R%~1 is the subvector of 3, i.e., the estimator attained by the
proposed high dimensional EM algorithm. Note that 4 has many zero entries due to the truncation
step. As n — oo, some entries of \/n - (¥ — «*) have limiting distributions with point mass at
zero. Clearly, this limiting distribution is not Gaussian with nonzero variance. In fact, for a similar
setting of high dimensional linear regression, [15] illustrate that for 4# being a subvector of the Lasso
estimator and ~* being the corresponding subvector of the true parameter, the limiting distribution of
V1 - (4% — ~*) is not Gaussian.

The decorrelated score function defined in (2.5) successfully addresses the above issues. In detail,
according to (D.1) in Theorem D.1 we have

1 aén (ﬂO) 1 = T aen (ﬂO)

V- S, (Bo, M) =%-T—%-w(ﬁo,A) ey (D.4)

Intuitively, if we replace w(,@o, A) with w € R?~ that satisfies
o BB )

= D.
02~ Oady (D-5)
we have the following Taylor expansion of the decorrelated score function
®
NG Do vn oy  Jn  Oa Vvn oy '
1 82&1(/6*) =~ * WT 82€n(/8*) =~ * 5
+%'W'(’Y—’Y )—%'W'(’Y—’Y ) +R,

(i)
where term (ii) is zero by (D.5). Therefore, we no longer require the asymptotic normality of 4 — ~*.
Also, we will prove that the new remainder term Rin (D.6) is op(1), since 4 has a fast statistical
rate of convergence. Now we only need to find the w that satisfies (D.5). Nevertheless, it is difficult
to calculate the second order derivatives in (D.5), because it is hard to evaluate ¢, (-). According to
(D.1), we use the submatrices of T},(+) to approximate the derivatives in (D.5). Since [Tn(,@)] Yy is
not invertible in high dimensions, we use the Dantzig selector in (2.6) to approximately solve the
linear system in (D.5). Based on this intuition, we can expect that y/n - S, (,@0, )\) is asymptotically
normal, since term (i) in (D.6) is a (rescaled) average of n i.i.d. random variables for which we can

apply the central limit theorem. Besides, we will prove that — [Tn (BO)] oly in (2.7) is a consistent

estimator of \/n - Sy, (Bo, )\) ’s asymptotic variance. Hence, we can expect that the decorrelated score
statistic in (2.7) is asymptotically N (0, 1).

From a high-level perspective, we can view w(ﬁo, A) o, (,@0) /07 in (D.4) as the projection of
oly, (,@0) /O« onto the span of 94, (BO) /0~, where w (,@0, )\) is the projection coefficient. Intuitively,
such a projection guarantees that in (D.4), S, (,@07 )\) is orthogonal (uncorrelated) with 9¢,, (B(]) /07,

i.e., the score function with respect to the nuisance parameter . In this way, the projection corrects
the effects of the high dimensional nuisance parameter. According to this intuition of decorrelation,

we name .S, (ﬁo, )\) as the decorrelated score function.



E Implications for Specific Models: Computation and Estimation

To establish the corresponding results for specific models under the unified framework, we only need
to establish Conditions 3.1-3.3 and determine the key quantities R, v1, 2, v, i,  and €. Recall that
Conditions 3.1 and 3.2 and the models analyzed in our paper are identical to those in [2]. Meanwhile,
note that Conditions 3.1 and 3.2 only involve the population version lower bound function Q(+; -) and
M-step M (-). Since [2] prove that the quantities in Conditions 3.1 and 3.2 are independent of the
dimension d and sample size n, their corresponding results can be directly adapted. To establish the
final results, it still remains to verify Condition 3.3 for each high dimensional latent variable model.
Gaussian Mixture Model: The following lemma, which is proved by [2], verifies Conditions 3.1 and
3.2 for Gaussian mixture model. Recall that o is the standard deviation of each individual Gaussian
distribution within the mixture.
Lemma E.1. Suppose that we have ||3*|2/o > r, where r > 0 is a sufficiently large constant that
denotes the minimum signal-to-noise ratio. There exists some constant C' > 0 such that Conditions
Lipschitz-Gradient-1(y1, B) and Concavity-Smoothness(ji, v, B) hold with
n=exp(~C1?), p=v=1, B={B:|B-F"s< R} with R=r- ||, r = 1/4
(E.1)

Proof. See the proof of Corollary 1 in [2] for details. O

Now we verify Condition 3.3 for the maximization implementation of the M-step (Algorithm 2).

Lemma E.2. For the maximization implementation of the M-step (Algorithm 2), we have that for a
sufficiently large n and B specified in (E.1), Condition Statistical-Error (e, d, s, n, I3) holds with

/log d + log(2/6
e=0C"- (||,6*Hoo +0) . %Og(/). (E.2)

Proof. See §H.4 for a detailed proof. O

The next theorem establishes the implication of Theorem 3.4 for Gaussian mixture model.

Theorem E.3. We consider the maximization implementation of M-step (Algorithm 2). We assume
|B*||2/c > r holds with a sufficiently large » > 0, and B and R are as defined in (E.1). We suppose
the initialization 3" of Algorithm 4 satisfies ||ﬁinit - pB* H2 < R/2. Let the sparsity parameter S be

5=|c" max {16 [exp(C1?) = 1] 7%, 100/9} - 5" (E.3)
with C specified in (E.1) and C’ > 1. Let the total number of iterations 7" in Algorithm 4 be

- Fog{c' R/[AMN(s%) - fiogdfn)] ﬂ |

E4

C-r2/2 EDH

where ASMM (%) = (\/§+ C"Vs*) - (18" ]lsc + 7).

Meanwhile, we suppose the dimension d is sufficiently large such that 7" in (E.4) is upper bounded
by v/d, and the sample size n is sufficiently large such that

O ASMM (%) f % < min{ [1—exp(—C- 7“2/2)]2 -R, 9/40 - ||,3*||2} (E.5)

We have that, with probability at least 1 — 2 - d—1/2, the final estimator E = ,B(T) satisfies
~ . C' - AGMM (g* logd-T
18- 87, < T ~ E6)
1 —exp(—C -12/2) n

Proof. First we plug the quantities in (E.1) and (E.2) into Theorem 3.4. Recall that Theorem 3.4
requires Condition Statistical-Error(e,d/T,s,n/T, B). Thus we need to replace § and n with 6 /T
and n/T in the definition of € in (E.2). Then we set 6 = 2 - d=1/2, Since T is specified in (E.4)
and the dimension d is sufficiently large such that 7' < v/d, we have log[2/(6/T")] < logd in the
definition of €. By (E.3) and (E.5), we can then verify the assumptions in (3.8) and (3.9). Finally, by

plugging in 7" in (E.4) into (3.10) and taking ¢ = 7', we can verify that in (3.9) the optimization error
term is smaller than the statistical error term up to a constant factor. Therefore, we obtain (E.6). [




To see the statistical rate of convergence with respect to s*, d and n, for the moment we assume that
R, 7, ||B*]|co» |3*||2 and o are constants. From (E.3) and (E.4), we obtain § = C - s* and therefore

ACMM(g*) = 7. \/s*, which implies T = C"” - log[C" - \/n/(s* - log d)]. Hence, by (E.6) we

have that, with high probaibility,
| <c. /s ~logd-logn.
2 n

18— 8"

Because the minimax lower bound for estimating an s*-sparse d-dimensional vector is /s* - log d/n,
the rate of convergence in (E.6) is optimal up to a factor of log n. Such a logarithmic factor results
from the resampling scheme in Algorithm 4, since we only utilize n /T samples within each iteration.
We expect that by directly analyzing Algorithm 1 we can eliminate such a logarithmic factor, which
however incurs extra technical complexity for the analysis.

Mixture of Regression Model: The next lemma, proved by [2], verifies Conditions 3.1 and 3.2
for mixture of regression model. Recall that 3* is the regression coefficient and o is the standard
deviation of the Gaussian noise.

Lemma E4. Suppose ||8*||2/c > r, where r > 0 is a sufficiently large constant that
denotes the required minimum signal-to-noise ratio. Conditions Lipschitz-Gradient-1(v1,B),
Lipschitz-Gradient-2(~, B) and Concavity-Smoothness(u, v, ) hold with

7 € (051/2)3 Y2 € (071/4)7 uw=v= 15
B={B:|B-p8"2<R} with R=r-|B"||2, s =1/32. (E.7)

Proof. See the proof of Corollary 3 in [2] for details. O

The following lemma establishes Condition 3.3 for the two implementations of the M-step.
Lemma E.5. For B specified in (E.7), we have the following results.
o For the maximization implementation of the M-step (line 5 of Algorithm 4), we have that Condition
Statistical-Error (e, 0, s, n, B) holds with
log d + log(4/9)
n

e=C [max {83+ 0% 1} +18°]2] (ES)

for sufficiently large sample size n and constant C' > 0.
e For the gradient ascent implementation, Condition Statistical-Error(e, 4, s, n, I3) holds with

. . log d + log(4/6
€:CnmaX{H,6 ||%+0-27 1? \/E.HIB HQ} gﬁg(/)

for sufficiently large sample size n and C' > 0, where 7 denotes the stepsize in Algorithm 3.

(E.9)

Proof. See §H.5 for a detailed proof. O

The next theorem establishes the implication of Theorem 3.4 for mixture of regression model.

Theorem E.6. Let ||3*||2/c > r with r > 0 sufficiently large. Assuming that /5 and R are specified
in (E.7) and the initialization 3™ satisfies ||,6init - B* H2 < R/2, we have the following results.

e For the maximization implementation of the M-step (Algorithm 2), let s and T" be

5= {O-max{lﬁ’ 132/31} ) S*W CT= lrlog{C’.R/[All\/lR(S*) . \/m]}“ |

log v/2
where AMR(s*) = (VE+C7 - Vs*) - [max{”ﬁ*”% +0% 1} + Hﬂ*||2:|, and C > 1.
We suppose d and n are sufficiently large such that 7' < v/d and

C.A%‘R(s*)'\/@<min{(l—l/\/§)2ﬁ 3/8-116° 2

Then with probability at least 1 — 4 - d—1/2, the final estimator B\ = BT satisfies

18-, < 0 YR (st) - BT (E10)



e For the gradient ascent implementation of the M-step (Algorithm 3) with stepsize set to n = 1, let
Sand T be

§=[C - max{16/9, 132/31} -s*], T = Fog{c"R/[A%m(s*) : \/W]}w |

log 2

where AYR(s*) = (VE+C" - Vs¥) -max{||6*\|% +02, 1, V5- ||ﬂ*||2}, and C > 1.
We suppose d and n are sufficiently large such that 7' < v/d and

¢ AN\ BLT < inf Ry, 3751671,

Then with probability at least 1 — 4 - d~'/2, the final estimator B = BT satisfies

~ logd-T
1887, < 0" AYR(s7) - | 22— (E.11)

Proof. The proof is similar to Theorem E.3. O

To understand the intuition of Theorem E.6, we suppose that ||3*||2, o, R and r are constants, which
implies 3 = C - s* and AMF(s*) = O - /s*, AMR(s*) = C"" - s*. Therefore, for the maximization
and gradient ascent implementations of the M-step, we have 7' = C’ - log[n/(s* - logd)] and
T =C" -log{n/[(s*)? - logd]} correspondingly. Hence, by (E.10) in Theorem E.6 we have that,
for the maximization implementation of the M-step,

1B -7, <cC. et el 'logj'log” (E.12)

holds with high probability. Meanwhile, from (E.11) in Theorem E.6 we have that, for the gradient
ascent implementation of the M-step,

1B-8,<C" s \/7logd,'llog" (E.13)

holds with high probability. The statistical rates in (E.12) and (E.13) attain the \/s* - log d/n minimax
lower bound up to factors of v/Tog n and v/s* - log n respectively and are therefore near-optimal. Note
that the statistical rate of convergence attained by the gradient ascent implementation of the M-step is
slower by a \/s* factor than the rate of the maximization implementation. However, our discussion
in §A illustrates that, for mixture of regression model, the gradient ascent implementation does not
involve estimating the inverse covariance of X in (A.4). Hence, the gradient ascent implementation
is more computationally efficient, and is also applicable to the settings in which X has more general
covariance structures.

F Implications for Specific Models: Inference

To establish the high dimensional inference results for each model, we only need to verify Conditions
4.1-4.4 and determine the key quantities (®™, (&, ¢T and ¢". In the following, we focus on Gaussian
mixture and mixture of regression models.

Gaussian Mixture Model: The following lemma verifies Conditions 4.1 and 4.2.
Lemma F.1. We have that Conditions 4.1 and 4.2 hold with

V5 AGMM () logd-T logd
EM _ ] d ¢ = (18w .
¢ 1 —exp(—=C-r?/2) no ¢ (1187l + ) n’

where 3, ASMM (%) ‘- and T are as defined in Theorem E.3.

Proof. See §1.5 for a detailed proof. O

By our discussion that follows Theorem E.3, we have that 5 and ASMM(s*) are of the same order
as s* and v/s* respectively, and T is roughly of the order v/Iog n. Therefore, (®™ is roughly of the
order s* - \/logd/n - log n. The following lemma verifies Condition 4.3 for Gaussian mixture model.



Lemma F.2. We have that Condition 4.3 holds with

1
¢ = (181 +0%) /o -2,

Proof. See §1.6 for a detailed proof. O

The following lemma establishes Condition 4.4 for Gaussian mixture model.
Lemma F.3. We have that Condition 4.4 holds with
2

¢t = (I8*11% +0)*? /o - (logd + logn)*/*.
Proof. See §1.7 for a detailed proof. 0

Equipped with Lemmas F.1-F.3, we establish the inference results for Gaussian mixture model.
Theorem F.4. Under Assumption 4.5, we have that for n — oo, (4.7) holds for Gaussian mixture
model.

In fact, for Gaussian mixture model we can make (4.6) in Assumption 4.5 more transparent by
plugging in (M, ¢, ¢T and ¢" specified above. Particularly, for simplicity we assume all quantities
except sy, s*, d and n are constants. Then we can verify that (4.6) holds if

max{s,, s*}2 (s%)? - (logd)® = o[n/(log n)2] (E1)
According to the discussion following Theorem E.3, we require s* - logd = o(n/logn) for the

estimator ,@ to be consistent. In comparison, (F.1) illustrates that high dimensional inference requires
a higher sample complexity than parameter estimation. In the context of high dimensional generalized
linear models, [26, 32] also observe the same phenomenon.

Mixture of Regression Model: The following lemma verifies Conditions 4.1 and 4.2. Recall that s,
T, AME(s*) and AY™R(s*) are defined in Theorem E.6, while o denotes the standard deviation of
the Gaussian noise in mixture of regression model.

