
A The incremental algorithm

Let (xi, yi)
n
i=1 be the dataset and (x̃i)

m
i=1 be the selected Nyström points. We want to compute α̃ of

Eq. 5, incrementally in m. Towards this goal we compute an incremental Cholesky decomposition
Rt for t ∈ {1, . . . ,m} of the matrix Gt = K>ntKnt + λnKtt, and the coefficients α̃t by α̃t =

R−1t R−>t K>nty. Note that, for any 1 ≤ t ≤ m−1, by assuming Gt = R>t Rt for an upper triangular
matrix Rt, we have

Gt+1 =

(
Gt ct+1

c>t+1 γt+1

)
=

(
Rt 0
0 0

)>(
Rt 0
0 0

)
+ Ct+1 with Ct+1 =

(
0 ct+1

c>t+1 γt+1

)
,

and ct+1, γt+1 as in Section 4.1. Note moreover that G1 = γ1. Thus if we decompose the matrix
Ct+1 in the form Ct+1 = ut+1u

>
t+1 − vt+1v

>
t+1 we are able compute Rt+1, the Cholesky matrix of

Gt+1, by updating a bordered version of Rt with two rank-one Cholesky updates. This is exactly
Algorithm 1 with ut+1 and vt+1 as in Section 4.1. Note that the rank-one Cholesky update requires
O(t2) at each call, while the computation of ct requires O(nt) and the ones of α̃t requires to solve
two triangular linear systems, that is O(t2 +nt). Therefore the total cost for computing α̃2, . . . , α̃m
is O(nm2 +m3).

B Preliminary definitions

We begin introducing several operators that will be useful in the following. Let z1, . . . , zm ∈ H and
for all f ∈ H, a ∈ Rm, let

Zm : H → Rm, Zmf = (〈z1, f〉H , . . . , 〈zm, f〉H),

Z∗m : Rm → H, Z∗ma =
∑m
i=1 aizi.

Let Sn = 1√
n
Zm and S∗n = 1√

n
Z∗m the operators obtained taking m = n and zi = Kxi , ∀i =

1, . . . , n in the above definitions. Moreover, for all f, g ∈ H let

Cn : H → H, 〈f, Cng〉H =
1

n

n∑
i=1

f(xi)g(xi).

The above operators are linear and finite rank. MoreoverCn = S∗nSn andKn = nSnS
∗
n, and further

Bnm =
√
nSnZ

∗
m ∈ Rn×m, Gmm = ZmZ

∗
m ∈ Rm×m and K̃n = BnmG

†
mmB

>
nm ∈ Rn×n.

C Representer theorem for Nyström computational regularization and
extensions

In this section we consider explicit representations of the estimator obtained via Nyström compu-
tational regularization and extensions. Indeed, we consider a general subspace Hm of H, and the
following problem

f̂λ,m = argmin
f∈Hm

1

n

n∑
i=1

(f(xi)− yi)2 + λ‖f‖2H. (11)

In the following lemmas, we show three different characterizations of fλ,m.
Lemma 1. Let fλ,m be the solution of the problem in Eq. (11). Then it is characterized by the
following equation

(PmCnPm + λI)f̂λ,m = PmS
∗
nŷn, (12)

with Pm the projection operator with rangeHm and ŷn = 1√
n
y.

Proof. The proof proceeds in three steps. First, note that, by rewriting Problem (11) with the nota-
tion introduced in the previous section, we obtain,

f̂λ,m = argmin
f∈Hm

‖Snf − ŷn‖2 + λ‖f‖2H. (13)
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This problem is strictly convex and coercive, therefore admits a unique solution. Second, we show
that its solution coincide to the one of the following problem,

f̂∗ = argmin
f∈H

‖SnPmf − ŷn‖2 + λ‖f‖2H. (14)

Note that the above problem is again strictly convex and coercive. To show that f̂λ,m = f̂∗, let
f̂∗ = a + b with a ∈ Hm and b ∈ H⊥m. A necessary condition for f̂∗ to be optimal, is that b = 0,
indeed, considering that Pmb = 0, we have

‖SnPmf∗ − ŷn‖2 +λ‖f∗‖2H = ‖SnPma− ŷn‖2 +λ‖a‖2H+λ‖b‖2H ≥ ‖SnPma− ŷn‖2 +λ‖a‖2H.

