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Abstract

We introduce a globally-convergent algorithm for optimizing the tree-reweighted
(TRW) variational objective over the marginal polytope. The algorithm is based
on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals
within the marginal polytope through repeated maximum a posteriori (MAP) calls.
This modular structure enables us to leverage black-box MAP solvers (both exact
and approximate) for variational inference, and obtains more accurate results than
tree-reweighted algorithms that optimize over the local consistency relaxation.
Theoretically, we bound the sub-optimality for the proposed algorithm despite
the TRW objective having unbounded gradients at the boundary of the marginal
polytope. Empirically, we demonstrate the increased quality of results found by
tightening the relaxation over the marginal polytope as well as the spanning tree
polytope on synthetic and real-world instances.

1 Introduction
Markov random fields (MRFs) are used in many areas of computer science such as vision and
speech. Inference in these undirected graphical models is generally intractable. Our work focuses on
performing approximate marginal inference by optimizing the Tree Re-Weighted (TRW) objective
(Wainwright et al., 2005). The TRW objective is concave, is exact for tree-structured MRFs, and
provides an upper bound on the log-partition function.

Fast combinatorial solvers for the TRW objective exist, including Tree-Reweighted Belief Propaga-
tion (TRBP) (Wainwright et al., 2005), convergent message-passing based on geometric program-
ming (Globerson and Jaakkola, 2007), and dual decomposition (Jancsary and Matz, 2011). These
methods optimize over the set of pairwise consistency constraints, also called the local polytope.
Sontag and Jaakkola (2007) showed that significantly better results could be obtained by optimizing
over tighter relaxations of the marginal polytope. However, deriving a message-passing algorithm
for the TRW objective over tighter relaxations of the marginal polytope is challenging. Instead,
Sontag and Jaakkola (2007) use the conditional gradient method (also called Frank-Wolfe) and off-
the-shelf linear programming solvers to optimize TRW over the cycle consistency relaxation. Rather
than optimizing over the cycle relaxation, Belanger et al. (2013) optimize the TRW objective over
the exact marginal polytope. Then, using Frank-Wolfe, the linear minimization performed in the
inner loop can be shown to correspond to MAP inference.

The Frank-Wolfe optimization algorithm has seen increasing use in machine learning, thanks in
part to its efficient handling of complex constraint sets appearing with structured data (Jaggi, 2013;
Lacoste-Julien and Jaggi, 2015). However, applying Frank-Wolfe to variational inference presents
challenges that were never resolved in previous work. First, the linear minimization performed
in the inner loop is computationally expensive, either requiring repeatedly solving a large linear
program, as in Sontag and Jaakkola (2007), or performing MAP inference, as in Belanger et al.
(2013). Second, the TRW objective involves entropy terms whose gradients go to infinity near the
boundary of the feasible set, therefore existing convergence guarantees for Frank-Wolfe do not apply.
Third, variational inference using TRW involves both an outer and inner loop of Frank-Wolfe, where
the outer loop optimizes the edge appearance probabilities in the TRW entropy bound to tighten it.
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Neither Sontag and Jaakkola (2007) nor Belanger et al. (2013) explore the effect of optimizing over
the edge appearance probabilities.

Although MAP inference is in general NP hard (Shimony, 1994), it is often possible to find exact so-
lutions to large real-world instances within reasonable running times (Sontag et al., 2008; Allouche
et al., 2010; Kappes et al., 2013). Moreover, as we show in our experiments, even approximate
MAP solvers can be successfully used within our variational inference algorithm. As MAP solvers
improve in their runtime and performance, their iterative use could become feasible and as a byprod-
uct enable more efficient and accurate marginal inference. Our work provides a fast deterministic
alternative to recently proposed Perturb-and-MAP algorithms (Papandreou and Yuille, 2011; Hazan
and Jaakkola, 2012; Ermon et al., 2013).

Contributions. This paper makes several theoretical and practical innovations. We propose a mod-
ification to the Frank-Wolfe algorithm that optimizes over adaptively chosen contractions of the
domain and prove its rate of convergence for functions whose gradients can be unbounded at the
boundary. Our algorithm does not require a different oracle than standard Frank-Wolfe and could be
useful for other convex optimization problems where the gradient is ill-behaved at the boundary.