Lemma F.5. We have that Conditions 4.1 and 4.2 hold with
= logd-T log d
G =V AN B ang (6 = max {1813+ 0%, 1 V87 22

where we have AME(s*) = AME(s*) for the maximization implementation of the M-step (Algorithm
2), and AME(s*) = AME(s*) for the gradient ascent implementation of the M-step (Algorithm 3).

Proof. See §1.8 for a detailed proof. O

By our discussion that follows Theorem E.6, we have that § is of the same order as s*. For the
maximization implementation of the M-step (Algorithm 2), we have that AME(s*) = AME(s*) is of
the same order as v/s*. Meanwhile, for the gradient ascent implementation in Algorithm 3, we have
that AMB(s*) = AMR(s*) is of the same order as s*. Hence, (*M is of the order s*-1/log d/n - log n
or (s* )3/ 2. \/m correspondingly, since 7" is roughly of the order v/Iog n. The next lemma
establishes Condition 4.3 for mixture of regression model.

Lemma F.6. We have that Condition 4.3 holds with

logd

¢T = (logn +1logd) - [(logn +logd) - ||8*|1? + 02] /o? -
n

Proof. See §1.9 for a detailed proof. O

The following lemma establishes Condition 4.4 for mixture of regression model.
Lemma F.7. We have that Condition 4.4 holds with

* 3 3
¢t = (IB*[ls + )" - (logn + logd)” /o*.
Proof. See §1.10 for a detailed proof. O

Equipped with Lemmas F.5-F.7, we are now ready to establish the high dimensional inference results
for mixture of regression model.

Theorem F.8. For mixture of regression model, under Assumption 4.5, (4.7) holds as n — oo.



Similar to the discussion that follows Theorem F.4, we can make (4.6) in Assumption 4.5 more
explicit by plugging in (®M, ¢&, ¢T and ¢" specified in Lemmas F.5-F.7. Assuming all quantities
except sy, s*, d and n are constants, we have that (4.6) holds if

max{s},, s*}2 - (s*)* - (log d)® = o[n/(logn)?].
In contrast, for high dimensional estimation, we only require (s*)? - logd = o(n/logn) to ensure
the consistency of 3 by our discussion following Theorem E.6.

G Proof of Main Results

We lay out a proof sketch of the main theory. First we prove the results in Theorem 3.4 for parameter
estimation and computation. Then we establish the results in Theorem 4.6 for inference.

G.1 Proof of Results for Computation and Estimation

Proof of Theorem 3.4: First we introduce some notations. Recall that the trunc(-, ) function is
defined in (2.3). We define 3(t10-5) g(t+1) ¢ Rd 45

B(t+0.5) _ M(,@(t))’ B(t+1) _ trunc(ﬁ(t+0'5),§(t+0'5)). (G.1)
As defined in (3.1) or (3.2), M (-) is the population version M-step with the maximization or gradient

B§t+0.5) .

ascent implementation. Here S(t+0:5) denotes the set of index Jj’s with the top s largest ]

It is worth noting S(+9-5) s calculated based on 303 in the truncation step (line 6 of Algorithm
4), rather than based on 8(*+9-5) defined in (G.1).

Our goal is to characterize the relationship between ||3(+1) — 3 , and |18 — B ,- According
to the definition of the truncation step (line 6 of Algorithm 4) and triangle inequality, we have

||5(t+1) _ 5*| = Htrunc(ﬁ<t+0'5),g(t+0‘5)) _g 2
trunc(8+09), §UH05)) _ trunc(BHH+0-5) §(t+0-9)) H n
2

trunc(ﬂ(t+0.5)’§(t+0.5)) _ trunC(B(t+0.5),§(t+0.5)) H n HB(H—U — 8.,
2 S————

< trunc(,@(t+0'5),§(t+0‘5)) o 5*

2
(G.2)

b @
where the last equality is obtained from (G.1). According to the definition of the trunc(-, -) function
in (2.3), the two terms within term (i) both have support S (t+0.5) with cardinality 5. Thus, we have

trunc(ﬂ(t+0'5),8(t+0'5)) _ trunc(ﬁ(t+0'5),8(t+o'5))HQ _ H(I@(t+o.5) _ B(t+o.5))§(t+0.5) i
< \/§ H (ﬁ(t+0'5) - B(t+0'5))§(t+0.5) o

<3 ||5(t+0.5) _ B(t+o.5)H .
- oo
(G.3)
Since we have B(+0%) = M, (B®) and B0 = M (B®), we can further establish an upper
bound for the right-hand side by invoking Condition 3.3.
Our subsequent proof will establish an upper bound for term (ii) in (G.2) in two steps. We first
characterize the relationship between || B+ — 3* H , and I Bt+0:5) _ 3* H2 and then the relationship
between || 305 — 3%|| and ||3) — B3*|,. The next lemma accomplishes the first step. Recall
that s is the sparsity parameter in Algorithm 4, while s* is the sparsity level of the true parameter 3*.

Lemma G.1. Suppose that we have
|BUHOD — 7|, < k- 1872 G4
for some € (0,1). Assuming that we have

4-(1+5) .s*, and V3 Hﬁ(t+0.5) _ B(t+0.5)|| < (1-r)?

$z (1-k)? © = 2-(1+k)

1872, (G5



then it holds that

1B =8, <

- 3; ||B+0) — Ble+0)

N 1 TR B0 - g,

(G.6)

Proof. The proof is based on fine-grained analysis of the relationship between S(t+0-5) and the true
support S*. In particular, we focus on three index sets, namely, Z; = S* \§(t+0.5) T, = S*NS(t+0.5)
and Z3 = S(t+0.5) \ S*. Among them, Z, characterizes the similarity between St+0.5) and S*, while
T, and 73 characterize their difference. The key proof strategy is to represent the three distances in
(G.6) with the £5-norms of the restrictions of 3(T0-5) and B* on the three index sets. In particular, we
focus on HB%JrOﬁ) |, and || 83,
characterization for the absolute values of 3(!10-5)°s entries that are selected and eliminated within
the truncation operation B¢+1) «— trunc(8(+05), g(”O‘S)). See §H.1 for a detailed proof. O

|2. In order to quantify these ¢>-norms, we establish a fine-grained

Lemma G.1 is central to the proof of Theorem 3.4. In detail, the assumption in (G.4) guarantees
B(+0-5) is within the basin of attraction. In (G.5), the first assumption ensures the sparsity parameter
Sin Algorithm 4 is set to be sufficiently large, while second ensures the statistical error is sufficiently
small. These assumptions will be verified in the proof of Theorem 3.4. The intuition behind (G.6)
is as follows. Let St*0%) = supp(B(+9-5) 5), where supp(-, -) is defined in (2.2). By triangle
inequality, the left-hand side of (G.6) satisfies

||B(t+1) B ﬁ*Hz < HB(t-{-l) _ trunc(/@(t+0.5)’g(t+0.5))H I Htrunc(B“*Of’),3(t+°-5)) e
2

) .

(i) (ii)
(G.7)

Intuitively, the two terms on right-hand side of (G.6) reflect terms (i) and (ii) in (G.7) correspondingly.
In detail, for term (i) in (G.7), recall that according to (G.1) and line 6 of Algorithm 4 we have

B(t+1) _ trunC(B(HO.E)),§(t+0.5))’ where §(t+0.5) _ supp(,@<t+0'5),§).

As the sample size n is sufficiently large, 8105 and B(+9%) are close, since they are at-
tained by the population version and sample version M-steps correspondingly. Hence, S(*10-5) =
supp (B(4+09),5) and St+05) — qupp (B(+9-5) 3) should be similar. Thus, in term (i), B¢+1) =
trunc(B+0-5), §(t+0'5)) should be close to trunc(B(+0-5), SE+0-5)) up to some statistical error,
which is reflected by the first term on the right-hand side of (G.6).
Also, we turn to quantify the relationship between HB (t+0.5) _ g+

|, in (G.6) and term (ii) in (G.7).
The truncation in term (ii) preserves the top § coordinates of (195 with the largest magnitudes
while setting others to zero. Intuitively speaking, the truncation incurs additional error to 3(#10-5)°g
distance to 3*. Meanwhile, note that when B(t+0'5) is close to 3%, S(#+0.5) is similar to S*. Therefore,
the incurred error can be controlled, because the truncation does not eliminate many relevant entries.
In particular, as shown in the second term on the right-hand side of (G.6), such incurred error decays
as s increases, since in this case § (t+0.5) includes more entries. According to the discussion for term
(i) in (G.7), S®+0-5) is similar to S®+0-5), which implies that S**+0-5) should also cover more entries.
Thus, fewer relevant entries are wrongly eliminated by the truncation and hence the incurred error is
smaller. The extreme case is that, when s — oo, term (ii) in (G.7) becomes HB(HM) — B*| o which
indicates that no additional error is incurred by the truncation. Correspondingly, the second term on
the right-hand side of (G.6) also becomes ||3(+0-5) — 3* ||2

Next, we turn to characterize the relationship between HB(“’M) — B |2 and H,B(t) - B ,- Recall

B9 = M (B®) is defined in (G.1). The next lemma, which is adapted from Theorems 1 and 3 in
[2], characterizes the contraction property of the population version M-step defined in (3.1) or (3.2).

Lemma G.2. Under the assumptions of Theorem 3.4, the following results hold for 3" € B.
e For the maximization implementation of the M-step (Algorithm 2), we have

1B — 7|, < (n/v) - |BY — B

(G.8)
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e For the gradient ascent implementation of the M-step (Algorithm 3), we have

B g, < (1-2- L2 g0 g

Here 71, 2, 1t and v are defined in Conditions 3.1 and 3.2.

(G.9)

9"

Proof. The proof strategy is to first characterize the M-step using Q(+; 3*). According to Condition
Concavity-Smoothness(u, v, B), —Q(+; 3*) is v-strongly convex and p-smooth, and thus enjoys
desired optimization guarantees. Then Condition Lipschitz-Gradient-1(~,, B) or Lipschitz-Gradient-

2(v2, B) is invoked to characterize the difference between Q(+; 3*) and Q(~; ﬂ(t)). We provide the
proof in §H.2 for the sake of completeness. O

Equipped with Lemmas G.1 and G.2, we are now ready to prove Theorem 3.4.

Proof. To unify the subsequent proof for the maximization and gradient implementations of the
M-step, we employ p € (0,1) to denote p; := 71 /vin (G.8)orpy :=1—2- (v —v2)/(v+ p)in
(G.9). In the following we stick to the former one to avoid confusion. The proof for the letter one is

exactly the same. By the definitions of 8(+0-5) and B(*+0-5) in (G.1) and Algorithm 4, Condition
Statistical-Error(e,0/T,5,n/T, B) implies

509 = B0 = ||ty (8) - (8Y)| <
holds with probability at least 1 — 6/7". Then by taking union bound we h;)/e that, the event
&= {y|ﬂ<t+0<5) — B <e, forallt € {0,...,T - 1}} (G.10)
occurs with probability at least 1 — §. Conditioning on &, in the following we prove that
6 - ), « WEECONVIZRVE) 1y e 50 _ g
—Vp

, < |, forallte{l,...,T}

(G.11)
by mathematical induction.
Before we lay out the proof, we first prove 8(°) € B. Recall 3™t is the initialization of Algorithm 4
and R is the radius of the basin of attraction 3. By the assumption of Theorem 3.4, we have
|8™ = B*||, < R/2. (G.12)

Therefore, (G.12) implies || 3™ — 3%||, < x - [|3*||2 since R = - ||3*||2. Invoking the auxiliary

result in Lemma H.1, we obtain

HI@(O)_IB* |2S(1+4 /S*/:S\)l/QHﬂlmt_,@* 2§(1+4 /1/4)1/2R/2<R (G.13)
Here the second inequality is from (G.12) as well as the assumption in (3.8), which implies s* /5 <
(1-k)%/[4- (1 + K)?] < 1/4. Thus, (G.13) implies 3(*) € B. In the sequel, we prove that (G.11)
holds for ¢ = 1. By invoking Lemma G.2 and setting ¢ = 0 in (G.8), we obtain

18O — ||, < p-|BY =8|, <p R<R=k-]B"]2,
where the second inequality is from (G.13). Hence, the assumption in (G.4) of Lemma G.1 holds for
3(%-5)  Furthermore, by the assumptions in (3.8) and (3.9) of Theorem 3.4, we can also verify that the
assumptions in (G.5) of Lemma G.1 hold conditioning on the event £ defined in (G.10). By invoking
Lemma G.1 we have that (G.6) holds for ¢ = 0. Further plugging ||3(F0%) — g+0-5)|| < ¢in
(G.10) into (G.6) with t = 0, we obtain

_ . C-s* T\ 1/2 13(0. "
1BY — 7|, < et (L5 R) B0 - 87l (G.14)
Setting t = 0 in (G.8) of Lemma G.2 and then plugging (G.8) into (G.14), we obtain
_ C - +/s*
1BY - B7|, < \g-e+(1+4-\/8*/§)1/2-p~Hﬂ(o)—,@* N (G.15)

27 J1—-&



For ¢ = 0, plugging (G.3) into term (i) in (G.2), and (G.15) into term (ii) in (G.2), and then applying
|B(+0-5) — BUF05)|| < ¢ with ¢t = 0 in (G.10), we obtain

= = C-Vs =
89 3], < VE- 809~ B0+ S et (14 TR 80

< (Va+CIVI—k V) e+ (1+4-/s775)"% p. || B? - 7]

By our assumption that 5 > 16 - (1/p — 1)72 - s* in (3.8), we have (1 +4 - \/s*/§)1/2 <1/\/pin
(G.16). Hence, from (G.16) we obtain

8% 8], < (V+ CVT=R V) e 5 |80 - 5
which implies that (G.11) holds for ¢ = 1, since we have 1 — /p < 1in (G.11).
Suppose we have that (G.11) holds for some ¢ > 1. By (G.11) we have

SO/ =R -
a0 - ), < LRIy e g0 - g

<(1-yp) -R+p-R=R, (G.18)

where the second inequality is from (G.13) and our assumption (\/? +C/V1—k- \/s>*) e <
(1- \/5)2 - R in (3.9). Therefore, by (G.18) we have 8(*) € B. Then (G.8) in Lemma G.2 implies

1B = B*ll, < p- |8V = B[, < p- B < R=r- 11872,
where the third inequality is from p € (0, 1). Following the same proof for (G.17), we obtain