This means that f̂∗ ∈ Hm, but on Hm the functionals defining Problem (13) and Problem (14) are
identical because Pmf = f for any f ∈ Hm and so f̂λ,m = f̂∗. Therefore, by computing the
derivative of the functional of Problem (14), we see that f̂λ,m is given by Eq. (12).

Using the above results, we can give an equivalent representations of the function f̂λ,m. Towards
this end, let Zm be a linear operator as in Sect. B such that the range of Z∗m is exactlyHm. Morever,
let

Zm = UΣV ∗

be the SVD of Zm where U : Rt → Rm, Σ : Rt → Rt, V : Rt → H, t ≤ m and Σ =
diag(σ1, . . . , σt) with σ1 ≥ · · · ≥ σt > 0, U∗U = It and V ∗V = It. Then the orthogonal
projection operator Pm is given by Pm = V V ∗ and the range of Pm is exactlyHm. In the following
lemma we give a characterization of f̂λ,m that will be useful in the proof of the main theorem.

Lemma 2. Given the above definitions , f̂λ,m can be written as

f̂λ,m = V (V ∗CnV + λI)−1V ∗S∗nŷn. (15)

Proof. By Lemma 1, we know that f̂λ,m is written as in Eq. (12). Now, note that f̂λ,m = Pmf̂λ,m
and Eq. (12) imply (PmCmPm + λI)Pmf̂λ,m = PmS

∗
nŷn, that is equivalent to

V (V ∗CnV + λI)V ∗f̂λ,m = V V ∗S∗nŷn,

by substituting Pm with V V ∗. Thus by premultiplying the previous equation by V ∗ and dividing by
V ∗CmV + λI , we have

V ∗f̂λ,m = (V ∗CmV + λI)−1V ∗S∗nŷn.

Finally, by premultiplying by V ,

f̂λ,m = Pmf̂λ,m = V (V ∗CmV + λI)−1V ∗S∗nŷn.

Finally, the following result provide a characterization of the solution useful for computations.

Lemma 3 (Representer theorem for f̂λ,m). Given the above definitions, we have that f̂λ,m can be
written as

f̂λ,m(x) =

m∑
i=1

α̃izi(x), with α̃ = (B>nmBnm + λnGmm)†B>nmy ∀ x ∈ X. (16)

Proof. According to the definitions of Bnm and Gmm we have that

α̃ = (B>nmBnm + λnGmm)†B>nmy = ((ZmS
∗
n)(SnZ

∗
m) + λ(ZmZ

∗
m))†(ZmS

∗
n)ŷn.

Moreover, according to the definition of Zm we have

f̂λ,m(x) =

m∑
i=1

α̃i 〈zi,Kx〉 = 〈ZmKx, α̃〉Rm = 〈Kx, Z
∗
mα̃〉H ∀ x ∈ X,

11



so that

f̂λ,m = Z∗m((ZmS
∗
n)(SnZ

∗
m) + λ(ZmZ

∗
m))†(ZmS

∗
n)ŷn = Z∗m(ZmCnλZ

∗
m)†(ZmS

∗
n)ŷn,

where Cnλ = Cn + λI . Let F = UΣ, G = V ∗CnV + λI , H = ΣU>, and note that F , GH , G
and H are full-rank matrices, then we can perform the full-rank factorization of the pseudo-inverse
(see Eq.24, Thm. 5, Chap. 1 of [1]) obtaining

(ZmCnλZ
∗
m)† = (FGH)† = H†(FG)† = H†G−1F † = UΣ−1(V ∗CnV + λI)−1Σ−1U∗.

Finally, simplyfing U and Σ, we have

f̂λ,m = Z∗m(ZmCnλZ
∗
m)†(ZmS

∗
n)ŷn

= V ΣU∗UΣ−1(V ∗CnV + λI)−1Σ−1U∗UΣV ∗S∗nŷn

= V (V ∗CnV + λI)−1V ∗S∗nŷn.

