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In this supplementary material, we provide the proofs of the theoretical results. Along the way, we
also prove regret bounds for a general class of algorithms, the result of which may be used to design
a new algorithm.

We first provide a known property of the upper confidence bound of GP.

Lemma 1. (Bound Estimated by GP) According to the belief encoded in the GP prior/poSterior
foranyz, f(x) <U(x|D) holds during the execution of Algorithm 1 with probability at least ».

Proof. It follows the proof of lemma 5.1 ofi. From the property of the standard gaussian distri-
bution,Pr(f(z) > U(z|D)) < %e*ﬂgw/?. Taking union bound on the entire execution of Algorithm

1, Pr(f(z) > Uz|D) YM > 1) < 135, e~<ir/2, Substitutingsyr = /2log(72M?2/121), we
obtain the statement. O

Our algorithm has a concrete division procedure in line 27 of Algorithm 1. However, one may im-
prove the algorithm with different division procedures. Accordingly, we first derive abstract version
of regret bound for the IMGPO (Algorithm 1) under a family of division procedures that satisfy
Assumptions 3 and 4. After that, we provide a proof for the main results in the paper.

A With Family of Division Procedure

In this section, we modify the result obtained . [Let =, ; to be any point in the region covered
by thei" hyperinterval at deptth, andzj, ; be the global optimizer that may exist in thfé hy-
perinterval at deptfk. The previous work provided the regret bound of the SOO algorithm with a
family of division procedure that satisfies the following two assumptions.

Assumption 3. (Decreasing diameter) There exists a diameter funci{@dn > 0 such that, for
any hyperintervaly, ; C  and its centeky,; € wy; and anyz,; € wp,;, we haved(h) >
supg, ,{(zn,,cn:) andd(h —1) > 6(h) forall h >1.

Assumption 4. (Well-shaped cell) There exists > 0 such that any hyperintervai, ; contains at
least ar¢-ball of radiusvé(h) centered inwy, ;.

Thus, in this section, hyperinterval is not restricted to hyperrectangle. We now revisit the definitions
of several terms and variables usedih Let thee-optimal spaceX, be defined asx(, := {z € Q :
f(z)+e > f(z*)}. Thatis, thes-optimal space is the set of input vectors whose function value is at
leaste-close to the global optima. To bound the number of hyperintervals relevant todpismal
space, we define a near-optimality dimension as follows.

Definition 3. (Near-optimality dimension) The near-optimality dimension is the smadlest 0
such that, there exists > 0, for all ¢ > 0, the maximum number of disjoirtballs of radiusve
with center in the=-optimal spaceX. is less tharCe <.

Thus, the probability in this analysis should be seen as theeo$ubjective viewlf we assume thaf is
indeed a sample from the GP, we have the same resultmétbbjective viewof probability.



Finally, we define the set af-optimal hyperintervalds ) as sy == {wni 2 cni @ flens) +
d(h) > f(x*)}. Thed-optimal hyperintervalls; is used to relate the hyperintervals to the
optimal space. Indeed, thieoptimal hyperintervalls is almost identical to thé(h)-optimal
spaceX; ), except that/s,) is focused on the center points wherets;,) considers the whole
input vector space. In the following, we ugg;) | to denote the number @) and derive its upper
bound.

Lemma 2. (Lemma 3.1 in #]) Let d be the near-optimality dimension aidd denote the corre-
sponding constant in Definition 1. Then, the numbewafptimal hyperintervals is bounded by
[y |< Co(h) <.

We are now ready to present the main result in this section. In the following, we use thept@mal
hyperintervalto indicate a hyperinterval that contains a global optimizerWe say a hyperinterval

is dominatedby other intervals when it is rejected or not selected in step (i)-(iii). In Lemma 3, we
bound the maximum size of the optimal hyperinterval. From Assumption 1, this can be translated to
the regret bound, as we shall see in Theorem 2.