8 = 5], < (Vi+ ONVT=rVE) e v 09— 7],

< (1+ 1 ﬁ\/ﬁ) (VE+CINT—K-Vs) e+ /p-pt?-||BO - B*

_ (\/g-i-C/\/l —/{-\/ST‘) € +p(t+1)/2 . H,@(O) g

=0

Here the second inequality is obtained by plugging in (G.11) for ¢. Hence we have that (G.11) holds
for t 4+ 1. By induction, we conclude that (G.11) holds conditioning on the event £ defined in (G.10),
which occurs with probability at least 1 — §. By plugging the specific definitions of p into (G.11),
and applying ||3(”) — 8|, < Rin (G.13) to the right-hand side of (G.11), we obtain (3.10). The
results of the gradient descent implementation follows from the same proof with p = ps. O

,- (G.16)

l,» (G.17)

2
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G.2 Proof of Results for Inference

Proof of Theorem 4.6: We establish the asymptotic normality of the decorrelated score statistic
defined in (2.7) in two steps. We first prove the asymptotic normality of v/n - Sy, (ﬁm A), where 3y is

defined in (2.7) and S, (-, -) is defined in (2.5). Then we prove that — [T, (30)] , defined in (2.7)

al
is a consistent estimator of \/n - S, ([)’0, )\) ’s asymptotic variance. The next lemma accomplishes
the first step. Recall I(8*) = —Eg- [V2£,,(8*)] /n is the Fisher information for £,,(3*) defined in

(B.3).
Lemma G.3. Under the assumptions of Theorem 4.6, we have that for n — oo,
~ D .
\/ﬁ : Sn (ﬁ07 >\) — N(Oa [I(IB )]ah,)v

where [1(3*)] , is defined in (4.2).

al

Proof. Our proof consists of two steps. Note that by the definition in (2.5) we have
Vn - Sn(ﬁoJ\) =n- [VlQn(ao;Bo)]a - \/ﬁ'w(ﬁoJ\)T ' [VlQn(Bo;ﬁo)L- (G.19)

Recall that w* = [I(ﬁ*)];{y . [I(ﬁ*)]%

\/ﬁ ! Sn(/é\Oa /\) = \/ﬁ [len(ﬁ*wg*)]a - \/;7' (W*)T : [VlQn(ﬁ*ng*)],Y + O]P’(]-)' (GZO)

,, 1s defined in (4.1). At the first step, we prove



In other words, replacing Eo and w (,@0, )\) in (G.19) with the corresponding population quantities 3*
and w* only introduces an op(1) error term. Meanwhile, by Theorem D.1 we have V1 Q,,(8*; 8*) =
V4, (8*)/n. Recall that £,,(+) is the log-likelihood defined in (B.3), which implies that in (G.20)

Vi [ViQu(B8%:8%)], — V- (W) [ViQu(8*: 8], = Vi [L—(w") '] - Vi, (8%)/n
is a (rescaled) average of n i.i.d. random variables. At the second step, we calculate the mean and

variance of each term within this average and invoke the central limit theorem. Finally we combine
these two steps by invoking Slutsky’s theorem. See §1.3 for a detailed proof. O

The next lemma establishes the consistency of — [Tn (,@0)] ol for estimating [ I (,3*)] ol Recall that
[Tn (,@0)] oy € R and [I(ﬁ*)] aly € R are defined in (2.7) and (4.2) respectively.
Lemma G.4. Under the assumptions of Theorem 4.6, we have

[T (Bo)] ., + [1(8")],,., = op(1). G.21)

aly aly =
Proof. For notational simplicity, we abbreviate w (BO, )\) in the definition of [Tn (ﬁo)]
(2.7) and (4.3), we have

[70(B0)] oy = (1. —%9) - Tu(Bo) - (L—%0) ", [1(87)],,,

First, we establish the relationship between wy and w* by analyzing the Dantzig selector in (2.6).
Meanwhile, by Theorem D.1 we have Eg- [T,,(3*)] = —I(8"). Then by triangle inequality we have

T,.(Bo) +1(8")| < |Tu(Bo) = T(8")| +|T(8") — Es- [1.(8") |.

() (i)
We prove term (i) is op(1) by quantifying the Lipschitz continuity of T, (-) using Condition 4.4. We
then prove term (ii) is 0p(1) by concentration analysis. Together with the result on the relationship
between Wy and w* we establish (G.21). See §1.4 for a detailed proof. O

as wy. B
aly 0- BY

< +

Combining Lemmas G.3 and G.4 using Slutsky’s theorem, we obtain Theorem 4.6.

H Proof of Results for Computation and Estimation

We provide the detailed proof of the main results in §3 for computation and parameter estimation. We
first lay out the proof for the general framework, and then the proof for specific models.

H.1 Proof of Lemma G.1

Proof. Recall 3(+10-5) and B(*+1) are defined in (G.1). Note that in (G.4) of Lemma G.1 we assume
[BEF0D) — B*[|, < k- (182, (H.1)
which implies
(1 =r)- 82 < |BOD, < (4 5) - 1872 (H2)
For notational simplicity, we define
6 — B(t+0.5)/HB(H-O,E))H27 0 — B(t+o.5)/HB(t+0.5)H27 and 0° = 3 /|18" 2. (H.3)

Ngte that @ and 6* are unit vectors, while € is not, since it is obtained by normalizing ﬁ(t+0'5) with
||,6(t+0‘5) ||2 Recall that the supp(-, -) function is defined in (2.2). Hence we have

supp(6*) = supp(8*) = S*, and supp(8,3) = supp(B0?)5) = U (H4)
where the last equality follows from line 6 of Algorithm 4. To ease the notation, we define
I, =8\ 809 T, = §* NS5 and Ty = SEH0P)\ §* (H.5)

Let 51 = |Z1], s2 = |Z2| and s3 = |Z3]| correspondingly. Also, we define A = (6, 6*). Note that

A=(0.0)=2 0;-0;=7 0;-0;+ 0;-0;<[0z]], 6%, + 0z, [|6%]],
JES* J€TL JEL>

= [L=(w" "] 1(8%) - [1,—(w")T]

T



Here the first equality is from supp(0*) = S*, the second equality is from (H.5) and the last inequality
is from Cauchy-Schwarz inequality. Furthermore, from (H.6) we have

_ _ 2
A% < (|02l - (16,1, + 19211, - 6.,

— 2 2 = 2 2
< |lBz, ;- ( ) 1Bz 3 ( .)
= 2 = 2
=[0I, + |6z,
<1-|0z> (H.7)
To obtain the second inequality, we expand the square and apply 2ab < a? + b2. In the equality and
the last inequality of (H.7), we use the fact that 8* and 6 are both unit vectors.

By (2.2) and (H.4), S(t+0:5) contains the index j’s with the top s largest |ﬂ§t+o'5) ‘ ’s. Therefore, we
have

2 2
2+ 2+

*
011

*
022

* *
021 612

. 5)\ 2 5\ 2 .
1857z _ e, (57 | Tien (8"7)° _ 118571

(H.8)

S3 53 S1 S1

because from (H.5) we have Z5 C g(t"’o'f) and Z; N St+0-%) = (). Taking square roots of both
sides of (H.8) and then dividing them by H,@ (t+0.5) H2 (which is nonzero according to (H.2)), by the
definition of 8 in (H.3) we obtain

6zl _ Lo,
NI
Equipped with (H.9), we now quantify the relationship between Héfs
simplicity, let

(H.9)

and ||6z,]|,. For notational

I I

€=2-]8 0| =2-[|B"0 = g /B, (H.10)
Note that we have
Hgfs _ 913"2 ||911 — éIlHQ
max{ NG , N
which implies
H013H2 > HGIBHQ _ H913 _013H2 > HGZIHQ _ H913 _OI3H2

b < mon,~3n. Jos, 321, } < - ol =772

NN NIV N
o 6zl 16z —Onlly  [1Or —Oxll, | l6nll, . gy
Ve N N NG

where second inequality is obtained from (H.9), while the first and third are from triangle inequality.
Plugging (H.11) into (H.7), we obtain

_ _ 2
A <1- 0n[ly <1 - (Vsfsi - [0z, - Vs ) -

Since by definition we have A = (8,0*) € [—1,1], solving for |6z,
yields

H2 in the above inequality

102, ||, < Vs1/s3- V1= A2+ fs1- €< \/s*/5- /1= A2+ V/s* € (H.12)
Here we employ the fact that 1 < s* and s1/s3 < (81 + s2)/(83 + $2) = s* /8, which follows from
(H.5) and our assumption in (G.5) that s* /5 < (1 — k)2 /[4- (1 + k)?] < 1.
In the following, we prove that the right-hand side of (H.12) is upper bounded by A, i.e.,

Vs )5 /1= A2+ /s E<A. (H.13)
We can verify that a sufficient condition for (H.13) to hold is that
Vo Tt [ @ = (s34 1) (552 — 57/5)]
s*/s+1

VE - [ (D (/5 ) (57/3)

= H.14
/541 ’ ( )

A>




which is obtained by solving for A in (H.13). When we are solving for A in (H.13), we use the fact
that v/s* - € < A, which holds because
11—k

N HB(t+O.5) — Bt+0.5)
*. < V5-e=2- _ ® < < A. H.15
Vst e<V5 e H,@(HO'F’)HQ ST7s S ( )
The first inequality is from our assumption in (G.5) that s* /5 < (1 — k)?/[4- (1 + k)?] < 1. The
equality is from the definition of € in (H.10). The second inequality follows from our assumption in
(G.5) that

~ 5 2 1- 2 *
VR [lp00 o < LT e,

and the first inequality in (H.2). To prove the last inequality in (H.15), we note that (H.1) implies
a 2 * 2 . * 2 . * 2 *
B + 1187115 — 2+ (B, 87) = [|[BUH — 87, < &% - 18713
This together with (H.3) implies

(309,87 B2+ 1813~ 18IS

A=(0,0") = — > 2
< > Hﬁ(t+0.5)”2,”5*”2 2,Hﬁ(t+0.0) 2,“5*”2
(1-r)2+1-r* 1-k
= 2-(1+k) 14k (H.16)

where in the second inequality we use both sides of (H.2). In summary, we have that (H.15) holds.
Now we verify that (H.14) holds. By (H.15) we have

Vie< 1%: <1< =195
which implies € < v/s* + 3, /5. For the right-hand side of (H.14) we have
Ve T4 [=(s- )25+ (/5 + 1) - (s2/3)]° Ve [(s7/541) - (s*/3)]"
s*/s+1 - s*/5+1
<2-4/s%/(s*+39), H.17)
where the last inequality is obtained by plugging in € < v/s* + 5, /5. Meanwhile, note that we have
s*/(s*+35)<2- \/1/[1 +4-(1+k)2/(1-k)?] <(1-r)/(1+£K) <A, (HI8)

where the first inequality is from our assumption in (G.5) that s* /5 < (1 — k)?/[4 - (1 + «)?], while
the last inequality is from (H.16). Combining (H.17) and (H.18), we then obtain (H.14). By (H.14)
we further establish (H.13), i.e., the right-hand side of (H.12) is upper bounded by A, which implies

16z, ]|, < A. (H.19)

Furthermore, according to (H.6) we have
n * n * ya) * n 2 * 2
A <ozl (05,1, + 8zl 101, < 62,1, 0511, + v/t — 82,15 - /1~ Jl03, I
(H.20)
where in the last inequality we use the fact 8* and 0 are unit vectors. Now we solve for ‘ 07,1, in

(H.20). According to (H.19) and the fact that ||07 ||, < ||6*||2 = 1, on the right-hand side of (H.20)
05 ]2 < Héll < A. Thus, we have

we have [[0z,], - | I

_ 2 _
(A= 10zl,-l16z,1,)" < (1= 118=13) - (1 = 165, 1)-
Further by solving for ||63,
163,11, < 18z, ]|, - A+ /1~ |8, |3 - V1 - A2 < |8z, |, + VI - A?
< (14 Vs7/3) - V1I- A2+ Vs g

(H21)

, in the above inequality, we obtain

*
011




where in the second inequality we use the fact that A < 1, which follows from its definition, while in
the last inequality we plug in (H.12). Then combining (H.12) and (H.21), we obtain

102,11, - 05,1, < [ V575 V1= 824V 2] - [(1+ V/57/5) - V1= A2+ Vs 2],

(H.22)

Note that by (G.1) and the definition of 0 in (H.3), we have
B(t+1) _ trunc(ﬁ(t+0'5),§(t+0'5)) _ trunc(9,§(t+0'5)) . HB(t+0.5)H2.
Therefore, we have

(B B /1812) = (trunc(8, S+02),0") = (9z,,63,) = (9,0") ~ (1,65,

> (6,67) =6z,
where the second and third equalities follow from (H.5). Let ¥ = HB(HO'S) 5 * 187 ||2- Plugging

(H.22) into the right-hand side of the above inequality and then multiplying ¥ on both sides, we
obtain

(B, ") (H.23)
> <B(t+0.5)”8*>

— Vo VR A= 2 + Vs VR [+ V) VR = A+ Ve VR -]
= (B9, 8) — (Vs[5 +57/5) - x - (1 - A%

—(142-V5/3) - VX - (L= A%) Vs - X e (Vs - /X9

Q] (i)

For term (i) in (H.23), note that /1 — A2 < \/2 (1 = A). By (H.3) and the definition that A =
<§, 0*>, for term (i) we have

VI (T- A3 < V23 (L-A) < (/2. |BU+09)]|, - 8]l — 2- (BU+09), B+)  (H.24)

< \/Hﬁ(t+o.5)|‘2 + ||3*H§ _92. <B(t+0.5)7ﬂ*> _ HB(tJro.s) _
For term (ii) in (H.23), by the definition of € in (H.10) we have

\/i,g: \/HB(HO.E))HQ . ||,3*||2 .9 HB(t-‘rOﬁ) N ﬁ(t+0.5)H /||B(t+0.5)||2
—9. HB(t+0.5) _ I@(t+0 5) \/||,3 H2/Hﬁ(t+o 5)H2 Hﬁ(t+0 5) _ I@(t+0.5) H

(H.25)
where the last inequality is obtained from (H.2). Plugging (H.24) and (H.25) into (H.23), we obtain
<B(t+1)’ﬁ*> > <B(t+0‘5)”6*> B ( s*/§+ s*/§) . ||B(t+0.5) . 5*H§ (H.26)
S\ (1B, 2.V a4, .
— (142 /57 /3) - ||BUHOD — g, - — |BUH0S) — glt+05) |
4-s*

o HI@(HO 5) ﬁ(t+0.5)H2 )
— K oo

Meanwhile, according to (G.1) we have that B(**1) is obtained by truncating 8(¢+0-5) which implies

IBEHD|S+ 18413 < [|BUHOD[S + 1187113 (H.27)
Subtracting two times both sides of (H.26) from (H.27), we obtain
2

1B = 872 < (1+2- /57 /5 +2-57/5) - |BEOD) — 87|
4-s* = _
1+2- 2 Ve ||1gtt0.5) _ g(t+0.5)

425 f5) (1P p

8- s* 2
4205 — Hﬁ(t+0 .5) ﬁ(t+0.5)H

o B2 — Bl

oo’



We can easily verify that the above inequality implies

||B(t+1 s H (1+2 /7/s+2 s /s) HB(tJro.s) 75*”2+ 2 s; ) HB(HO'S) *ﬁ(HO'S)Hoo

8- s*

+22 Hﬁ(t—i-o 5) ﬁ(t+o.5) H2
1 oo
Taking square roots of both sides and utilizing the fact that v/a? + b2 < a + b (a,b > 0), we obtain
B0 =l < (1+4- V5 3) - B - g, (H.28)
Lﬁ .| 3(t4+0.5) _ 2(t4+0.5)
+ JI—r 1B B ||oo’

where C' > 0 is an constant. Here we utilize the fact that s* /5 < \/s* /5 and

14+2-y/s/5+2-5%/5<5,
both of which follow from our assumption that s*/5 < (1 — k)?/[4- (1 + k)?] < 1in (G.5). By
(H.28) we conclude the proof of Lemma G.1. O

H.2 Proof of Lemma G.2

In the following, we prove (G.8) and (G.9) for the maximization and gradient ascent implementation
of the M-step correspondingly.

