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Data. As the currently biggest openly-accessible reference dataset, we chose the Human Connectome Project
(HCP) resources [4]. Neuroimaging task data with labels of ongoing cognitive processes were drawn from
500 healthy HCP participants. 18 HCP tasks were selected that are known to elicit reliable neural activity
across participants. The task paradigms include 1) working memory/cognitive control processing, 2) incentive
processing, 3) visual and somatosensory-motor processing, 4) language processing (semantic and phonological
processing), 5) social cognition, 6) relational processing, and 7) emotional processing. All data were acquired
on the same Siemens Skyra 3T scanner. Whole-brain EPI acquisitions were acquired with a 32 channel head coil
(TR=720ms, TE=33.1ms, flip angle=52, BW=2290Hz/Px, in-plane FOV=280mm ⇥ 180mm, 72 slices, 2.0mm
isotropic voxels). The “minimally preprocessed” pipeline includes gradient unwarping, motion correction,
fieldmap-based EPI distortion correction, brain-boundary-based registration of EPI to structural T1-weighted
scans, nonlinear (FNIRT) registration into MNI space, and grand-mean intensity normalization. Activity maps
were spatially smoothed with a Gaussian kernel of 4mm (FWHM). A GLM was implemented by FILM from the
FSL suite with model regressors from convolution with a canonical hemodynamic response function and from
temporal derivatives. HCP tasks were conceived to modulate activity in a maximum of different brain regions
and neural systems. Indeed, at least 70% of the participants showed consistent brain activity in contrasts from
the task battery, which certifies excellent activity patterns covering extended parts of the brain [4]. In sum,
the HCP task data incorporated 8650 first-level activity maps from 18 diverse paradigms administered to 498
participants (2 removed due to incomplete data). All maps were resampled to a common 60x72x60 space of
3mm isotropic voxels and gray-matter masked (at least 10% tissue probability). The supservised analyses were
based on labeled HCP task maps with 79,941 voxels of interest representing z-values in gray matter.

These labeled data were complemented by unlabeled activity maps from HCP acquisitions of unconstrained
resting-state activity [25]. These reflect brain activity in the absence of controlled thought. In line with the goal
of the present study, acquisition of these data was specifically aimed at the study of task-rest correspondence.
From each participant, we included two time-series for left and right phase encoding with 1,200 maps of
multiband, gradient-echo planar imaging acquired during a period of 15min (TR=720 ms, TE=33.1 ms, flip
angle=52, FOV=280mm ⇥ 180mm, and 2.0mm isotropic voxels). Besides run duration, the task acquisitions
were identical to the resting-state fMRI acquisitions for maximal compatibility between task and rest data. We
here drew on “minimally preprocessed” rest data from 200 randomly selected healthy participants. PCA was
applied to each set of 1,200 rest maps for denoising by keeping only the 20 main modes of variation. In sum,
the HCP rest data concatenated 8000 unlabeled, noise-cleaned rest maps with 40 brain maps from each of 200
randomly selected participants.

We further evaluated whether the low-dimensional space learned in HCP task/rest data can be re-used as a
feature extraction step for learning classification models in an independent task dataset. These experiments
therefore probe the generality of the learned representation by assessing transfer learning effects. To this end,
the HCP-derived network decompositions were used as preliminary step in the classification problem of another
large sample. The ARCHI dataset [21] provides activity maps from diverse experimental tasks, including
auditory and visual perception, motor action, reading, language comprehension and mental calculation. 81
right-handed healthy participants (3 not included in present analyses due to incomplete data) without psychiatric
or neurological history participated in four fMRI sessions acquired under different experimental paradigms.
The functional maps were warped into the MNI space and resampled to isotropic 3mm resolution. Whole-brain
EPI data were acquired with the same Siemens Trio with a 32 channel head coil (TR=2400ms, TE=30ms, flip
angle=60, in-plane FOV=192mm ⇥ 192mm, 40 slices, 3.0mm isotropic voxels). Standard preprocessing was
performed with Nipype [14], including slice timing, motion correction, alignment, and spatial normalization.
Activity maps were spatially smoothed by a Gaussian kernel of 5mm (FWHM). Analogous to HCP data, the
second task dataset incorporated 1404 labeled, grey-matter masked, and z-scored activity maps from 18 diverse
tasks acquired in 78 participants.
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Figure 5: Weight maps of a same hidden factor ranging from unsupervised to supervised
regime One of the n factors from the hidden layer (W

0

) was plotted for the same data (full HCP
dataset) and the same model choices (n = 20, `1 = 0.1, `2 = 0.1) along a �-grid between purely
unsupervised (� = 0.0, top row) and purely supervised (� = 1.0, bottom row) settings. As qual-
itative evidence, a slow transition from rest- to task-typical brain networks was observed in brain
space. Although difficult to quantify, rest network elements appear to get ’reassembled’ to latent
factors of the LR. This increased confidence that the improved model performance of rest-informed
fLR is not only an arbitrary effect of spatially smooth noise. All values are z-scored.
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