We instantiate the algorithm for approximate marginal inference over the marginal polytope with
the TRW objective. With an exact MAP oracle, we obtain the first provably convergent algorithm
for the optimization of the TRW objective over the marginal polytope, which had remained an open
problem to the best of our knowledge. Traditional proof techniques of convergence for first order
methods fail as the gradient of the TRW objective is not Lipschitz continuous.

We develop several heuristics to make the algorithm practical: a fully-corrective variant of Frank-
Wolfe that reuses previously found integer assignments thereby reducing the need for new (approxi-
mate) MAP calls, the use of local search between MAP calls, and significant re-use of computations
between subsequent steps of optimizing over the spanning tree polytope. We perform an extensive
experimental evaluation on both synthetic and real-world inference tasks.

2 Background
Markov Random Fields: MRFs are undirected probabilistic graphical models where the probability
distribution factorizes over cliques in the graph. We consider marginal inference on pairwise MRFs
with N random variables X1, X2, . . . , XN where each variable takes discrete states xi ∈ VALi. Let
G = (V,E) be the Markov network with an undirected edge {i, j} ∈ E for every two variables
Xi and Xj that are connected together. Let N (i) refer to the set of neighbors of variable Xi. We
organize the edge log-potentials θij(xi, xj) for all possible values of xi ∈ VALi, xj ∈ VALj in
the vector θij , and similarly for the node log-potential vector θi. We regroup these in the overall
vector ~θ. We introduce a similar grouping for the marginal vector ~µ: for example, µi(xi) gives the
coordinate of the marginal vector corresponding to the assignment xi to variable Xi.

Tree Re-weighted Objective (Wainwright et al., 2005): Let Z(~θ) be the partition function for the
MRF andM be the set of all valid marginal vectors (the marginal polytope). The maximization of
the TRW objective gives the following upper bound on the log partition function:

logZ(~θ) ≤ min
ρ∈T

max
~µ∈M

〈~θ, ~µ〉+H(~µ;ρ)︸ ︷︷ ︸
TRW(~µ;~θ,ρ)

,
(1)

where the TRW entropy is:

H(~µ;ρ) :=
∑
i∈V

(1−
∑

j∈N (i)

ρij)H(µi) +
∑

(ij)∈E
ρijH(µij), H(µi) := −

∑
xi

µi(xi) logµi(xi). (2)

T is the spanning tree polytope, the convex hull of edge indicator vectors of all possible spanning
trees of the graph. Elements of ρ ∈ T specify the probability of an edge being present under a
specific distribution over spanning trees.M is difficult to optimize over, and most TRW algorithms
optimize over a relaxation called the local consistency polytope L ⊇M:
L :=

{
~µ ≥ 0,

∑
xi
µi(xi) = 1 ∀i ∈ V, ∑xi

µij(xi, xj) = µj(xj),
∑
xj
µij(xi, xj) = µi(xi) ∀{i, j} ∈ E

}
.

The TRW objective TRW(~µ; ~θ,ρ) is a globally concave function of ~µ over L, assuming that ρ is
obtained from a valid distribution over spanning trees of the graph (i.e. ρ ∈ T).

Frank-Wolfe (FW) Algorithm: In recent years, the Frank-Wolfe (aka conditional gradient) al-
gorithm has gained popularity in machine learning (Jaggi, 2013) for the optimization of convex
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functions over compact domains (denoted D). The algorithm is used to solve minx∈D f(x) by
iteratively finding a good descent vertex by solving the linear subproblem:

s(k) = argmin
s∈D

〈∇f(x(k)), s〉 (FW oracle), (3)

and then taking a convex step towards this vertex: x(k+1) = (1 − γ)x(k) + γs(k) for a suitably
chosen step-size γ ∈ [0, 1]. The algorithm remains within the feasible set (is projection free), is
invariant to affine transformations of the domain, and can be implemented in a memory efficient
manner. Moreover, the FW gap g(x(k)) := 〈−∇f(x(k)), s(k) − x(k)〉 provides an upper bound on
the suboptimality of the iterate x(k). The primal convergence of the Frank-Wolfe algorithm is given
by Thm. 1 in Jaggi (2013), restated here for convenience: for k ≥ 1, the iterates x(k) satisfy:

(4)f(x(k))− f(x∗) ≤ 2Cf
k + 2

,

where Cf is called the “curvature constant”. Under the assumption that ∇f is L-Lipschitz continu-
ous1 on D, we can bound it as Cf ≤ Ldiam||.||(D)2.