Proof of (G.8): To prove (G.8) for the maximization implementation of the M-step (Algorithm 2),
note that by the self-consistency property [18] we have

8" = argmax Q(8:6). (H.29)

Hence, 3* satisfies the following first-order optimality condition

(B—B",V1Q(B*;8%)) <0, forall 8,

where V1Q(, -) denotes the gradient taken with respect to the first variable. In particular, it implies

(BUH0D) — g*,v,Q(87; 8%)) < (H.30)
Meanwhile, by (G.1) and the definition of M (-) in (3.1), we have

BUHO?) = M(BW) = argmax Q(B3; B).
B
Hence we have the following first-order optimality condition

<ﬂ _ B(t+0'5)a le(B(H—O.ES); ﬂ(t))> <0, forallB,

which implies

<ﬁ ﬁt+0 5) v Q(/@ (t40.5). ,B(t )> S 0. (H.31)
Combining (H.30) and (H.31), we then obtain

<ﬁ* _ B(t+0.5)’ —le(ﬁ*,,B*)> < </@* _ B(H—O.S)7 _le(B(H—O.S);16(75))>7

which implies
(8" = BUHD,v1Q (B 87) — V1Q(8%: 8Y))

< (B = BUTD v1Q(BUT); B7) — viQ(BUH); B1)). (H.32)
In the following, we establish upper and lower bounds for both sides of (H.32) correspondingly. By
applying Condition Lipschitz-Gradient-1(~1, B), for the right-hand side of (H.32) we have

<ﬁ ﬁ t+0 5) v Q(I@ t+05 /8 ) v Q(ﬁ t+05 IB(t )>
< ||,3 _ B++05) Hz ) Hle B t+0.5);ﬂ*) _ le(ﬁ(t+0.5);ﬁ(t))H2
<87 - B9, 6" - p

(H.33)



where the last inequality is from (3.3). Meanwhile, for the left-hand side of (H.32), we have

Q(B(Ho.g));ﬁ*) < Q(B*;8°) + <V1Q(5*;ﬁ ), ﬁ(t+0 5) > V)2 ||5 (t+0.5) 5*”;,
(H.34)

Q(B%8%) < QB 8%) + (V,1Q(BU0Y; %), 87 — BHHOD) — /2. || B0 — g2
(H.35)

by (3.6) in Condition Concavity-Smoothness(u, v, B). By adding (H.34) and (H.35), we obtain

U ||B(t+0.5) e z < <ﬁ* . B(HO‘S)aVlQ(B(t+O'5);ﬁ*) . V1Q(ﬁ*;,3*)>. (H.36)
Plugging (H.33) and (H.36) into (H.32), we obtain
v ||BUOS =B < - |87 = BUOD, - 87— B,
which implies (G.8) in Lemma G.2.

Proof of (G.9): We turn to prove (G.9). The self-consistency property in (H.29) implies that 3* is
the maximizer of Q(+; 3*). Furthermore, (3.5) and (3.6) in Condition Concavity-Smoothness(y, v, B)
ensure that —Q(+; 3*) is u-smooth and v-strongly convex. By invoking standard optimization results
for minimizing strongly convex and smooth objective functions, e.g., in [21], for stepsize n =
2/(v + u), we have

|89 40 w1082 8%) 5|, < (1) 1189 =8l (H.37)

i.e., the gradient ascent step decreases the distance to 3* by a multiplicative factor. Hence, for the
gradient ascent implementation of the M-step, i.e., M (-) defined in (3.2), we have

HB(t+o.5) -, = HM(ﬁ(t)) _

2

= H,@(t) +1-V1Q(8Y:89) - 8|
< |89 40 viQ(BY:8) = 87| +n-||V1@(8":87) - V1@ (8" 8)||

<(5) 180 =l bz 89 - 7 (H.38)

where the last inequality is from (H.37) and (3.4) in Condition Lipschitz-Gradient-2(y2, B). Plugging
n = 2/(v + u) into (H.38), we obtain

2(t+0.5 . p—v+2-y .
|BE0 — ||, < (#) 189 =87,

which implies (G.9). Thus, we conclude the proof of Lemma G.2.

H.3 Auxiliary Lemma for Proving Theorem 3.4

The following lemma characterizes the initialization step in line 2 of Algorithm 4.
Lemma H.1. Suppose that we have || 3™ — 3% ||, < k- [|8*||2 for some « € (0,1). Assuming that

§>4-(1+k)?/(1—k)?-s*, wehave |3 — 8|, < (1+4- /s )1/2 8™ — B,

Proof. Following the same proof of Lemma G.1 with both 3(:+0-5) and 3(#+0-5) replaced with 3™,
B+ replaced with 3(°) and S(+9-5) replaced with S™t, we reach the conclusion. O

H.4 Proof of Lemma E.2

Proof. Recall that Q(+; -) is the expectation of @y, (; ). According to (A.2) and (3.1), we have
M(B) =E[2- wp(Y) Y ~ Y]
with wg(-) being the weight function defined in (A.2), which together with (A.3) implies

n

M, (B) — M(B) = %Z[Q'Wﬁ(}’i) —1] -y —E{[ng(Y) —1] ~Y}. (H.39)

i=1



Recall y; is the i-th realization of Y, which follows the mixture distribution. For any u > 0, we have

E{exp|u- [,(8) - M) ] } =B{ _max explu-|[Ma(8) - M(B)], ||}

< Sk fow [u- M8 - 8N []}. o)

Based on (H.39), we apply the symmetrization result in Lemma J.4 to the right-hand side of (H.40).
Then we have

E{exp[u-[[M.8) - M(B)]] } < ém{exp [u : ’i ig (2 walys) — 1] iy
’ (H.41)

where &1, . .., &, are i.i.d. Rademacher random variables that are independent of y1, ..., y,. Then
we invoke the contraction result in Lemma J.5 by setting

fig) =g, F=A{f} wi(v)=[2-ws(yi) —1] v, and ¢(v) = exp(u-v),
where w is the variable of the moment generating function in (H.40). From the definition of wg(-) in

(A.2) we have |2 - wg(y;) — 1| < 1, which implies
o) = i (0)] < |[2- waly) = 1] - (0 =)

<|v—=12'|, forallv,v' €R.
Therefore, by Lemma J.5 we obtain

E{QXP{U' ‘i;fz 2 waly:) — 1] y”}} S]E{GXP[Q'U' ‘;;Ezy” ]} (H.42)

for the right-hand side of (H.41), where j € {1, ..., d}. Here note that in Gaussian mixture model we
have y; ; = 7z - BJ*» +v;, j, where z; is a Rademacher random variable and v; ; ~ N (0, 02). Therefore,
according to Example 5.8 in [28] we have [|2; - 5 ||y, < |3} | and ||v; j[|y, < C-o. Hence by Lemma
J.1 we have

lwislles = l12- 85 il <C\IBiP +C7-0? < - VIBT 02,

Since [&; - yi ;| = |i.j]- & - yi,; and y; ; have the same 1p5-norm. Because ; is a Rademacher random
variable independent of y; ;, we have E(&; - y; ;) = 0. By Lemma 5.5 in [28], we obtain
Elexp(u’ - & - yi ;)] < exp [(u’)2 - (IB*1% +C" 02)}, forall u’ € R. (H.43)

Hence, for the right-hand side of (H.42) we have

E{exp{%u- i;@ “Yi g }} S]E(max{exp[?-u- %Z{z -yw-], exp{—?-u- i;{z y”] })

=1
1 & 1 &
< E{exp[2~w g;& -yi,J} } +E{eXp[—2~u- E;& -ym] }
§2~exp[0~u2~(||ﬁ*\\§o+c’~az)/n] (H.44)

Here the last inequality is obtained by plugging (H.43) with ' = 2 - u/n and v/ = -2 - u/n
respectively into the two terms. Plugging (H.44) into (H.42) and then into (H.41), we obtain

E {exp [u |M,(8) M(ﬁ)”oo]} <2.d-exp [C w?- (|85 + C - 0—2)/74.
By Chernoff bound we have that, for all w > 0 and v > 0,
B[||2(8) - M(B)||, > v] < E{exp[u | Ma(8) - M(B)| ] } /explu-v)
< 2-exp[o-u2 (18 11% +c’-a2)/n—u-v+1ogd].
Minimizing the right-hand side over u we obtain

]PMMn(ﬂ) -M@B)||_ > v} <2 eXp{—n . vz/[él C- (B2 + O 02)}+10gd}.



Setting the right-hand side to be §, we have that

logd + log(2/6 [logd + log(2/6
U:C(||,6*Hgo+0/0'2)1/2 0g +n0g( / ) SC”(”ﬁ*”oo‘i’O') 0g +n0g( /)

holds for some constants C, C’ and C”, which completes the proof of Lemma E.2. O

H.5 Proof of Lemma E.5

In the sequel, we first establish the result for the maximization implementation of the M-step and
then for the gradient ascent implementation.

Maximization Implementation: For the maximization implementation we need to estimate the
inverse covariance matrix ®* = X~ with the CLIME estimator ® defined in (A.7). The following
lemma from [7] quantifies the statistical rate of convergence of ©. Recall that || - | 1,00 is defined as
the maximum of the row ¢;-norms of a matrix.

Lemma H.2. For ¥ = I; and \CMMF = C'. | /log d/n in (A.7), we have that

log d + log(1/4)
n
holds with probability at least 1 — §, where C and C” are positive constants.

[CRCHIINEYeE

Proof. See the proof of Theorem 6 in [7] for details. O

Now we are ready to prove (E.8) of Lemma E.5.

Proof. Recall that Q(+; -) is the expectation of @Q,,(+; -). According to (A.5) and (3.1), we have

M(B) = E{ 2 wa(X,Y)—1]-Y - X} (H.45)
with wg(-, -) being the weight function defined in (A.5), which together with (A.8) implies
R 1 n
M,(B) - M(B)=© - EZ[Q'Wﬁ(Xivyi) —1] -y x _E{[2'WB(X7Y) —1] 'Y'X}-
i=1
Here © is the CLIME estimator defined in (A.7). For notational simplicity, we denote
W, =2 wg(xi,y;)) —1, and =2 -wg(X,Y)—1. (H.46)
It is worth noting that both @; and & depend on 3. Note that we have
16(8) = M(B)]| (H.47)

6. {iiwi'yi'xi_E(W'Y'X)H’OO—’_H(@_ICI)']E(W-Y.X)H

<8l -

I .
>oai v~ B@ Y X)| 48 - Lal o [B@- Y X))
"= oo :
@ (iif) (iv)
(ii)
Analysis of Term (i): For term (i) in (H.47), recall that by our model assumption we have 3 = 1,
which implies ®* = 3~! = I;. By Lemma H.2, for a sufficiently large sample size n, we have that

18], o < [1© = Tal|, o+ Tall100 < 1/2+1=13/2 (H48)
holds with probability at least 1 — /4.




Analysis of Term (ii): For term (ii) in (H.47), we have that for u > 0,

SN

:IE{ max exp[ ’ sz yi - —E@-Y - X;)

o )

d
1
< AN v — (G Y - X
_ZE{exp[u ’nZwZ yi -z —E@-Y - X;)
j=1 i=1
d 1 n
s;ﬂz{exp{u-‘n;fi-wi-y¢~xi,j”, (H.49)
j= i=

where &1, . .., &, are i.i.d. Rademacher random variables. The last inequality follows from Lemma
J.4. Furthermore, for the right-hand side of (H.49), we invoke the contraction result in Lemma J.5 by
setting

)

fi-zig) =vyi iy, F=A{f}, vi(v)=o;-v, and ¢(v)=exp(u-v),
where w is the variable of the moment generating function in (H.49). From the definitions in (A.5)
and (H.46) we have |@;| = |2 - wg(x;,;) — 1| < 1, which implies

[i(v) = )] < [[2- walxiv ) — 1] - (0= ')

<|v—2'], forallv,v" €R.
By Lemma J.5, we obtain

{exp[ Zfl Wi - Yi - J;”}}SE{exp[Q-u-’iZ§i-yi~xm]} (H.50)
i=1

forj € {1,...,d} on the right-hand side of (H.49). Recall that in mixture of regression model
we have y; = z; - (3*,%;) + v;, where z; is a Rademacher random variable, v; ~ N(0,0?), and
x; ~ N(0,1;). Then by Example 5.8 in [28] we have ||z; - (8%, x;) ||y, = (B, %:)||ws < C-[|B*||2
and ||v; j|ly, < C’-o.By Lemma J.1 we further have

illys = [z - 487, %5) + i, <+/C 18413 +C" -0
Note that we have ||z; ||y, < C” since z; j ~ N (0, 1). Therefore, by Lemma J.2 we have
1€ - yi - ijllon = Iy - @ijllg, < max{C-[|B*]3+C"- 02, C"} < C" max {||B"[5 +0?, 1}

Since ¢; is a Rademacher random variable independent of y; - z; ;, we have E(&; - y; - ; ;) = 0.
Hence, by Lemma 5.15 in [28], we obtain

E[exp(u’ - & - yi - 21,)] < exp [o (u')? - max {[|B" |2 + 02, 1}2} (H.51)
for all [u/| < C’/max {||3*||3 + o2, 1}. Hence we have

1 n
E{eXpP'U' n;ﬁzyzxu}}
S]E(max{exp[2~u- 1%&'%'%;}7 eXP[—Q'U'lznjfi'yi'xij} })
i ’ "= ’
<]E{exp[2-u~1Zfi-yi-xm]}+]E{exp[—2-u-1Z£i-yi~xi,j]}
i "=

S2~exp[C’-u2-max{||ﬂ*||§+02, 1}2 /n] (H.52)

The last inequality is obtained by plugging (H.51) with v’ = 2-u/n and v’ = —2-u/n correspondingly
into the two terms. Here |u| < C’-n/ max {||3*[|3 + o2, 1}. Plugging (H.52) into (H.50) and further
into (H.49), we obtain

o [ 5|

[} <2 demfom i max {16713 + 0% 1) /).

o0



By Chernoff bound we have that, for all v > 0 and |u| < C’ - n/ max {[|3*||3 + 02,1},

1 n
[P’[an:wzyzxz—E(wYX)H >U:|
=1 o0

< &{ox|u: H;Zw i —]E(w-Y-X)HOO] b/ exptu-o)

g2-exp{0-u2-max{||,8*|\§+02, I}Q/n—u-v+logd].