C.1 Extensions

Inspection of the proof shows that our analysis extends beyond the class of subsampling schemes
in Theorem 1. Indeed, the error decomposition Theorem 2 directly applies to a large family of
approximation schemes. Several further examples are described next.

KRLS and Generalized Nyström In general we could choose an arbitrary Hm ⊆ H. Let Zm :
H → Rm be a linear operator such that

Hm = ranZ∗m = {f | f = Z∗mα, α ∈ Rm}. (17)

Without loss of generality, Z∗m is expressible as Z∗m = (z1, . . . , zm)> with z1, . . . , zm ∈ H, there-
fore, according to Section B and to Lemma 3, the solution of KRLS approximated with the general-
ized Nyström scheme is

f̂λ,m(x) =

m∑
i=1

α̃izi(x), with α̃ = (B>nmBnm + λnGmm)†B>nmy (18)

with Bnm ∈ Rn×m, (Bnm)ij = zj(xi) and Gmm ∈ Rm×m, (Gmm)ij = 〈zi, zj〉H, or equivalently

f̂λ,m(x) =

m∑
i=1

α̃izi(x), α̃ = G†mmB
>
nm(K̃n + λnI)†ŷn, K̃n = BnmG

†
mmB

>
nm (19)

The following are some examples of Generalized Nyström approximations.

Plain Nyström with various sampling schemes [2–4] For a realization s : N → {1, . . . , n} of
a given sampling scheme, we choose Zm = Sm with S∗m = (Kxs(1) , . . . ,Kxs(m)

)> where (xi)
n
i=1

is the training set. With such Zm we obtain K̃n = Knm(Kmm)†K>nm and so Eq. (18) becomes
exactly Eq. (5).

Reduced rank Plain Nyström [5] Let p ≥ m, Sp as in the previous example, the linear operator
associated to p points of the dataset. Let Kpp = SpS

>
p ∈ Rp×p, that is (Kpp)ij = K(xi, xj).

Let Kpp =
∑p
i=1 σiuiu

>
i its eigenvalue decomposition and Um = (u1, . . . , um). Let (Kpp)m =

U>mKppUm be the m-rank approximation of Kpp. We approximate this family by choosing Zm =

U>mSp, indeed we obtain K̃n = KnmUm(U>mKppUm)†U>mK
>
nm = Knm(Kpp)

†
mK

>
nm.

Nyström with sketching matrices [6] We cover this family by choosing Zm = RmSn, where Sn
is the same operator as in the plain Nyström case where we select all the points of the training set
and Rm a m× n sketching matrix. In this way we have K̃n = KnR

∗
m(RmKnR

∗
m)†RmKn, that is

exactly the SPSD sketching model.
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D Probabilistic inequalities

In this section we collect five main probabilistic inequalities needed in the proof of the main result.
We let ρX denote the marginal distribution of ρ on X and ρ(·|x) the conditional distribution on R
given x ∈ X . Lemmas 6, 7 and especially Proposition 1 are new and of interest in their own right.

The first result is essentially taken from [7].
Lemma 4 (Sample Error). Under Assumptions 1, 2 and 3, for any δ > 0, the following holds with
probability 1− δ

‖(C + λI)−1/2(S∗nŷn − CnfH)‖ ≤ 2

(
M
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

2

δ
.