Marginal Inference with Frank-Wolfe: To optimize max~µ∈M TRW(~µ; ~θ,ρ) with Frank-Wolfe,
the linear subproblem (3) becomes argmax~µ∈M〈θ̃, ~µ〉, where the perturbed potentials θ̃ correspond
to the gradient of TRW(~µ; ~θ,ρ) with respect to ~µ. Elements of θ̃ are of the form θc(xc) +Kc(1 +
logµc(xc)), evaluated at the pseudomarginals’ current location inM, where Kc is the coefficient
of the entropy for the node/edge term in (2). The FW linear subproblem here is thus equivalent
to performing MAP inference in a graphical model with potentials θ̃ (Belanger et al., 2013), as
the vertices of the marginal polytope are in 1-1 correspondence with valid joint assignments to the
random variables of the MRF, and the solution of a linear program is always achieved at a vertex
of the polytope. The TRW objective does not have a Lipschitz continuous gradient overM, and so
standard convergence proofs for Frank-Wolfe do not hold.

3 Optimizing over Contractions of the Marginal Polytope
Motivation: We wish to (1) use the fewest possible MAP calls, and (2) avoid regions near the
boundary where the unbounded curvature of the function slows down convergence. A viable option
to address (1) is through the use of correction steps, where after a Frank-Wolfe step, one opti-
mizes over the polytope defined by previously visited vertices of M (called the fully-corrective
Frank-Wolfe (FCFW) algorithm and proven to be linearly convergence for strongly convex objec-
tives (Lacoste-Julien and Jaggi, 2015)). This does not require additional MAP calls. However, we
found (see Sec. 5) that when optimizing the TRW objective overM, performing correction steps can
surprisingly hurt performance. This leaves us in a dilemma: correction steps enable decreasing the
objective without additional MAP calls, but they can also slow global progress since iterates after
correction sometimes lie close to the boundary of the polytope (where the FW directions become
less informative). In a manner akin to barrier methods and to Garber and Hazan (2013)’s local linear
oracle, our proposed solution maintains the iterates within a contraction of the polytope. This gives
us most of the mileage obtained from performing the correction steps without suffering the conse-
quences of venturing too close to the boundary of the polytope. We prove a global convergence rate
for the iterates with respect to the true solution over the full polytope.

We describe convergent algorithms to optimize TRW(~µ; ~θ,ρ) for ~µ ∈ M. The approach we adopt
to deal with the issue of unbounded gradients at the boundary is to perform Frank-Wolfe within
a contraction of the marginal polytope given by Mδ for δ ∈ [0, 1], with either a fixed δ or an
adaptive δ.
Definition 3.1 (Contraction polytope). Mδ := (1 − δ)M + δ u0, where u0 ∈ M is the vector
representing the uniform distribution.

Marginal vectors that lie withinMδ are bounded away from zero as all the components of u0 are
strictly positive. Denoting V(δ) as the set of vertices of Mδ , V as the set of vertices of M and
f(~µ) := −TRW(~µ; ~θ,ρ), the key insight that enables our novel approach is that:

arg min
v(δ)∈V(δ)

〈
∇f,v(δ)

〉
︸ ︷︷ ︸

(Linear Minimization overMδ)

≡ arg min
v∈V

〈∇f, (1− δ)v + δu0〉︸ ︷︷ ︸
(Definition of v(δ))

≡ (1− δ) arg min
v∈V

〈∇f,v〉+ δu0.︸ ︷︷ ︸
(Run MAP solver and shift vertex)

1I.e. ‖∇f(x)−∇f(x′)‖∗≤ L‖x− x′‖ for x,x′ ∈ D. Notice that the dual norm ‖·‖∗ is needed here.
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Algorithm 1: Updates to δ after a MAP call (Adaptive δ variant)

1: At iteration k. Assuming x(k),u0, δ
(k−1), f are defined and s(k) has been computed