Minimizing over u on its right-hand side we have that, for 0 < v < C” - max {[|3*3 + 02,1},

N
<2- exp{—n . UQ/ [4 - C-max {83 + o7, 1}2 } +logd}.
Setting the right-hand side of the above inequality to be /2, we have that

1 n
PI=S @ vy-x—E@ Y- -X
e —Eeyx0

1 < log d + log(4/6
IS Gy % —E@ Y- X)| <o=0C max {873 402 1}/ 250 los(4/0)
n n
i=1 00
(H.53)
holds with probability at least 1 — 6/2 for a sufficiently large n.
Analysis of Term (iii): For term (iii) in (H.47), by Lemma H.2 we have
~ logd + log(4/d
-1, <c- %Og(/) (H.54)

with probability at least 1 — /4 for a sufficiently large n.
Analysis of Term (iv): For term (iv) in (H.47), recall that by (H.45) and (H.46) we have

M(3) :E{[Zwﬁ(X,Y)—l] .Y.X} —E@-Y-X),
which implies
[E@- Y- X)| = [MB)|, < [MB) -8, + 18"

<UB=B%ll2 + 1872 < (1 +1/32) - 1872, (H.55)

where the first inequality follows from triangle inequality and || - ||ooc < || - ||2, the second inequality
is from the proof of (G.8) in Lemma G.2 with 8(*+0-5) replaced with 3 and the fact that v, /v < 1
in (G.8), and the third inequality holds since in Condition Statistical-Error(e, 0, s,n, 3) we suppose
that 3 € B, and for mixture of regression model B is specified in (E.7).

Plugging (H.48), (H.53), (H.54) and (H.55) into (H.47), by union bound we have that

[M(8) = M(B)]|

* log d + log(4/6 . log d + log(4/6
< C-max {||B*|3 + 02, 1}~W+c’.g ||2.W

. . logd + log(4/6
<O [max {18713 + 0%, 1) +(18°]] -/ BB

holds with probability at least 1 — d. Therefore, we conclude the proof of (E.8) in Lemma E.5. [
Gradient Ascent Implementation: In the following, we prove (E.9) in Lemma E.5.

Proof. Recall that Q(-; -) is the expectation of @, (+; -). According to (A.5) and (3.2), we have
MB)=B+n-E[2-ws(X,Y) Y -X -]



with wg(+, -) being the weight function defined in (A.S), which together with (A.9) implies
M (B) = M(B)]| (H.56)

1 & .
= Hn-n;[Z-wﬁ(xi,yi)-yi-xi—xi-xi ,6] —n-IE[Z-wg(X,Y)-Y-X—,B]HOO
1 n 1 n

1S x5t anx x| [1 e8]

i=1

<n-

(i) (ii)
Here n > 0 denotes the stepsize in Algorithm 3.
Analysis of Term (i): For term (i) in (H.56), we redefine &; and & in (H.46) as
W; = Q'W,B(Xiayi)y and @ :2~wg(X,Y). (H.57)
Note that |iv;| = ‘2 - wg(x;, yz)| < 2. Following the same way we establish the upper bound of term
(ii) in (H.47), under the new definitions of &, and @ in (H.57) we have that

LS b)) - B2-s(6¥) v ]|

i=1

log d + log(4/9)

§C-msao<{||,6*||§—|—027 1}- -

holds with probability at least 1 — §/2.
Analysis of Term (ii): For term (ii) in (H.56), we have

1 & 1 &
HE Xi'XiT'ﬁ—,@H S’E x;-x; — Iy
n “ n “

=1 oo =1

(ii).a
For term (ii).a, recall by our model assumption we have E(X -X T) = I, and x;’s are the independent
realizations of X . Hence we have

;;xiox:— Zx” zip — E(X; - Xi)|.

Since X, Xj ~ N(O 1), according to Example 5.8 in [28] we have ||X lpo = \|Xk||¢2 < C.By
Lemmal.2, X, - X} i < C'. Moreover, we
have HX - X —E(X; - Xi) H o S C" by Lemma J.3. Then by Bemstem s inequality (Proposition
5.16 in [28]) and union bound, we have

1 n
IP’{ ,in.XI,Id >v}§2~d2~exp(0~n~v2)
n i—1 00,00
for 0 < v < €’ and a sufficiently large sample size n. Setting its right-hand side to be §/2, we have

STt [CON PRI E (L
n — n

00,00

181 -
00,00 S~~~
(ii).b

< max
je{1,...,d} kE{L 7d}

00,00

holds with probability at least 1 — § /2. For term (ii).b we have ||3||1 < /s -||B]|2, since in Condition
Statistical-Error(e, d, s,n, B) we assume ||3||o < s. Furthermore, we have |32 < ||8*[|2 + ||8* —
Bll2 < (141/32)-||3*]|2, because in Condition Statistical-Error(e, d, s, n, B) we assume that 3 € B,
and for mixture of regression model 3 is specified in (E.7).

Plugging the above results into the right-hand side of (H.56), by union bound we have that
log d + log(4/9)
n

N L CU RV P

n

| M (B) = M(B)| . <n-C-max {|B]3+ 0% 1}

logd + log(4/9)

n

<" max {83+ 0% 1, V5 [82} -



holds with probability at least 1 — §. Therefore, we conclude the proof of (E.9) in Lemma E.5. [

I Proof of Results for Inference

In the following, we provide the detailed proof of the theoretical results for asymptotic inference in
84. We first present the proof of the general results, and then the proof for specific models.

I.1 Proof of Theorem 2.1

Proof. In the sequel we establish the two equations in (2.8) respectively.

Proof of the First Equation: According to the definition of the lower bound function Q,,(-;-) in
(2.1), we have

1 n
= *Z/ kg(z | yi) - log fa (yi z) dz. (L1)
"oz

Here kg(z | y;) is the density of the latent variable Z conditioning on the observed variable Y = y;
under the model with parameter 3. Hence we obtain

where hg(y;) is the margrnal density function of Y evaluated at y;, and the second equahty follows
from the fact that

ko(z | yi) = f5(vi,2)/hp(yi), (L3)
since kg(z | y;) is the conditional density. According to the definition in (B.3), we have

— dlog ha(y:) Ohg(yi)/98 yz /3ﬁ / 0fplyiz)/0B /35
Ve, = —_— = dz, 1.4
(8) ; 95 Z; Z haly ) (L4)
where the last equality is from (B.1). Comparlng (I.2) and (I.4), we obtain V1Q,(8;3) =
Vi (8)/n.

Proof of the Second Equation: For the second equation in (D.1), by (I.1) and (I.3) we have
1 & f,@ (yi7 Z)
Qn(B:8) ==Y [ F252 log fa (vi, 2) da.
(8 8) 02 [ haly) (v, 2)
By calculation we obtain

V3 2Qn(B; B) (L5)

! Z / Ofplrs)/0 {af;a(yi,z)/aﬁ ha(yi) _ falyi2) ~aha<yi>/aﬁ} i
fﬁ Yi, 2 [hg(yi)]Q [h,@(Yi)]Q
Here ® denotes the vector outer product. Note that in (I.5) we have

0fa(yi,2)/08 _ 0fp(yi2)/08 / {afmyi,z)/aﬁr? o)
zZ

z f,@(Yi>Z) h,@(}’z‘) fﬁ(Yiaz) hﬁ(Yi)
_ [ [9si2)/08)%*
_/Z|: fB(ymZ) :| kﬁ( IYZ)d
= Eg {@,(Y, Z2)%2 |y = y} (L6)

where v®?2 denotes v ® v. Here §B(~, -) is defined as

~ o 810gfﬁ(y72) _ afﬁ()’» )/8ﬁ
Sp(y:2) = B - Jsly.2) R, 7




i.e., the score function for the complete likelihood, which involves both the observed variable Y and
the latent variable Z. Meanwhile, in (I.5) we have

Ofp(yi,2)/0B _ falyi,z) - 6h,3(Yz)/aﬂ 0fp(yi:2)/08 | o hs(yi)/0B
/z fa(yi;2) ¢ [ha(y:)]” @ [/z hg(yi) d}® ha(y:)

_ { /Z amg(,;))/ B dz} - 18)

where in the last equality we utilize the fact that

[ fatyiz)da = haty), (19)
z
because hg(-) is the marginal density function of Y. By (1.3) and (1.7), for the right-hand side of (I.8)

we have
W.kﬁmyi)dzzéwdz. (1.10)

Eg [gﬁ(Y,Z) ’ Y = Yi} :/}3 fo(yi,2) hp(y:)

Plugging (1.10) into (I.8) and then plugging (I.6) and (I.8) into (I.5) we obtain

V2,Qn(8: 8) = izn: <IE5 [§B(Y, 2)% |y = yl} - {Eﬂ [§g(Y, Z)|Y = yi} }@2) .

Setting 3 = 3* in the above equality, we obtain
Eg- [V3,Q. (8% 8%)] = Eg- {covﬁ* [5[3* (Y, 2)| Y} } (L11)
Meanwhile, for 3 = 3*, by the property of Fisher information we have

. dloghg+ (Y ~

1(8*) = Covg. {Ogag()} — Covg-{Ep- [Sp- (¥, 2) | Y| }. (L12)

Here the last equality is obtained by taking 3 = 3" in

Ologhp(Y) _ Ohp(Y) 1 _/ 0fp(Y.2)/0B | :/ 0fp(Y.2)/0B 34
2 k) T vy MREIYE

B B hp(Y)
:/Zgﬁ(Y,z)ukg(z|Y)dz

=Eg [g,a(Y,Z) | Y},

where the second equality follows from (1.9), the third equality follows from (I.3), while the second
last equality follows from (I.7). Combining (I.11) and (I.12), by the law of total variance we have

1(7) + g [V3,Qu(8:8")] = Covg- {Es. [S5- (Y, 2) | Y|} + Bp- { Covp. [S. (¥, 2) | Y}

= Covg- [§ﬁ*(y, Z)] (L13)
In the following, we prove
Eg- [V3,Qu(8":8)] = — Cova: [35- (¥, 2) . (L14)
According to (I.1) we have
V2,00 (8:8) = Z/ ko(z | v 8 loga];gﬁy,, Zn:E {aﬂogé‘;éY,Z) ‘Y:yi:|~
(I.15)

Let £( (B) =log f3(Y, Z) be the complete log-likelihood, which involves both the observed variable

Y and the latent variable Z, and I (B) be the corresponding Fisher information. By setting 3 = 3*
in (I.15) and taking expectation, we obtain

’1 (Y,Z)
Eg- [V3.Qn(8" 8")] = Eg- {Eﬁ* {Mgfa

5 ’ Y} } = Eg. [V2U(B8")] = —1(8").

(I.16)



Since S, 3(Y, Z) defined in (1.7) is the score function for the complete log-likelihood (), according
to the relationship between the score function and Fisher information, we have

1(8") = Covg: [ Sp- (Y, 2)]
which together with (I.16) implies (I.14). By further plugging (I.14) into (I.13), we obtain
Ep- [V11Qn(8%:87) + Vi2Qn (8" 8)] = —1(8"),
which establishes the first equality of the second equation in (D.1). In addition, the second equality of

the second equation in (D.1) follows from the property of Fisher information. Thus, we conclude the
proof of Theorem D.1. O

1.2 Auxiliary Lemmas for Proving Theorem 4.6

In this section, we lay out several lemmas on the Dantzig selector defined in (2.6). The first lemma,
which is from [5], characterizes the cone condition for the Dantzig selector.

Lemma I.1. Any feasible solution w in (2.6) satisfies
[t = wi]|, < [[fwte.n) - i [

where w([3, \) is the minimizer of (2.6), Sy is the support of w and Sy, is its complement.

Proof. See Lemma B.3 in [5] for a detailed proof. O

In the sequel, we focus on analyzing w(@, ). The results for w(@o, ) can be obtained similarly.
The next lemma characterizes the restricted eigenvalue of 7}, (ﬂ) which is defined as

_ VT[T (B)] v
Punin = 1 4T

, where C = {v: ||V‘§ 1 < Vs

v 0}. (1.17)

Here S, is the support of w* defined in (4.1).
Lemma I.2. Under Assumption 4.5 and Conditions 4.1, 4.3 and 4.4, for a sufficiently large sample
size n, we have Pmin > Pmin/2 > 0 with high probability, where ppin is specified in (4.4).

Proof. By triangle inequality we have

V@) v Y )= VT 18+ Tu(B)] -

ﬁmin > inf > inf
vec vl vee Ivii3
v I(B) v ‘VT~ [1(8*) + T (B)] -v‘
> inf ————5"—— —sup 5 , (I.18)
vee vl vee vl
(@) (i)
where C is defined in (1.17).
Analysis of Term (i): For term (i) in (I.18), by (4.4) in Assumption 4.5 we have
vi-I(B*) v vl I(B*)-v
inf > inf =X |I(B")| = pmin- (1.19)
vee  [lv[l3 vzo vl [ ]
Analysis of Term (ii): For term (ii) in (I.18) we have
Ve @)y Vs + 7@
sup 5 < sup 5 o (1.20)
vee VI3 vec VI3

By the definition of C in (I.17), for any v € C we have

vl = [vs;, 1S 2 s lvsg
Therefore, the right-hand side of (I.20) is upper bounded by

tosy - |18+ T < 4w [l18) + T8

L <2 /5% VIl

vzl <2-lvss

-5+ ||T(B) - Tu(8")

00,00 ‘oo,oo

(ii).a (ii).b



For term (ii).a, by Theorem D.1 and Condition 4.3 we have
4. Sjv ' HI(B*) + Tn(ﬁ*) =4 Siv : HTn(ﬁ*) - E,B* [Tn(ﬁ*)] Hoc,oo = O]P’(Siv ' CT) = OP(l)a
where the last equality is from (4.6) in Assumption 4.5, since for \ specified in (4.5) we have
sty - ¢ < s - A <max{||w*[|1, 1} - sk - A =o(1).