Proof. The proof is given in [7] for bounded kernels and the slightly stronger condition∫
(e
|y−fH(x)|

M − |y−fH(x)|
M − 1)dρ(y|x) ≤ σ2/M2 in place of Assumption 2. More precisely, note

that

(C + λI)−1/2(S∗nŷn − CnfH) =
1

n

n∑
i=1

ζi,

where ζ1, . . . , ζn are i.i.d. random variables, defined as ζi = (C + λI)−1/2Kxi(yi − fH(xi)). For
any 1 ≤ i ≤ n,

Eζi =

∫
X×R

(C + λI)−1/2Kxi(yi − fH(xi))dρ(xi, yi)

=

∫
X

(C + λI)−1/2Kxi

∫
R

(yi − fH(xi))dρ(yi|xi)dρX(xi) = 0,

almost everywhere by Assumption 1 (see Step 3.2 of Thm. 4 in [7]). In the same way we have

E‖ζi‖p =

∫
X×R
‖(C + λI)−1/2Kxi(yi − fH(xi))‖pdρ(xi, yi)

=

∫
X

‖(C + λI)−1/2Kxi‖p
∫
R
|yi − fH(xi)|pdρ(yi|xi)dρX(xi)

≤ sup
x∈X
‖(C + λI)−1/2Kx‖p−2

∫
X

‖(C + λI)−1/2Kxi‖2
∫
R
|yi − fH(xi)|pdρ(yi|xi)dρX(xi)

≤ 1

2
p!
√
σ2N (λ)

2
(M
√
N∞(λ))p−2,

where supx∈X‖(C + λI)−1/2Kx‖ =
√
N∞(λ) and

∫
X
‖(C + λI)−1/2Kxi‖2 = N (λ) by As-

sumption 3, while the bound on the moments of y − f(x) is given in Assumption 2. Finally, to
concentrate the sum of random vectors, we apply Prop. 11.

The next result is taken from [8].

Lemma 5. Under Assumption 3, for any δ ≥ 0 and 9κ2

n log n
δ ≤ λ ≤ ‖C‖, the following inequality

holds with probability at least 1− δ,

‖(Cn + λI)−1/2C1/2‖ ≤ ‖(Cn + λI)−1/2(C + λI)1/2‖ ≤ 2.

Proof. Lemma 7 of [8] gives an the extended version of the above result. Our bound on λ is scaled
by κ2 because in [8] it is assumed κ ≤ 1.

Lemma 6 (plain Nyström approximation). Under Assumption 3, let J be a partition of {1, . . . , n}
chosen uniformly at random from the partitions of cardinality m. Let λ > 0, for any δ > 0, such
that m ≥ 67 log 4κ2

λδ ∨ 5N∞(λ) log 4κ2

λδ , the following holds with probability 1− δ

‖(I − Pm)C1/2‖2 ≤ 3λ,

where Pm is the projection operator on the subspaceHm = span{Kxj | j ∈ J}.
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Proof. Define the linear operator Cm : H → H, as Cm = 1
m

∑
j∈J Kxj ⊗Kxj . Now note that the

range of Cm is exactlyHm. Therefore, by applying Prop. 3 and 7, we have that

‖(I − Pm)C
1/2
λ ‖

2 ≤ λ‖(Cm + λI)−1/2C1/2‖2 ≤ λ

1− β(λ)
,

with β(λ) = λmax

(
C
−1/2
λ (C − Cm)C

−1/2
λ

)
. To upperbound λ

1−β(λ) we need an upperbound for
β(λ). Considering that, given the partition J , the random variables ζj = Kxj ⊗Kxj are i.i.d., then
we can apply Prop. 8, to obtain

β(λ) ≤ 2w

3m
+

√
2wN∞(λ)

m
,

where w = log 4Tr(C)
λδ with probability 1− δ. Thus, by choosing m ≥ 67w ∨ 5N∞(λ)w, we have

that β(λ) ≤ 2/3, that is
‖(I − Pm)C

1/2
λ ‖

2 ≤ 3λ.

Finally, note that by definition Tr(C) ≤ κ2.