2: Compute g(x(k)) = 〈−∇f(x(k)), s(k) − x(k)〉 (Compute FW gap)
3: Compute gu(x(k)) = 〈−∇f(x(k)),u0 − x(k)〉 (Compute “uniform gap”)
4: if gu(x(k)) < 0 then
5: Let δ̃ = g(x(k))

−4gu(x(k))
(Compute new proposal for δ)

6: if δ̃ < δ(k−1) then
7: δ(k) = min

(
δ̃, δ

(k−1)

2

)
(Shrink by at least a factor of two if proposal is smaller)

8: end if
9: end if (and set δ(k) = δ(k−1) if it was not updated)

Therefore, to solve the FW subproblem (3) overMδ , we can run as usual a MAP solver and simply
shift the resulting vertex ofM towards u0 to obtain a vertex ofMδ . Our solution to optimize over
restrictions of the polytope is more broadly applicable to the optimization problem defined below,
with f satisfying Prop. 3.3 (satisfied by the TRW objective) in order to get convergence rates.
Problem 3.2. Solve minx∈D f(x) where D is a compact convex set and f is convex and continu-
ously differentiable on the relative interior of D.
Property 3.3. (Controlled growth of Lipschitz constant over Dδ). We define Dδ := (1− δ)D+ δu0

for a fixed u0 in the relative interior of D. We suppose that there exists a fixed p ≥ 0 and L such
that for any δ > 0, ∇f(x) has a bounded Lipschitz constant Lδ ≤ Lδ−p ∀x ∈ Dδ .

Fixed δ: The first algorithm fixes a value for δ a-priori and performs the optimization over Dδ . The
following theorem bounds the sub-optimality of the iterates with respect to the optimum over D.
Theorem 3.4 (Suboptimality bound for fixed-δ algorithm). Let f satisfy the properties in Prob. 3.2
and Prop. 3.3, and suppose further that f is finite on the boundary ofD. Then the use of Frank-Wolfe
for minx∈Dδ f(x) realizes a sub-optimality over D bounded as:

f(x(k))− f(x∗) ≤ 2Cδ
(k + 2)

+ ω (δ diam(D)) ,

where x∗ is the optimal solution in D, Cδ ≤ Lδ diam||.||(Dδ)2, and ω is the modulus of continuity
function of the (uniformly) continuous f (in particular, ω(δ) ↓ 0 as δ ↓ 0).

The full proof is given in App. C. The first term of the bound comes from the standard Frank-Wolfe
convergence analysis of the sub-optimality of x(k) relative to x∗(δ), the optimum over Dδ , as in (4)
and using Prop. 3.3. The second term arises by bounding f(x∗(δ))− f(x∗) ≤ f(x̃)− f(x∗) with a
cleverly chosen x̃ ∈ Dδ (as x∗(δ) is optimal in Dδ). We pick x̃ := (1 − δ)x∗ + δu0 and note that
‖x̃ − x∗‖≤ δ diam(D). As f is continuous on a compact set, it is uniformly continuous and we
thus have f(x̃)− f(x∗) ≤ ω(δ diam(D)) with ω its modulus of continuity function.

Adaptive δ: The second variant to solve minx∈D f(x) iteratively perform FW steps over Dδ , but
also decreases δ adaptively. The update schedule for δ is given in Alg. 1 and is motivated by the
convergence proof. The idea is to ensure that the FW gap over Dδ is always at least half the FW
gap over D, relating the progress over Dδ with the one over D. It turns out that FW-gap-Dδ =
(1 − δ)FW-gap-D + δ · gu(x(k)), where the “uniform gap” gu(x(k)) quantifies the decrease of the
function when contracting towards u0. When gu(x(k)) is negative and large compared to the FW
gap, we need to shrink δ (see step 5 in Alg. 1) to ensure that the δ-modified direction is a sufficient
descent direction. We can show that the algorithm converges to the global solution as follows:
Theorem 3.5 (Global convergence for adaptive-δ variant over D). For a function f satisfying the
properties in Prob. 3.2 and Prop. 3.3, the sub-optimality of the iterates obtained by running the FW
updates over Dδ with δ updated according to Alg. 1 is bounded as:

f(x(k))− f(x∗) ≤ O
(
k−

1
p+1

)
.