For term (ii).b, by Conditions 4.1 and 4.4 we have

Loy [T(B) = Tu(8)|| =4+ 50 0p(cH) - B= 8|, = Opls - ¢+ M) = 05(1),
where the last equality is also from (4.6) in Assumption 4.5, since for A specified in (4.5) we have

85 - ¢V CPM < st X < max{ || W[y, 1} - sl - A =o(1).

Hence, term (ii) in (I.18) is op(1). Since pmin is an constant, for a sufficiently large n we have that
term (ii) is upper bounded by puin/2 with high probability. Further by plugging this and (I.19) into
(1.18), we conclude that pin > pPmin/2 holds with high probability. O

00,00

The next lemma quantifies the statistical accuracy of w (B , )\), where w(+, -) is defined in (2.6).
Lemma I.3. Under Assumption 4.5 and Conditions 4.1-4.4, for A specified in (4.5) we have that

- ~ 16 - s* - A
maX{Hw(ﬂ,)\) —-wr, Hw(ﬂo,)\) —w" } < D %w A
1 1 Pmin
holds with high probability. Here ppin is specified in (4.4), while w™* and s}, are defined (4.1).

Proof. For X specified in (4.5), we verify that w* is a feasible solution in (2.6) with high probability.
For notational simplicity, we define the following event

e={|mB),.- @), w|_
By the definition of w* in (4.1), we have [I(,B*)]‘Y o [I(B*)]'v - - W = 0. Hence, we have

| T B)), = [Ta(B)], | = |[[10(B)+1(8"), ,~ [T (B)+1(8")],, , ||
T, (B)+1(8")

< /\}. 121)

v,

<| T.(B)+1(8")

|
oo

Wl
T 1)
where the last inequality is from triangle inequality and Holder’s inequality. Note that we have
|7.8) + 18| __ <IITu(B)+ 18| oo+ |[TB) - TutB)]| . @23
On the right-hand side, by Tileorem D.1 and Condition 4.3 we have ’

1T(8%) + 1(B) || oo = IT0(8") = Eg- [T0(B)] || o = Op(¢T):
while by Conditions 4.1 and 4.4 we have
|7B) —Tu(8)|_ _ = 0s(c™) - 1B= 8], = O (" - ¢™).
Plugging the above equations into (I.é3) and further plugging (1.23) into (1.22), by (4.5) we have
|18, — [T (B)],,, - w||_ =€ (€T + ¢ ¢PM) - (14 ) = A
holds with high probability for a sufficiently large constant C' > 1. In other words, £ occurs with
high probability. The subsequent proof will be conditioning on £ and the following event
€' = {Pmin 2 puin/2 > 0}, (1.24)
which also occurs with high probability according to Lemma 1.2. Here pyy;y is defined in (I.17).

oo,

For notational simplicity, we denote w(ﬁ , )\) = w. By triangle inequality we have

|T@)],, - % =)
< |[1.B)],. — (1B, - w||_+|[1(B)],, % [1.(B)]




where the last inequality follows from (2.6) and (I.21). Moreover, by (I.17) and (1.24) we have
(W — W*)T ) [_Trb (3)]%.\, (W —=w") > puin - [|W — W*H% > Pmin/2 - [|[W — W*Hg (1.26)

Meanwhile, by Lemma I.1 we have

I = w1 = [|[(® = w)s ||, + | (% =Wz ||, <2- (% —whss |, <2- V5% - I = w' .

Plugging the above inequality into (I.26), we obtain
(W —w) - [Ta(B)],., - (W =W") > puin /(8- 3,) - [ — w77 (1.27)
Note that by (1.25), the left-hand side of (1.27) is upper bounded by
1% = wli - || [T (B)], , W w2 (1.28)

By (1.27) and (1.28), we then obtain |W — w*||; < 16 - 8%, + A/ pmin conditioning on &€ and £’, both

of which hold with high probability. Note that the proof for w(/3y, ) follows similarly. Therefore,
we conclude the proof of Lemma 1.3. O

H(w—w')

I.3 Proof of Lemma G.3
Proof. Our proof strategy is as follows. First we prove that
Vn - Sn(ﬁow\) = Vn- [ViQn(8% 8], — Vn- (w5 [V1Qn(5*;5*)]7 +op(1), (129)
where 3* is the true parameter and w* is defined in (4.1). We then prove
Vi [ViQu(B%: 8], — v - (W) [ViQu(8%: 8], = N(0,[1(8")],,,,),  (130)
where [I (B*)] ol is defined in (4.2). Throughout the proof, we abbreviate w (,@07 )\) as wg. Also, it

is worth noting that our analysis is under the null hypothesis where 3* = [a*, (7*)T] T with a* = 0.
Proof of (1.29): For (1.29), by the definition of the decorrelated score function in (2.5) we have

S (8o, A) = [VIQn(//B\OLé\O)}a —- Wy - [V1Qn(3o;ﬁo)]7-
By the mean-value theorem, we obtain
()
Sn(Bo,A) = [V1Qu(8: 8], = Vg - [V1Qu (B8], (L31)
+ [T.(89)),,. - (Bo = B") =5 - [Tu(89)], - (Bo— B").
(i)
where we have T,,(3) = VilQn(,@; B)—&—V%’QQn(ﬁ; B) as defined in (2.4), and B* is an intermediate

value between 3* and 30.
Analysis of Term (i): For term (i) in (I.31), we have

[V1Qu(8%:8")],, = Wg - [V1Qn(8%:8)]
= [V1Qn(8%89)], — (W) - [V1Qu(8":8Y)]

+ (w" — W) - [V1Qu(8% 8] ,-
(1.32)

~

For the right-hand side of (I1.32), we have
(w* = 0) T [V1Qu(8": 8], < Iw* = olli - [[V1Qu(8 8], [l (133)

By Lemma 1.3, we have ||[w* — Wq||1 = Op(s
have

- A), where ) is specified in (4.5). Meanwhile, we

o = |V1Qn(8*: 8*) — V1Q(B*; B%)
= O]P(CG)v

where the first equality follows from the self-consistency property [18] that 3* = argmaxg Q(3; 3%),
which gives V1 Q(3*; 8*) = 0. Here the last equality is from Condition 4.2. Therefore, (1.33) implies

(W* - V/‘\/O)T ’ [VlQn(,@*QIB*)],Y = OIP(‘S:/ A CG) = Op(l/\/ﬁ)a

oo



where the second equality is from s%, - X - (¢ = 0(1//n) in (4.6) of Assumption 4.5. Thus, by (1.32)
we conclude that term (i) in (I.31) equals

[len(IB*;ﬁ*)]a - (W*)T ' [VIQn(/@*vﬁ*)}v + 0111’(1/\/5)
Analysis of Term (ii): By triangle inequality, term (ii) in (I.31) is upper bounded by
LB, (Bo— B) — w5 - [Tu(B)], - (Bo— B)
(ii).a

T ~ N ~\1T ~ N
+ |8, - (Bo—B) = [Tu(Bo)], - (Bo — B)

(ii).b
£ [53- [1(B)],, - (Bo— 87) =57 - [T (8], - (Ba— 87

(ii).c
By Holder’s inequality, term (ii).a in (I.34) is upper bounded by
1Bo = B°ll, - || (7 (Bo)]., o = 5 - [Tu(Bo)],, | = 1180~ 8], - X
< Op(¢*M) A =0p(1/v/n), (135)
where the first inequality holds because wg = w (,@07 A) is a feasible solution in (2.6). Meanwhile,
Condition 4.1 gives Hﬁ—ﬁ* . = Op(¢"M). Also note that by definition we have (30)a = (B8 =
0, which implies ||,§o - 5*H1 < HB - B ||1 Hence, we have

1Bo = 57|, = 0 (¢™), (1.36)

which implies the first equality in (I.35). The last equality in (I.35) follows from ¢EM - X\ = o(1/y/n)
in (4.6) of Assumption 4.5. Note that term (ii).b in (I.34) is upper bounded by

(1.34)

| 78] o = (20 B) |18 = 87y < |7 (8%) =T Bo) | 1180 =)L,
(1.37)
For the first term on the right-hand side of (I1.37), by triangle inequality we have
(8 = 1@ < 17 (8%) = Ta(8") | o+ |7 (Bo) = TBY)]|
By Condition 4.4, we have
To(Bo) = T(B)| = 0p(¢*) - [1Bo— 7], (1.38)
and
|1 75(8%) = Tu(B) | o oo = Op (%) - 18° = 87|, < Op(¢) - [1Bo = 87, (1.39)

where the last inequality in (I.39) holds because 3 is defined as an intermediate value between 3*
and Bo. Further by plugging (1.36) into (1.38), (I1.39) as well as the second term on the right-hand side
of (1.37), we have that term (ii).b in (1.34) is Op [C L. (CEM)Q] . Moreover, by our assumption in (4.6)
of Assumption 4.5 we have

¢h - (¢PM)* < max{1, [[w* 1} - ¢M - (¢PM)* = o(1/V/m).
Thus, we conclude that term (ii).b is 0 (1/+/n). Similarly, term (ii).c in (I.34) is upper bounded by

T.(8) ~Tu(Bo)|| - 11Bo— 81, (1.40)
By triangle inequality and Lemma 1.3, the first term in (1.40) is upper bounded by
W[l + [Wo = w1 = [W"[ls + Op(s5 - A)-

Meanwhile, for the second and third terms in (1.40), by the same analysis for term (ii).b in (I1.34) we
have

[Wol|1 -

T(5°) = Ta(Bo)|__ - [1Bo = 8], = Os[c" - (VY.



By (4.6) in Assumption 4.5, since s, - A = o(1), we have
* * 2 * 2
(Il + % - A) - €% (¢ < [max{1, [w*[l.} +o(1)] - ¢" - (¢™M)
=o(1/y/n).
Therefore, term (ii).c in (I.34) is 0p(1/+/n). Hence, by (1.34) we conclude that term (ii) in (I.31) is

0p(1/4/n). Combining the analysis for terms (i) and (ii) in (I.31), we then obtain (1.29). In the sequel,
we turn to prove the second part on asymptotic normality.

Proof of (I.30): Note that by Theorem D.1, we have
\/ﬁ' [len(ﬂ*vﬂ*)]a - \/E (W*)T : [len(ﬂ*w@*)].Y = \/ﬁ [17 _(W*)T] ’ VIQn(/B*uB*)
=+/n- [1, —(w*)T] -Ve,(8%)/n.
1.41)

Recall that £,,(3) is the log-likelihood function defined in (B.3). Hence, [1, —(w*)"] - V£, (8*)/n
is the average of n independent random variables. Meanwhile, the score function has mean zero at
B*, ie.,E [Vﬁn (ﬂ*)] = 0. For the variance of the rescaled average in (I.41), we have

Var{ V- [1,=(w")T] - VE,(8)/n} = [1,=(w*)T] - Cov[Veu(8") /] - [1,—(w*)T]
= [1,—(w")T]-1(8%) - [1,—(w)T] .

Here the second equality is from the fact that the covariance of the score function equals the Fisher
information (up to renormalization). Hence, the variance of each item in the average in (1.41) is

[L=(w)T] - 1) - [1,=(w) 7] = [18)],,, — 2+ (W) - [1(B)],, + (W) - [1(87)],, ., - W
= [1(8")],.. — 1B, .- [1B8)], - 18],
= [I('@*)]ah’

where the second and third equalities are from (4.1) and (4.2). Hence, by the central limit theorem
we obtain (I.30). Finally, combining (1.29) and (I.30) by invoking Slutsky’s theorem, we obtain

Vi S, (Bo. A) 2 N0, [1(87)] )

which concludes the proof of Lemma G.3. O

1.4 Proof of Lemma G.4

Proof. Throughout the proof, we abbreviate w (,@07 )\) as wq. Our proof is under the null hypothesis
where 8* = [a*, (v*) ] T with o = 0. Recall that w* is defined in (4.1). Then by the definitions
of [T(Bo)] ., and [I(87)] ., in (2.7) and (4.2), we have

[7(B0)] oy = (1. -W7 ) - n(ﬁo) (L—%g)"
= [T(B0)].. = 2 W0 - [Tu(B0) ., + W0 - [Tu(Bo)]., - o,
[1(8

1@, = 18], [fw*ﬂ;-mm [ ]M |
[, 2 )T (B ()T () W

By triangle inequality, we have
|72 (Bo)] oy + (18] 1|
< |[Tu(Bo)], . + [1687)],,.,

1.42)




Analysis of Term (i): For term (i) in (I.42), by Theorem D.1 and triangle inequality we have
T2 (B0)] 0 + 180, ] < |[T0Bo)), 0 — (18], |+ | (1080, — (B (100870}, -

(i).a @i).b

1.43)
For term (i).a in (1.43), by Condition 4.4 we have

|[70(Bo)] .0 — [T0(8)],] <

Tn (BO) - Tn(ﬁ*) 00.00

= 05(¢") - 11Bo = 8], (1.44)
Note that we have ( 0), = = 0 by definition, which implies || Bo —
Hence, by Condition 4.1 we have
1Bo = B[], = 0:(¢™™). (145)

Moreover, combining (1.44) and (1.45), by (4.6) in Assumption 4.5 we have
¢t M < max{||w*||1, 1} St A=0(1)
for X specified in (4.5). Hence we obtain

[0(B0)] = [T0(8)],,.0] < || 70 (Bo) = Tu(8") | _
= Op(¢" - M) = 0p(1). (L46)

Meanwhile, for term (i).b in (1.43) we have

7208, — {Bo- (T8}, | < |1T0(8") = Bae [Ta(8)] oo = 0p(CT) = 05(1),
(147)

where the second last equality follows from Condition 4.3, while the last equality holds because our
assumption in (4.6) of Assumption 4.5 implies

¢ < max{|lw* [, 1} - 5% - A = o(1)

for A specified in (4.5).
Analysis of Term (ii): For term (ii) in (I.42), by Theorem D.1 and triangle inequality, we have

’vAvOT- [Tn(,@o)]w + (w187, (1.48)

< |0 —w) T {Tu(B) ~ B L8]} [+|(F0—w)T- {Bar [T(81]},
(ii).a (ii).-b

+ w7 {70 (Bo) — Ba- [Ta(87)] }

(ii)-c
By Hoélder’s inequality, term (ii).a in (1.48) is upper bounded by

150 = w1 | {7 (Bo) B[]} | < 10— w1 - |
By Lemma 1.3, we have ||[Wo — w*||; = Op(s}, - ). Meanwhile, we have
|7 (Bo) B[] < [[7(B0) = T80} |+ IT(8") ~ B [F(8")] | = 020

where the second equality follows from (1.46) and (1.47). Therefore, term (ii).a is op(1), since (4.6)
in Assumption 4.5 implies s, - A = o(1). Meanwhile, by Holder’s inequality, term (ii).b in (1.48) is
upper bounded by

HQO - W*Hl ’ H{E,@* [Tn(ﬁ*ﬂ }'y,ozHoo < ||VAV0 - W*Hl ’ HE,@* [Tn(’@*)} Hoo,oo (149)

By Lemma 1.3, we have ||[wo — w*||; = Op(s}, - A). Meanwhile, we have Eg- [T,,(8*)] = —1(8*)
by Theorem D.1. Furthermore, (4.4) in Assumption 4.5 implies

11(8%)] . . < 1B, <C, (1.50)

where C' > 0 is some constant. Therefore, from (1.49) we have that term (ii).b in (1.48) is Op (s, - A).
By (4.6) in Assumption 4.5, we have s, - A = o(1). Thus, we conclude that term (ii).b is op(l) For

.o

T, (Bu) — Eo- [ (8"

00,00

o0,



term (ii).c, we have

") {70 (Bo) ~ B (18]}
7, (Bo) - Ear [T.(8)]_ _

Tu(B) = T8+ 19l [087) — B 17,080 ...