Lemma 3. LetE,, < min(E, E,,,.) be the larges{ used so far with: total node expansions. Let
h’ be the depth of the deepest expanded node that contains a global optitnéfaar» total node
expansions (i.eh) < n determines the size of ttaptimal hyperintervgl Then, with probability
at leastl — n, b is bounded below by sonié that satisfies
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Proof. Let T}, denote the time at which the optimal hyperinterval is further divided. We prove the
statement by showing that the time differefite ; — T}, is bounded by the number éfoptimal
hyperintervals. To do so, we first note that there are three types of hyperinterval that can dominate
an optimal hyperintervat; ;1 . during the time[T}, T,+1 — 1], all of which belong taj-optimal
hyperintervalds. The first type has the same size (i.e., same deptty, ., ;. In this case,

f(ch-‘rl,i) > f(ch+17*> > f(ﬂfz_u,*) - 5(]7‘ + 1)7

where the first inequality is due to line 10 (step (i)) and the second follows Assumptions 1 and
2. Thus, it must bey,11, € I+1. The second case is where the optimal hyperinterval may be
dominated by a hyperinterval of larger size (depth h + 1), ¢; ;. In this case, similarly,

fleri) = flensr) = f(@hiq.) —6(0),

where the first inequality is due to lines 11 to 12 (step (ii)) and thusc I;. In the final scenario,
the optimal hyperinterval is dominated by a hyperinterval of smaller size (depthi-£), cr+14¢,i-
In this case,

flenyirei) > 2(h+1,%) > fzh ) —6(h+14E)

with probability at least — n wherez(-, -) is defined in line 21 of Algorithm 1. The first inequality
is due to lines 19 to 23 (step (iii)) and the second inequality follows Lemma 1 and Assumptions 1
and 3. Hence, we can see thal 14¢; € Jpi14e.

For all of the above arguments, the temporarily assigethder GP has no effect. This is because
the algorithm still covers the above three typessaiptimal hyperintervalds, ast/ > f with
probability at least — n (Lemma 1). However, these are only expanded basefilmrause of the
temporary nature dff. Putting these results together,

h+1+4+E2
E I |

Thy1 —Th < Z pr-

T=1

Since if one of thel; is divided during[T},, Tr+1 — 1], it cannot be divided again during another
time period,

h* 4142
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where on the right-hand side, we could combine the summ]f?ﬂ andzzl Lol ng the

one, because eaétin the summation refers to the sameptimal intervalls ;) with | < h} +1+E,,
and should not be double-counted. Eﬁ;o Thy1 —Th = Thz 41 — To, To = 1 and|I5)|= 1,

Zz 1+1+_n \I | Zl 0+1+~n \I |
Thry1 <1+ Z pr < Z Pr-
T=1 T=1
/ z, I \m z, n PSR |
As Ty,- +1 > n by definition, for any” such thaty .~ s <n <y pPry WE
haveh’ > h'. ]

With Lemmas 2 and 3, we are ready to present a finite regret bound with the family of division
procedures.

Theorem 2. Assume Assumptions 1, 3, and 4. ligt) be the smallest integérsuch that

Czh+—n 5(l)7d
ns ).

T=1

Then, with probability at least — 7, the regret of the IMGPO with any general division procedure
is bounded as
rn < O(h(n) —1).

Proof. Let ¢(n) andcy,- . be the center point expanded at thi& expansion and the optimal hy-
perinterval containing a global optimizer, respectively. Then, from Assumptions 1, 3, and 4,
fle(n)) > flens «) > f* — 0(h},), where f* is the global optima. Hence, the regret bound is
rp, < 6(h}). To find a lower bound for the quantity;,, we first relateh(n) to Lemma 3 by

Czh(")+~n 1 5(l)7d ;1:(75)4'571*1‘]1'
n> E pr = E Prs
T=1 T=1

where the first inequality comes from the definitioréf:), and the second follows from Lemma 2.
Then, from Lemma 3, we have, > h(n) — 1. Thereforey,, < §(h}) < d(h(n) —1). O

Assumption 5. (Decreasing diameter revisit) The decreasing diameter defined in Assumption 3 can
be written asy(h) = c;y"/P for somec; > 0 andy < 1 with a division procedure that requires
function evaluations per node expansion.