A full proof with a precise rate and constants is given in App. D. The sub-optimality hk := f(x(k))−
f(x∗) traverses three stages with an overall rate as above. The updates to δ(k) as in Alg. 1 enable us
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Algorithm 2: Approximate marginal inference overM (solving (1)). Here f is the negative TRW objective.

1: Function TRW-Barrier-FW(ρ(0), ε, δ(init),u0):
2: Inputs: Edge-appearance probabilities ρ(0), δ(init) ≤ 1

4
initial contraction of polytope, inner loop

stopping criterion ε, fixed reference point u0 in the interior ofM. Let δ(−1) = δ(init).
3: Let V := {u0} (visited vertices), x(0) = u0 (Initialize the algorithm at the uniform distribution)
4: for i = 0 . . .MAX RHO ITS do {FW outer loop to optimize ρ over T}
5: for k = 0 . . .MAXITS do {FCFW inner loop to optimize x overM}
6: Let θ̃ = ∇f(x(k); ~θ,ρ(i)) (Compute gradient)
7: Let s(k) ∈ arg min

v∈M
〈θ̃,v〉 (Run MAP solver to compute FW vertex)

8: Compute g(x(k)) = 〈−θ̃, s(k) − x(k)〉 (Inner loop FW duality gap)
9: if g(x(k)) ≤ ε then

10: break FCFW inner loop (x(k) is ε-optimal)
11: end if
12: δ(k) = δ(k−1) (For Adaptive-δ: Run Alg. 1 to modify δ)
13: Let s(k)(δ) = (1− δ(k))s(k) + δ(k)u0 and d(k)

(δ) = s
(k)

(δ) − x
(k) (δ-contracted quantities)

14: x(k+1) = arg min{f(x(k) + γ d
(k)

(δ)) : γ ∈ [0, 1]} (FW step with line search)

15: Update correction polytope: V := V ∪ {s(k)}
16: x(k+1) := CORRECTION(x(k+1), V, δ(k),ρ(i)) (optional: correction step)
17: x(k+1), Vsearch := LOCALSEARCH(x(k+1), s(k), δ(k),ρ(i)) (optional: fast MAP solver)
18: Update correction polytope (with vertices from LOCALSEARCH): V := V ∪ {Vsearch}
19: end for
20: ρv ← minSpanTree(edgesMI(x(k))) (FW vertex of the spanning tree polytope)
21: ρ(i+1) ← ρ(i) + ( i

i+2
)(ρv − ρ(i)) (Fixed step-size schedule FW update for ρ kept in relint(T))

22: x(0) ← x(k), δ(−1) ← δ(k−1) (Re-initialize for FCFW inner loop)
23: If i < MAX RHO ITS then x(0) = CORRECTION(x(0), V, δ(−1),ρ(i+1))
24: end for
25: return x(0) and ρ(i)

to (1) upper bound the duality gap overD as a function of the duality gap inDδ and (2) lower bound
the value of δ(k) as a function of hk. Applying the standard Descent Lemma with the Lipschitz
constant on the gradient of the form Lδ−p (Prop. 3.3), and replacing δ(k) by its bound in hk, we get
the recurrence: hk+1 ≤ hk − Chp+2

k . Solving this gives us the desired bound.

Application to the TRW Objective: min~µ∈M−TRW(~µ; ~θ,ρ) is akin to minx∈D f(x) and the
(strong) convexity of −TRW(~µ; ~θ,ρ) has been previously shown (Wainwright et al., 2005; London
et al., 2015). The gradient of the TRW objective is Lipschitz continuous overMδ since all marginals
are strictly positive. Its growth for Prop. 3.3 can be bounded with p = 1 as we show in App. E.1. This
gives a rate of convergence of O(k−1/2) for the adaptive-δ variant, which interestingly is a typical
rate for non-smooth convex optimization. The hidden constant is of the order O(‖θ‖·|V |). The
modulus of continuity ω for the TRW objective is close to linear (it is almost a Lipschitz function),
and its constant is instead of the order O(‖θ‖+|V |).