= Op(w*ll - ¢ ¢"M) + Op (Ilw*[|1 - ¢T) = 0p(D).
Here the first and second inequalities are from Holder’s inequality and triangle inequality, the first
equality follows from (1.46) and (I1.47), and the second equality holds because (4.6) in Assumption
4.5 implies

< W -

< W -

W[l - (¢ ¢PM +¢T) < max{ w1, 1} - 53, - A =o(1)
for A specified in (4.5).
Analysis of Term (iii): For term (iii) in (I.42), by (D.1) in Theorem D.1 we have

W - [Tu(Bo)],, ., Wo+ (W) [1(8Y)], - w* (L51)

< \wJ : {Tn (Bo) — Eg- [T0(8")] }M : VAVo‘ + ‘vAvoT 18], - Wo— (W) [1(8Y)], W

(iii).a (iii).b

For term (iii) ain (I 51), we have

7 {7 (Bo) ~ B (870} o] < Il [[{ 7 (Bo) ~ B [Ta(87)]}__|

vy ¥,y lloo,00
< |Wolli - |T0(Bo) — Eg- [Tn(8)] Hoo _ sy

For [[Wo |1 we have 12 < (Jw[ly + [Wo — w*[1)” = [IIW"[ls + Op(s - A)]%, where the
equality holds because by Lemma L.3 we have ||[Wo — w*||; = Op(s}, )\) Meanwhile, on the
right-hand side of (I1.52) we have

7, (Bo) ~Epe [T(8Y)]| < [17(B0) = 78|+ 708"~ Ep [72(8")] |

= Op(¢% - ¢+ 7).
Here the last equality is from (1.46) and (1.47). Hence, term (iii).a in (I.51) is O [(Hw* 1 + s%,
)\)2 . (CL - CEM 4 CT)]. Note that
* * 2

(Wl + s - 2) - (¢4 - "M+ ¢T)

=W T (¢ M CT) 2 sy A Wl (CF - CPM ) (s - AP (M ().

W_/ W—/ | S ——
(@) (ii) (iii) (ii) (iv)

From (4.6) in Assumption 4.5 we have, for A specified in (4.5), terms (i)-(iv) are all upper bounded
1} - 8%, - A = o(1). Hence, we conclude term (iii).a in (I.51) is 0p(1). Also, for term
(iii).b in (I.51), we have

(% (18], -0 — (W) - [1(87)], - W
< |®o—w) T [187)],, - (W0 —w)| +2- |- [1(87)],
< [Wo = w3 - 18" o0 + 2+ 10 = w*|l1 - [[W* |1 - [ 1(8")

= Op[(s% - A + [w*[l1 - sy - A,
where the last equality follows from Lemma 1.3 and (1.50). Moreover, by (4.6) in Assumption 4.5
we have max{s}, - A, [|[w*||1 - s% - A} <max{||lw*|1, 1} - s% - XA = o(1). Therefore, we conclude
that term (iii).b in (I.51) is op(1). Combining the above analysis for terms (i)-(iii) in (1.42), we obtain

72 (Bo)] oy + 1168, | = 02 (1),

Thus we conclude the proof of Lemma G.4. O

(W — W)

00,00



I.5 Proof of Lemma F.1

Proof. According to Algorithm 4, the final estimator 3 = BT) has 5 nonzero entries. Meanwhile,
we have ||3*|lo = s* < S. Hence, we have Hﬂ - B, <2 V5 - Hﬂ — B*||,- Invoking (E.6) in
Theorem E.3, we obtain (M.

For Gaussian mixture model, the maximization implementation of the M-step takes the form

Zwﬁ Yi) z—*Zyz, and M(B) =E[2-ws(Y) Y —-Y],

where wgl(+) is deﬁned in (A.2). Meanwhlle, we have

n

ViQn(B;8) = %2[2 cwaly:) —1]-yi— B, and V1Q(B;8) =E[2-wa(Y)-Y] - 8.

i=1
Hence, we have HMn(ﬁ) — M(ﬁ)”oo = HVlQn(ﬁ;,@') — VlQ(ﬁ;,B)HOO. By setting § = 2/d in
Lemma E.2, we obtain ¢ G, O

1.6 Proof of Lemma F.2

Proof. Recall that for Gaussian mixture model we have

Qu(B38) = —5- Z{wg yi) - lyi = B3 + [L—wpv)] - Iys + B3}
where wg(+) is defined in (A.2). Hence, by calculation we have
1 n
ViQn(8'38) = Y2 wslyd) —1] - yi— B, Vi,Qu(8;8) =1, (1.53)
i=1
4 & Dy
Via@Qn(B:8) == Yi i . (L54)

n = o2 [1 —|—exp(—2- <ﬁ,yi>/02)] . [1 + eXp(Q . (,B,yi>/02)]
For notational simplicity we define
4

0% [L+exp(=2-(B,y)/0?)] - [L +exp(2-(B,y)/0?)]
Then by the definition of 75, (-) in (2.4), from (1.53) and (1.54) we have
* * 1 -
{T(B") — Ep- [Tn(B)] },, = - > vge(yi) i vik — B [vp- (Y)Y - Vi].
i=1
Applying the symmetrization result in Lemma J.4 to the right-hand side, we have that for u > 0,

Eg- {GXP { ’{T —Eg- [Tn(/@*)} }JkH} < Eﬁ*{exp {U %ifz v (yi) “Yig o Yik } }7
i=1
(1.56)

where &1, . . ., &, are i.i.d. Rademacher random variables that are independent of y1,...,y,. Then
we invoke the contraction result in Lemma J.5 by setting

fWig o vik) =Yg viks F={f}, ti(v)=vg-(y:) v, and ¢(v)=exp(u-v),
where u is the variable of the moment generating function in (I.56). By the definition in (I.55) we
have |vg-(y;)| < 4/0?, which implies

|[s(v) = s (V)| < |+ (yi) - (v =v")| < 4/0* - v —2'|, forallv,v' €R.
Therefore, applying the contraction result in Lemma J.5 to the right-hand side of (I.56), we obtain

Eg- {exp[ ‘{T ]Eﬁ*[Tn(ﬁ*)]}MH}<]Eﬂ*{exp[u.4/02. iigyjyk”

(L57)

Note that Eg- (&; - ys,5 - vs, &) = 0, since &; is a Rademacher random variable independent of y;. 7 Yik-
Recall that in Gaussian mixture model we have y; ; = z; - 87 + v;,;, where 2; is a Rademacher

va(y) = (L55)




random variable and v; ; ~ N (0, 0?). Hence, by Example 5.8 in [28], we have ||z; - 57 ||y, < |5;]
and ||v; ||y, < C - 0. Therefore, by Lemma J.1 we have

lyisllve = ll2i - 85 +vigll,, <C' (/1B +C"-02 < C"-/]|B % +C" - 02 (158)

Since [&; - Yij - Yik| = |¥ij - Yix|, by definition &; - y; ; - y; & and y; ; - yi , have the same ) -norm.
By Lemma J.2 we have

165+ 9 - viskllos < C - max{llyisll5,, Nyanlli,} < € (18715 + €7 - 0?).
Then by Lemma 5.15 in [28], we obtain

Eg- [exp(u/ & 41 - i)] < exp[(@)? - C - (18°|% +C' - 0?)] (1.59)
forall [u/| < C"/(||B*||% + C” - 02). Note that on the right-hand side of (1.57), we have

1 n
Eg*{exp {u 4/0? ‘n Z& “Yij Yik ]}
i=1
< Eg« | max< exp u~4/02-lzn:§"y' i Yik|, €XP —U'4/02'lzn:§"y' i Yik
> Bg ni:l [ 1,7 i,k | ni:1 g 1, 2

1 n 1 n
< Ea- .4 2.75 D i Ui Ea- —u-4 2_72 i Ui .
N g{exp{u /o ni:1§ - y’k}}+ ,s{eXp|: udfo ni:1€ Y yk]}
(1.60)

By plugging (1.59) into the right-hand side of (1.60) with v’ = u-4/(0?-n) andu’ = —u-4/(c?-n),
from (1.57) we have that for any j, k € {1,...,d},

Eg- {exp [u : ‘{Tn(,@*) — Ep- [T0(8%)] }MH } (L61)
<2 exp [c u?fn- (8% +C - 02)2/04}.
Therefore, by Chernoff bound we have that, for all v > 0 and [u| < C" /(|8* |2 + C" - 02),
P[[|70(8") — Ep [Ta(8)]| . o
< Eg- {exp [u NTn(87) = Ege [T (8")] Hoo,oo} }/exp(u )

d

-

j=1k=1
< 2-exp[C~u2/n~ (18*11% +C”-02)2/04 —u-v+2-logd},

where the last inequality is obtained from (I.61). By minimizing its right-hand side over u, we
conclude that for 0 < v < C” - (||B*[|2, + C" - 0?),

]P’[HTn(,B*) — Eg- [T (8")] ||OO7OO > v} <2 exp{—n : vz/[C- (I8*(|1% + C" - 02)2/04} +2- logd}.

Setting the right-hand side to be §, we have that

7.8~ B [T, @] | < 0= C- (187124 € ) fo? [ 2B
holds with probability at least 1 — §. By setting § = 2/d, we conclude the proof of Lemma F.2. [

log(2/0) 4+ 2 -logd




1.7 Proof of Lemma F.3

Proof. Forany j, k € {1,...,d}, by the mean-value theorem we have

IT0(8) = TulB) oo = max [[TulB)], — [Ta(87)] | (162)

0,00 ke{l,...,d}

= omax LB- 8T VIT. (8],

jokefl,omd}

<IB=Blh-  max  [VIT.(6)],,

jke{l,...,

where 3 is an intermediate value between 3 and 3*. According to (1.53), (1.54) and the definition of
T,.(-) in (2.4), by calculation we have

)
o0

1 n
V[T, (5ﬁ)]j,k = Z Vi (Yi) * Yig Yk " Yis

where -
_ 8/ct
vg(y) = 5 (1.63)
sy [1+exp(—2- (,6,y>/02)] . [1+exp(2~ (ﬁ,y>/02)}
8/t

[+ exp(=2-(B,y)/02)]" - [L +exp(2- (B,y)/0?)]
For notational simplicity, we define the following event

&= {Hyi||oo <7, foralli= 1,...,71}7
where 7 > 0 will be specified later. By maximal inequality we have

7@l > o} < BT @)L, >

1 e
=d- PHn Z Vgt (Yi) - Yij - Yisk - Yl
i=1
Let € be the complement of £. On the right-hand side of (1.64) we have

> v} . (1.64)

1~ Lo )
PHn;Vﬁﬁ(yz‘)'yi,j'yz',k'yi,z >v} =IP’Hn;Vgn(yi)'yi,j~yi,k-yi,z >v,8] +P(€).
. - (ii)
(@
(L.65)
Analysis of Term (i): For term (i) in (I.65), we have
1 n
P v i) Yig o Yik - Yil| >0, E
Hn;”ﬁﬂ(Y) Yij Yik Yil| >V ]
I
=P gZVﬁu(yi).yi,j -yi,k-yi,l.]l{||yi||C>o gT} >0, &
i=1

3=

IA

Vgt (¥i)  Yij - ik - Yig - W{|yilleo < 7}

7

1

=

P“%ﬁ(yz‘) i Yik Yig L{[yilloo < T} > U},

i=1

-

(2

where the last inequality is from union bound. By (1.63) we have |74 (y;)| < 16/0*. Thus we obtain

]P’“I?gn(}’i) Yij Vi Vit L{lyilloo < T}| > U} < ]P)“yi,j Yi Vi W lyilleo < T}| > 0%/16 - U}-

Taking v = 16 - 73 / o*, we have that the right-hand side is zero and hence term (i) in (1.65) is zero.
Analysis of Term (ii): Meanwhile, for term (ii) in (1.65) by maximal inequality we have

B(E)=B( _max |yilx>7) <n-B(lyille > 7) <n-d-B(lyis| > 7).



Furthermore, by (1.58) in the proof of Lemma F.1, we have that y; ; is sub-Gaussian with ||y; ||y, =

C- \/W. Therefore, by Lemma 5.5 in [28] we have
PE)<n-d-P(lyij| >7) <n-d-2-exp[-C-72/(|B*||2%, + C"- %)].
To ensure the right-hand side is upper bounded by §, we set T to be
7=C-/|B*||& +C"-02-\/logd + logn + log(2/9). (L.66)
Finally, by (I1.64), (I1.65) and maximal inequality we have

1 T
i 2.4 -Pll= 7 N s s U 1 - U 3.
P{j,ker?laf.(., HV /6 )}J kH U} <d -d HD|: n ; Vgt (Y1) Yig * Yik " Yil| > 'U:| <d’-é
for v = 16 - 73 /o* with 7 specified in (1.66). By setting § = 2 - d~* and plugging (1.66) into (1.62),
we conclude the proof of Lemma F.3. O

1.8 Proof of Lemma F.5

By the same proof of Lemma F.1 in §1.5, we obtain (®™ by invoking Theorem E.6. To obtain (¢,
note that for the gradient implementation of the M-step (Algorithm 3), we have

Mn(B) = B+n-ViQn(B;8), and M(B) =B +n-V1Q(B;8).