Corollary 1. Assume Assumptions 1, 3, 4, and 5. Thenj i 0, with probability at least —

N + N,
wsofem(-2238))

If d > 0, with probability at least — 7,
1 1/d 2Cpy ya
TN<O<<N+N ) (‘lWJ) v

h(n)+ZEn d
Proof. For the casel = 0, we haven < 5°¢>= s pr < S EBIFEAD 5 where the
first inequality follows from the definition of(n), and the second comes from the definitiorppf
and the assumptioh = 0. The second inequality holds fgg that only considerg.. with 7 < ¢.
This is computable, because < t by construction. Indeed, the condition of Lemma 3 implies

t> Z" T=n11,|. Therefore, the two inequalities hold, and we can deduceithat > o5 —En—1

by algebraic manipulation. By Assumptionib= (N + Ng,)/co. With this, substituting the lower
bound off(n) into the statement of Theorem 2 with Assumption 5,

N+ N, 1 1
< - — = —2(ln—).
rNclexp( { . Ty } 117>

3



Similarly, for the case > 0,

—(h(n)+En+1)d/D _,

o o
n < > pr < > Pt
T=1 T=1
h(n)+En n(1—y*P) —-1/d . . . o L.
and hencey™ b <\ by algebraic manipulation. Substituting this into the
result of Theorem 2, we arrive at the desired result. O

B W.ith a Concrete Division Procedure

In this section, we prove the main result in the paper. In Theorem 1, we show that the exponential
convergence rate bour@ (AN e ) with A < 1 is achievedvithout Assumptions 3, 4 and 5 and
withoutthe assumption that = 0.

Theorem 1. Assume Assumptions 1 and 2. L@t= sup, ,/cq 3|2 —2/[| . LetA = 372D < 1.
Then, without Assumptions 3, 4 and 5 anglithout the assumption od, with probability at least
1 — n, the regret of IMGPO with the division procedure in Algorithm 1 is bounded as

N N \
< 1/pya gp = — N+Ngp .
ry < L(3BD /") exp ( a [ o7 = 2} In 3) =0 (/\ )

Proof. To prove the statement, we show that Assumptions 3, 4, and 5 can all be satisfied
while maintainingd = 0. From Assumption 2, and based on the division procedure that
the algorithm usessup,c,,, , £(z,chi) < SUPyey, , Lllz — cnillp< L(B_Lh/DJﬁDl/p)a.

This upper bound corresponds to the diagonal length of each hyperrectangle with respect to
p-norm, where3~"/P1 3 corresponds to the length of the longest side. We fix the form as$

§(h) = L3*D/P3=ha/Dga > [(3-h/PIgpl/rya which satisfies Assumption 3. This form

of 5(h) also satisfies Assumption 5 with= 3~ and¢; = L3*D*/?3*. Every hyperrectangle
contains at least onéball with a radius corresponding to the length of the shortest side of the
hyperrectangle. Thus, we have at least é#ll of radiusvé(h) = L3~"/P1 > [3-ag—ah/D

for every hyperrectangle with > 3-2*D~-/?, This satisfies Assumption 4. Finally, to show

d = 0 in this case, we note that, by Assumption 2, the voldmef an ¢-ball of radiusvé(h) is
proportional to(v3(h))P asVh(vs(h)) = (2vé(h)T(1+1/p))P /T (1 + D/p). Now, by definition,

the (h)-optimal spaceXs ) is covered by arf-ball of radiusé(h), and is therefore covered by
(6(h)/(v8(h)))P = v=P-balls of radius/é(h). Therefore, the number @fballs does not depend
ond(h) in this case, which means= 0. Now that we have satisfied Assumptions 3, 4, and 5 with
d=0,v=3"2 andc; = L3*D*/?3, we follow the proof of Corollary 1 and deduce the desired
statement. 0
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