4 Algorithm
Alg. 2 describes the pseudocode for our proposed algorithm to do marginal inference with
TRW(~µ; ~θ,ρ). minSpanTree finds the minimum spanning tree of a weighted graph, and
edgesMI(~µ) computes the mutual information of edges of G from the pseudomarginals in ~µ2 (to
perform FW updates over ρ as in Alg. 2 in Wainwright et al. (2005)). It is worthwhile to note that
our approach uses three levels of Frank-Wolfe: (1) for the (tightening) optimization of ρ over T, (2)
to perform approximate marginal inference, i.e for the optimization of ~µ overM, and (3) to perform
the correction steps (lines 16 and 23). We detail a few heuristics that aid practicality.

Fast Local Search: Fast methods for MAP inference such as Iterated Conditional Modes (Be-
sag, 1986) offer a cheap, low cost alternative to a more expensive combinatorial MAP solver. We

2The component ij has value H(µi) +H(µj)−H(µij).
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warm start the ICM solver with the last found vertex s(k) of the marginal polytope. The subroutine
LOCALSEARCH (Alg. 6 in Appendix) performs a fixed number of FW updates to the pseudo-
marginals using ICM as the (approximate) MAP solver.

Re-optimizing over the Vertices of M (FCFW algorithm): As the iterations of FW progress,
we keep track of the vertices of the marginal polytope found by Alg. 2 in the set V . We make use
of these vertices in the CORRECTION subroutine (Alg. 5 in Appendix) which re-optimizes the
objective function over (a contraction of) the convex hull of the elements of V (called the correction
polytope). x(0) in Alg. 2 is initialized to the uniform distribution which is guaranteed to be inM
(andMδ). After updating ρ, we set x(0) to the approximate minimizer in the correction polytope.
The intuition is that changing ρ by a small amount may not substantially modify the optimal x∗
(for the new ρ) and that the new optimum might be in the convex hull of the vertices found thus far.
If so, CORRECTION will be able to find it without resorting to any additional MAP calls. This
encourages the MAP solver to search for new, unique vertices instead of rediscovering old ones.

Approximate MAP Solvers: We can swap out the exact MAP solver with an approximate MAP
solver. The primal objective plus the (approximate) duality gap may no longer be an upper bound
on the log-partition function (black-box MAP solvers could be considered to optimize over an inner
bound to the marginal polytope). Furthermore, the gap over D may be negative if the approximate
MAP solver fails to find a direction of descent. Since adaptive-δ requires that the gap be positive
in Alg. 1, we take the max over the last gap obtained over the correction polytope (which is always
non-negative) and the computed gap over D as a heuristic.

Theoretically, one could get similar convergence rates as in Thm. 3.4 and 3.5 using an approximate
MAP solver that has a multiplicative guarantee on the gap (line 8 of Alg. 2), as was done previously
for FW-like algorithms (see, e.g., Thm. C.1 in Lacoste-Julien et al. (2013)). With an ε-additive
error guarantee on the MAP solution, one can prove similar rates up to a suboptimality error of ε.
Even if the approximate MAP solver does not provide an approximation guarantee, if it returns an
upper bound on the value of the MAP assignment (as do branch-and-cut solvers for integer linear
programs, or Sontag et al. (2008)), one can use this to obtain an upper bound on logZ (see App. J).

5 Experimental Results
Setup: The L1 error in marginals is computed as: ζµ := 1

N

∑N
i=1|µi(1) − µ∗i (1)|. When using

exact MAP inference, the error in logZ (denoted ζlogZ) is computed by adding the duality gap to
the primal (since this guarantees us an upper bound). For approximate MAP inference, we plot the
primal objective. We use a non-uniform initialization of ρ computed with the Matrix Tree Theorem
(Sontag and Jaakkola, 2007; Koo et al., 2007). We perform 10 updates to ρ, optimize ~µ to a duality
gap of 0.5 onM, and always perform correction steps. We use LOCALSEARCH only for the real-
world instances. We use the implementation of TRBP and the Junction Tree Algorithm (to compute
exact marginals) in libDAI (Mooij, 2010). Unless specified, we compute marginals by optimizing
the TRW objective using the adaptive-δ variant of the algorithm (denoted in the figures as Mδ).

MAP Solvers: For approximate MAP, we run three solvers in parallel: QPBO (Kolmogorov and
Rother, 2007; Boykov and Kolmogorov, 2004), TRW-S (Kolmogorov, 2006) and ICM (Besag, 1986)
using OpenGM (Andres et al., 2012) and use the result that realizes the highest energy. For exact
inference, we use Gurobi Optimization (2015) or toulbar2 (Allouche et al., 2010).