Lemma 7 (Nyström approximation for ALS selection method). Let (l̂i(t))
n
i=1 be the collection of

approximate leverage scores. Let λ > 0 and Pλ be defined as Pλ(i) = l̂i(λ)/
∑
j∈N l̂j(λ) for any

i ∈ N with N = {1, . . . , n}. Let I = (i1, . . . , im) be a collection of indices independently sampled
with replacement from N according to the probability distribution Pλ. Let Pm be the projection
operator on the subspace Hm = span{Kxj |j ∈ J} and J be the subcollection of I with all the
duplicates removed. Under Assumption 3, for any δ > 0 the following holds with probability 1− 2δ

‖(I − Pm)(C + λI)1/2‖ ≤ 3λ,

when the following conditions are satisfied:

1. there exists a T ≥ 1 and a λ0 > 0 such that (l̂i(t))
n
i=1 are T -approximate leverage scores

for any t ≥ λ0 (see Def. 1),

2. n ≥ 1655κ2 + 223κ2 log 2κ2

δ ,

3. λ0 ∨ 19κ2

n log 2n
δ ≤ λ ≤ ‖C‖,

4. m ≥ 334 log 8n
δ ∨ 78T 2N (λ) log 8n

δ .

Proof. Define τ = δ/4. Next, define the diagonal matrix H ∈ Rn×n with (H)ii = 0 when
Pλ(i) = 0 and (H)ii = nq(i)

mPλ(i)
when Pλ(i) > 0, where q(i) is the number of times the index i is

present in the collection I. We have that

S∗nHSn =
1

m

n∑
i=1

q(i)

Pλ(i)
Kxi ⊗Kxi =

1

m

∑
j∈J

q(j)

Pλ(j)
Kxj ⊗Kxj .

Now, considering that q(j)
Pλ(j)

> 0 for any j ∈ J , thus ranS∗nHSn = Hm. Therefore, by using
Prop. 3 and 7, we exploit the fact that the range of Pm is the same of S∗nHSn, to obtain

‖(I − Pm)(C + λI)1/2‖2 ≤ λ‖(S∗nHSn + λI)−1/2C1/2‖2 ≤ λ

1− β(λ)
,

with β(λ) = λmax

(
C
−1/2
λ (C − S∗nHSn)C

−1/2
λ

)
. Considering that the function (1 − x)−1 is

increasing on−∞ < x < 1, in order to bound λ/(1−β(λ)) we need an upperbound for β(λ). Here
we split β(λ) in the following way,

β(λ) ≤ λmax

(
C
−1/2
λ (C − Cn)C

−1/2
λ

)
︸ ︷︷ ︸

β1(λ)

+λmax

(
C
−1/2
λ (Cn − S∗nHSn)C

−1/2
λ

)
︸ ︷︷ ︸

β2(λ)

.
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Considering that Cn is the linear combination of independent random vectors, for the first term we
can apply Prop. 8, obtaining a bound of the form

β1(λ) ≤ 2w

3n
+

√
2wκ2

λn
,

with probability 1 − τ , where w = log 4κ2

λτ (we used the fact that N∞(λ) ≤ κ2/λ). Then, after
dividing and multiplying by C1/2

nλ , we split the second term β2(λ) as follows:

β2(λ) ≤ ‖C−1/2λ (Cn − S∗nHSn)C
−1/2
λ ‖

≤ ‖C−1/2λ C
1/2
nλ C

−1/2
nλ (Cn − S∗nHSn)C

−1/2
nλ C

1/2
nλ C

−1/2
λ ‖

≤ ‖C−1/2λ C
1/2
nλ ‖

2‖C−1/2nλ (Cn − S∗nHSn)C
−1/2
nλ ‖.

Let

β3(λ) = ‖C−1/2nλ (Cn − S∗nHSn)C
−1/2
nλ ‖ = ‖C−1/2nλ S∗n(I −H)SnC

−1/2
nλ ‖. (20)

Note that SnC−1nλS
∗
n = Kn(Kn + λnI)−1 indeed C−1nλ = (S∗nSn + λI)−1 and Kn = nSnS

∗
n.

Therefore we have

SnC
−1
nλS

∗
n = Sn(S∗nSn + λI)−1S∗n = (SnS

∗
n + λI)−1SnS

∗
n = (Kn + λnI)−1Kn.