Hence, we obtain ||V1Q, (8% 8%) — V1Q(8%;8%)|| . = 1/n - |Mn(8*) — M(8%)]| . Setting
d =4/dand s = s* in (E.9) of Lemma E.5, we then obtain ¢C.
1.9 Proof of Lemma F.6
Proof. Recall that for mixture of regression model, we have
2 2
Qn(/@ ﬁ . Z{w,ﬂ Xuyz yz <Xia/6/>) + [1 - wﬁ(xiayi)} : (yz + <Xia/6/>) }7

where wg(+) is defined in (A.5). Hence, by calculation we have

n

len(,@’,ﬁ):%Z[2-wg<xi,y¢>~yi-xi—xi-xJ-5’}, 11@n(8,8) = —foz X/,

i=1
1.67)
4 y2 XX,
VZ n /’ _ = 7 1 1 .
120n(B8) =) ; o2 [1+exp(=2-yi - (B,x:)/0?)] - [1 +exp(2-yi - (B,%:)/0?)]
(1.68)
For notational simplicity we define
4
(1.69)

va(x,y) = o2 . [1 + exp(—2 e <,8,x>/02)} . [1 + exp(2 Y- (B,x}/aQ)] '
Then by the definition of 7}, (+) in (2.4), from (1.67) and (1.68) we have

* * 1 -
{T.(8") = E- [Tn(B)] }, ), = - Y vpe (X i) @iy vk - yf = Ege [vpe (V. X) - X - Xy - Y7
i=1
Applying the symmetrization result in Lemma J.4 to the right-hand side, we have that for v > 0,

Eg- {exp [ ‘{T —Eg- [Tn(,ﬁ*)] }j,kH }
} } (1.70)

<Eg- {GXP {U ‘n Zfi g (Xiy Yi) “ Tig o Tik y;
i=1

where &1, . . ., &, are i.i.d. Rademacher random variables, which are independent of x4, . .., x, and

Y1, --.,Yn. Then we invoke the contraction result in Lemma J.5 by setting

f@ig-ain-v}) =wij-wip-vi, F={f}, ¢i(v) =va(x5,5:)-v, and ¢(v) = exp(u-v),

where u is the variable of the moment generating function in (I.70). By the definition in (1.69) we

have |vg- (x;, yi)| < 4/02, which implies

Pi(v) = Y (V)| < |- (xi,95) - (v —0")| < 4/0% - [v =], forallv,v’ € R.




Therefore, applying Lemma J.5 to the right-hand side of (I.70), we obtain
Eg- {exp {u . ’{Tn(,ﬁ*) —Eg- [Tn(ﬁ*)} }j’k’] }

1 n
< ]Eﬁ*{exp[u'4/02 : ‘n Zfz‘-mm’ Tk P
=1

For notational simplicity, we define the following event
E={|xilloc <7, foralli=1,...,n}.
Let £ be the complement of £. We consider the following tail probability

b

1 1 & _
]P’4/02-‘ & wij Tyl >U:|§]P)|:4/O'2~ & mij Tyl >v,5}+ﬂ"(5).
(i)
@
1.72)

Analysis of Term (i): For term (i) in (I.72), we have

1 n 1 n
=~ G mig Ty >Ua5} ZPP/"Q"nZ&-%j ik y; o lIxilleo < 7}

i=1 i=1

P {4/02 .

>v,5}

>ol.

1 n
< IP[AL/UZ ' ’n S &Gwigwip -yl L{|xille < 7}

i=1

Here note that Eg- (&; - @i - @1 - y2 - 1{||xs]|c < 7}) =0, because &; is a Rademacher random
variable independent of x; and y;. Recall that for mixture of regression model we have y; = z; -
(B*,x;) + v;, where 2; is a Rademacher random variable, x; ~ N(0,1;) and v; ~ N(0,0?).
According to Example 5.8 in [28], we have ||z; - (8%,%;) - 1{||xi[loc < T}HW = (8%, ;) -

1{|[xilloe < 7'}H¢2 < 7-[8*|l1 and ||v; - L{[|x]| 0 < T}Hw2 < ||villg, < C-o. Hence, by Lemma
J.1 we have

Hyi 1%l < T}sz = ||ZL (B, %x4) - L{[[Xilloo < 7} 4 vi - L{]Xi]loo < T}sz

<C- \/72 |1B8*12 + ¢ - o2 (1.73)
By the definition of ¢1-norm, we have ||& - zi; - @ik - y? - ]I{HXZ‘HOOST}leSTz |7
]l{”Xi”ooST}le. Further by applying Lemma J.2 to its right-hand side with Z; = Z, =
Yi - 1{||x;]|c <7}, we obtain
& - iy @in -7 - 1%l < 7'}H¢1 <C-? |y - 1{IIxill o < T}HZ@
<O (B O o),

where the last inequality follows from (I.73). Therefore, by Bernstein’s inequality (Proposition 5.16
in [28]), we obtain
> v]
C-n-v? ot

- , (1.74)
(7B + O 02)2]

forall0 <v < C-72- (| B*||]3 + C' - 6) and a sufficiently large sample size n.
Analysis of Term (ii): For term (ii) in (I.72), by union bound we have

B(E) = P( max xlloc > 7) <n-B(lxilloc > 7) < m-d- Bl > 7).

1 n
IP[4/02 : ‘nZ& @i xig e yr o M Ixillee < 7

i=1

< 2-exp

Moreover, ; ; is sub-Gaussian with ||z; ;||4, = C. Thus, by Lemma 5.5 in [28] we have
PE)<n-d-2-exp(—C'-7?) =2-exp(—C" - 7° +logn + logd). (L75)



Plugging (1.74) and (1.75) into (I.72), we obtain

1 n
P[4/U2 |7 Zfz‘ T Tk Yr| > U} (1.76)
i—1

C-n-v? ot
<2-exp| — 5
(72 8+ O 0?)
Note that (I.71) is obtained by applying Lemmas J.4 and J.5 with ¢(v) = exp(u - v). Since Lemmas

J.4 and J.5 allow any increasing convex function ¢(-), similar results hold correspondingly. Hence,
applying Panchenko’s theorem in Lemma J.6 to (I.71), from (I.76) we have

+2-exp(—C" - 7% +logn + log d).

C-n-v? ot

T (2803 + 07 0%)
+2-e-exp(—C" 7> +1logn + logd).

P[{Tu(8") ~ Eg- [Tn(8)]},,| > v] <2-c-exp [_

Furthermore, by union bound we have

P[|70(8") — Ba- [Ta(8)]|| . . > 0] < Ziw[\{ww ~ B [Ta(87)]},,| > 7]

j=1k=1
C-n-v? ot

(e I o)

+2-e-exp(—C" - 7° +logn+3-logd). (L77)
To ensure the right-hand side is upper bounded by J, we set the second term on the right-hand side of
(L.77) to be § /2. Then we obtain

7=0C-/logn +3-logd + log(4 - e/d).

Let the first term on the right-hand side of (I.77) be upper bounded by ¢ /2 and plugging in 7, we then
obtain

v=C"[logn+3-logd+log(4-e/d)]

SQ-e-exp[— —|—2-1ogd]

log(4-€/6)+2- logd

{[logn+3-logd +log(4 - ¢/8)] - | 8%} + C" - 0°} /o” \/

n
Therefore, by setting d=4-e / d we have that
172 (8")~Ep- [Ta (8] 0,00
* (12 / 2, IOg
=C - (logn+4-logd) - [(logn+4-logd) - |B*|7 + C"-0°] /o

holds with probability at least 1 — 4 - e/d, which completes the proof of Lemma F.6. O
I1.10 Proof of Lemma F.7
Proof. Forany j,k € {1,...,d}, by the mean-value theorem we have

I70(8) = Ta(B) | oo = max |[Tu(8)],, — [Tu(8")],, (178)

00,00 jke{l,...,d}

= omax NB-8)T - VIT.(8)],,

jkefl,omd}

<88l max |IV[T.(8)], ] .

J.ke{l,...,d}

where 3¢ is an intermediate value between 3 and 3*. According to (1.67), (1.68) and the definition of
T,(-) in (2.4), by calculation we have

V[T ZVﬁﬁ Xz,yv : T X Tkt Xiy



where

- 8/at
vp(x,y) = (1.79)
a(xy) [1+exp(—2-y-(B,x)/0?)] - [1+exp(2-y- <ﬁ,x)/02)}2
8/c4

5 .
[1+9Xp(—2y </87X>/0.2)} ' [1+6Xp(2y </67X>/0.2)}
For notational simplicity, we define the following events
E={|xilloc <7, foralli=1,...,n}, and & = {|v;| <7/, foralli=1,...,n},

where 7 > 0 and 7/ > 0 will be specified later. By union bound we have

P{|vIm ), > o} <@ B({[VIE )]}, > v)

1 — _
=d-]P’[ Ezlyﬁﬁ(xiayi) YT g Ty
=

> v} . (1.80)

Let £ and &' be the complement of £ and £’ respectively. On the right-hand side we have

1 & 1 &
]P){ n ;’7@1 (xi,9i) yzg “Tiqg o Tik o Til| > v} = ]P’{ -~ ;Dm (x4, 9i) - %3 CTij T Ty > 07575/]
)
+P(E)+P(E). (1.81)
~—— =
(i) (iif)
Analysis of Term (i): For term (i) in (I.81), we have
1 n
Pl Z DY) YR T Tk Tig| > 0,E,E
Hn;l/ﬁn(x Vi) Yp T Tig o Tig| > v ]
1 n
= IP’[ - > oge(xi,yi) v @i wig o wig W{Xillo <7} 1{|uil <77} > 07575/]
i=1

1 n
SPHnZVﬁﬁ(Xiayi) yf’ “Tij o Tik  Tql '1{Hxi||oo < 7—}.1{‘1}” < 7_/}’ > v:|.
i=1

To avoid confusion, note that v; is the noise in mixture of regression model, while v appears in the
tail bound. By applying union bound to the right-hand side of the above inequality, we have

1
PHH ;Vﬁﬁ (X6, Ui) - Y3 - ij - Tik - Tig
1=

>v,5,5’}

n
< Z}P’Uﬁm(xi,yi) g i i L%l S 7 1{Jug] < T/}’ > U]
i=1
By (1.79) we have |7 g: (x;, ;)| < 16/0. Hence, we obtain
]P’“Dm (Xi,9:) - Y} ST ik Til Il{HXiHoo < T} . 1{|U¢| < T/H > v}

< P[]yf g wig e vy 1 Xilloo < 71 T{ v < 7Y > 0*/16- v] (1.82)

Recall that in mixture of regression model we have y; = z; - (3%, x;) + v;, where z; is a Rademacher
random variable, x; ~ N (0,1;) and v; ~ N(0, 0?). Hence, we have

3
lw? - 1{Ixilloe < 7} 1{j0i < 73 < (J2i (8% x0) - W{IIxilloe < 7} +[or - 1{Jil < 7'}
< (1Bl + ),

’xi,j “ Tk Tig ]l{||xi||oo < 7’}| < ‘xi,j . ]1{||XiHoo < T}|3 < 7o

Taking v =16 - (7 - ||8*||1 + T’)S - 73 /o, we have that the right-hand side of (1.82) is zero. Hence
term (i) in (I.81) is zero.



Analysis of Term (ii): For term (ii) in (I.81), by union bound we have

P(&) = ]P’(ie{rrllax }||x7;||oo > 7') < n-P(HxiHoo > 7') <n- d~IP’(|:17,;7j| > T).

[RRRE}

Moreover, we have that z; ; is sub-Gaussian with ||z; ||, = C. Therefore, by Lemma 5.5 in [28]
we have

PE)<n-d-P(lz;;| >7) <n-d-2-exp(—C"-77).
Analysis of Term (iii): Since v; is sub-Gaussian with ||v; ||y, = C - o, by Lemma 5.5 in [28] and
union bound, for term (iii) in (I.81) we have
PE) <n-P(jv| >7') <n-2-exp(—C"-7%/0?).
To ensure the right-hand side of (1.81) is upper bounded by §, we set 7 and 7’ to be
7 =C-/logd +logn +1log(4/5), and 7" =C"-o-+/logn + log(4/d) (1.83)

to ensure terms (ii) and (iii) are upper bounded by §/2 correspondingly. Finally, by (I.80), (I.81) and
union bound we have

p{ max V(L) ] >

R
< d2'd'PHn2Vﬁﬁ(xiayi) YR X Tk Ty
=

>v} <d3.4

forv=16-(7-[|8%]1 + T’)3 - 73 /o* with 7 and 7/ specified in (1.83). Then by setting § = 4 - d—*
and plugging it into (1.83), we have

3 3
v:16~[C~\/5-logd+logn-Hﬁ*”l+C’-a~\/4-logd+logn} -{C’w/'{)-logd—i—logn} /04

<" (I8 +C"- 0)3 - (5-logd + logn)g,
which together with (I.78) concludes the proof of Lemma F.7. O

J Auxiliary Results

In this section, we lay out several auxiliary lemmas. Lemmas J.1-J.3 provide useful properties of
sub-Gaussian random variables. Lemmas J.4 and J.5 establish the symmetrization and contraction
results. Lemma J.6 is Panchenko’s theorem. For more details of these results, see [6, 28].

Lemma J.1. Let 73, ..., Z; be the k independent zero-mean sub-Gaussian random variables, for
7 = Z?:l Zj wehave || Z]|7, < C- 25:1 1Z;1I7,,» where C' > 0 is an constant.
Lemma J.2. For Z; and Z> being two sub-Gaussian random variables, Z; - Z5 is a sub-exponential
random variable with

121+ Zolly, < C-max{||Z1l3,, 1Z2II}, },
where C' > 0 is an constant.
Lemma J.3. For Z being sub-Gaussian or sub-exponential, it holds that || Z — EZ||y, < 2- || Z]|4,
or||Z —EZ||y, <2-||Z||y, correspondingly.
Lemma J4. Letz4,...,z, be the n independent realizations of the random vector Z € Z and F
be a function class defined on Z. For any increasing convex function ¢(-) we have

n n
B{o|sun|>° 1(a) - 22]| | < B{o|sun|> & )| .
where &1, . . ., &, are i.i.d. Rademacher random variables that are independent of z1, . . ., z,,.
Lemma J.5. Let zy, ..., z, be the n independent realizations of the random vector Z € Z and F be
a function class defined on Z. We consider the Lipschitz functions ;(-) (¢ = 1,...,n) that satisfy

|05 (v) — i (v")| < L-|v—72'], forallv,v' €R,

and v;(0) = 0. For any increasing convex function ¢(-) we have

ol w0} <B{ofe- 136 ]

feF feria
where &1, . . ., &, are i.i.d. Rademacher random variables that are independent of z4, . . . , z,,.




Lemma J.6. Suppose that Z; and Z, are two random variables that satisfy E[¢(Z2)] < E[¢(Z1)]
for any increasing convex function ¢(+). Assuming that P(Z; > v) < C - exp(—C" - v*) (a > 1)
holds for all v > 0, we have P(Zy > v) < C - exp(1 — C" - v®).