Test Cases: All of our test cases are on binary pairwise MRFs. (1) Synthetic 10 nodes cliques:
Same setup as Sontag and Jaakkola (2007, Fig. 2), with 9 sets of 100 instances each with cou-
pling strength drawn from U [−θ, θ] for θ ∈ {0.5, 1, 2, . . . , 8}. (2) Synthetic Grids: 15 trials with
5 × 5 grids. We sample θi ∼ U [−1, 1] and θij ∈ [−4, 4] for nodes and edges. The potentials
were (−θi, θi) for nodes and (θij ,−θij ;−θij , θij) for edges. (3) Restricted Boltzmann Machines
(RBMs): From the Probabilistic Inference Challenge 2011.3 (4) Horses: Large (N ≈ 12000) MRFs
representing images from the Weizmann Horse Data (Borenstein and Ullman, 2002) with potentials
learned by Domke (2013). (5) Chinese Characters: An image completion task from the KAIST
Hanja2 database, compiled in OpenGM by Andres et al. (2012). The potentials were learned using
Decision Tree Fields (Nowozin et al., 2011). The MRF is not a grid due to skip edges that tie nodes
at various offsets. The potentials are a combination of submodular and supermodular and therefore
a harder task for inference algorithms.

3http://www.cs.huji.ac.il/project/PASCAL/index.php

6

http://www.cs.huji.ac.il/project/PASCAL/index.php


0 10 20 30 40 50 60 70 80
MAP calls

0

10

20

30

40

50

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Mδ

M0.0001

M
Lδ
M(no correction)

(a) ζlogZ : 5× 5 grids
M vsMδ

0 5 10 15 20 25
MAP calls

0

10

20

30

40

50

60

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Mδ

M0.0001

M
Lδ
M(no correction)

(b) ζlogZ : 10 node cliques
M vsMδ

0 20 40 60 80 100 120
MAP calls

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
in

M
ar

gi
n

al
s

(ζ
µ
)

Exact MAPMδ

Lδ
Approx MAPMδ

(c) ζµ: 5× 5 grids
Approx. vs. Exact MAP

0 20 40 60 80 100
MAP calls

10−1

100

101

102

103

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
)

Exact MAPMδ

Lδ
Approx MAPMδ

(d) ζlogZ : 40 node RBM
Approx. vs. Exact MAP

0.51 2 3 4 5 6 7 8
θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
in

M
ar

gi
n

al
s

(ζ
µ
)

perturbMAP

Lδ
Lδ(ρopt)

Mδ(ρopt)

Mδ

(e) ζµ: 10 node cliques
Optimization over T

0.51 2 3 4 5 6 7 8
θ

10−1

100

101

102

E
rr

or
in

L
og

Z
(ζ

lo
g

Z
) perturbMAP

Lδ
Lδ(ρopt)

Mδ(ρopt)

Mδ

(f) ζlogZ : 10 node cliques
Optimization over T

Figure 1: Synthetic Experiments: In Fig. 1(c) & 1(d), we unravel MAP calls across updates to ρ. Fig. 1(d)
corresponds to a single RBM (not an aggregate over trials) where for “Approx MAP” we plot the absolute error
between the primal objective and logZ (not guaranteed to be an upper bound).

On the Optimization ofM versusMδ

We compare the performance of Alg. 2 on optimizing over M (with and without correction), op-
timizing over Mδ with fixed-δ = 0.0001 (denoted M0.0001) and optimizing over Mδ using the
adaptive-δ variant. These plots are averaged across all the trials for the first iteration of optimizing
over T. We show error as a function of the number of MAP calls since this is the bottleneck for
large MRFs. Fig. 1(a), 1(b) depict the results of this optimization aggregated across trials. We find
that all variants settle on the same average error. The adaptive δ variant converges faster on average
followed by the fixed δ variant. Despite relatively quick convergence forM with no correction on
the grids, we found that correction was crucial to reducing the number of MAP calls in subsequent
steps of inference after updates to ρ. As highlighted earlier, correction steps onM (in blue) worsen
convergence, an effect brought about by iterates wandering too close to the boundary ofM.

On the Applicability of Approximate MAP Solvers

Synthetic Grids: Fig. 1(c) depicts the accuracy of approximate MAP solvers versus exact MAP
solvers aggregated across trials for 5 × 5 grids. The results using approximate MAP inference are
competitive with those of exact inference, even as the optimization is tightened over T. This is an
encouraging and non-intuitive result since it indicates that one can achieve high quality marginals
through the use of relatively cheaper approximate MAP oracles.

RBMs: As in Salakhutdinov (2008), we observe for RBMs that the bound provided by
TRW(~µ; ~θ,ρ) over Lδ is loose and does not get better when optimizing over T. As Fig. 1(d) depicts
for a single RBM, optimizing overMδ realizes significant gains in the upper bound on logZ which
improves with updates to ρ. The gains are preserved with the use of the approximate MAP solvers.
Note that there are also fast approximate MAP solvers specifically for RBMs (Wang et al., 2014).

Horses: See Fig. 2 (right). The models are close to submodular and the local relaxation is a good
approximation to the marginal polytope. Our marginals are visually similar to those obtained by
TRBP and our algorithm is able to scale to large instances by using approximate MAP solvers.
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Figure 2: Results on real world test cases. FW(i) corresponds to the final marginals at the ith iteration of
optimizing ρ. The area highlighted on the Chinese Characters depicts the region of uncertainty.

On the Importance of Optimizing over T

Synthetic Cliques: In Fig. 1(e), 1(f), we study the effect of tightening over T against coupling
strength θ. We consider the ζµ and ζlogZ obtained for the final marginals before updating ρ (step 19)
and compare to the values obtained after optimizing over T (marked with ρopt). The optimization
over T has little effect on TRW optimized over Lδ . For optimization overMδ , updating ρ realizes
better marginals and bound on logZ (over and above those obtained in Sontag and Jaakkola (2007)).

Chinese Characters: Fig. 2 (left) displays marginals across iterations of optimizing over T. The
submodular and supermodular potentials lead to frustrated models for which Lδ is very loose, which
results in TRBP obtaining poor results.4 Our method produces reasonable marginals even before the
first update to ρ, and these improve with tightening over T.

Related Work for Marginal Inference with MAP Calls

Hazan and Jaakkola (2012) estimate logZ by averaging MAP estimates obtained on randomly per-
turbed inflated graphs. Our implementation of the method performed well in approximating logZ
but the marginals (estimated by fixing the value of each random variable and estimating logZ for
the resulting graph) were less accurate than our method (Fig. 1(e), 1(f)).

6 Discussion
We introduce the first provably convergent algorithm for the TRW objective over the marginal
polytope, under the assumption of exact MAP oracles. We quantify the gains obtained both from
marginal inference overM and from tightening over the spanning tree polytope. We give heuristics
that improve the scalability of Frank-Wolfe when used for marginal inference. The runtime cost of
iterative MAP calls (a reasonable rule of thumb is to assume an approximate MAP call takes roughly
the same time as a run of TRBP) is worthwhile particularly in cases such as the Chinese Characters
where L is loose. Specifically, our algorithm is appropriate for domains where marginal inference is
hard but there exist efficient MAP solvers capable of handling non-submodular potentials. Code is
available at https://github.com/clinicalml/fw-inference.

Our work creates a flexible, modular framework for optimizing a broad class of variational objec-
tives, not simply TRW, with guarantees of convergence. We hope that this will encourage more
research on building better entropy approximations. The framework we adopt is more generally
applicable to optimizing functions whose gradients tend to infinity at the boundary of the domain.

Our method to deal with gradients that diverge at the boundary bears resemblance to barrier func-
tions used in interior point methods insofar as they bound the solution away from the constraints.
Iteratively decreasing δ in our framework can be compared to decreasing the strength of the barrier,
enabling the iterates to get closer to the facets of the polytope, although its worthwhile to note that
we have an adaptive method of doing so.

Acknowledgements
RK and DS gratefully acknowledge the support of the DARPA Probabilistic Programming for Ad-
vancing Machine Learning (PPAML) Program under AFRL prime contract no. FA8750-14-C-0005.

4We run TRBP for 1000 iterations using damping = 0.9; the algorithm converges with a max norm difference
between consecutive iterates of 0.002. Tightening over T did not significantly change the results of TRBP.
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