Thus, if we let UΣU> be the eigendecomposition of Kn, we have that (Kn + λnI)−1Kn =
U(Σ + λnI)−1ΣU> and thus SnC−1nλS

∗
n = U(Σ + λnI)−1ΣU>. In particular this implies that

SnC
−1
nλS

∗
n = UQ

1/2
n Q

1/2
n U> with Qn = (Σ + λnI)−1Σ. Therefore we have

β3(λ) = ‖C−1/2nλ S∗n(I −H)SnC
−1/2
nλ ‖ = ‖Q1/2

n U>(I −H)UQ1/2
n ‖,

where we used twice the fact that ‖ABA∗‖ = ‖(A∗A)1/2B(A∗A)1/2‖ for any bounded linear
operators A,B.

Consider the matrix A = Q
1/2
n U> and let ai be the i-th column of A, and ei be the i-th canonical

basis vector for each i ∈ N . We prove that ‖ai‖2 = li(λ), the true leverage score, since

‖ai‖2 = ‖Q1/2
n U>ei‖2 = e>i UQnU

>ei = ((Kn + λnI)−1Kn)ii = li(λ).

Noting that
∑n
k=1

q(k)
Pλ(k)

aka
>
k =

∑
i=I

1
Pλ(i)

aia
>
i , we have

β3(λ) = ‖AA> − 1

m

∑
i∈I

1

Pλ(i)
aia
>
i ‖.

Moreover, by the T -approximation property of the approximate leverage scores (see Def. 1), we
have that for all i ∈ {1, . . . , n}, when λ ≥ λ0, the following holds with probability 1− δ

Pλ(i) =
l̂i(λ)∑
j l̂j(λ)

≥ T−2 li(λ)∑
j lj(λ)

= T−2
‖ai‖2

TrAA>
.

Then, we can apply Prop. 9, so that, after a union bound, we obtain the following inequality with
probability 1− δ − τ :

β3(λ) ≤
2‖A‖2 log 2n

τ

3m
+

√
2‖A‖2T 2 TrAA> log 2n

τ

m
≤

2 log 2n
τ

3m
+

√
2T 2N̂ (λ) log 2n

τ

m
,

where the last step follows from ‖A‖2 = ‖(Kn + λnI)−1Kn‖ ≤ 1 and Tr(AA>) =

Tr(C−1nλCn) := N̂ (λ). Applying Proposition 1, we have that N̂ (λ) ≤ 1.3N (λ) with probabil-
ity 1 − τ , when 19κ2

n log n
4τ ≤ λ ≤ ‖C‖ and n ≥ 405κ2 ∨ 67κ2 log κ2

2τ . Thus, by taking a union
bound again, we have

β3(λ) ≤
2 log 2n

τ

3m
+

√
5.3T 2N (λ) log 2n

τ

m
,
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with probability 1− 2τ − δ when λ0 ∨ 19κ2

n log n
δ ≤ λ ≤ ‖C‖ and n ≥ 405κ2 ∨ 67κ2 log 2κ2

δ . The
last step is to bound ‖C−1/2λ C

1/2
nλ ‖2, as follows

‖C−1/2λ C
1/2
nλ ‖

2 = ‖C−1/2λ CnλC
−1/2
λ ‖ = ‖I + C

−1/2
λ (Cn − C)C

−1/2
λ ‖ ≤ 1 + η,

with η = ‖C−1/2λ (Cn − C)C
−1/2
λ ‖. Note that, by applying Prop. 8 we have that η ≤ 2(κ2+λ)θ

3λn +√
2κ2θ
3λn with probability 1− τ and θ = log 8κ2

λτ . Finally, by collecting the above results and taking a
union bound we have

β(λ) ≤ 2w

3n
+

√
2wκ2

λn
+ (1 + η)

2 log 2n
τ

3m
+

√
5.3T 2N (λ) log 2n

τ

m

 ,

with probability 1−4τ−δ = 1−2δ when λ0∨ 19κ2

n log n
δ ≤ λ ≤ ‖C‖ and n ≥ 405κ2∨67κ2 log 2κ2

δ .
Note that, if we select n ≥ 405κ2 ∨ 223κ2 log 2κ2

δ , m ≥ 334 log 8n
δ , λ0 ∨ 19κ2

n log 2n
δ ≤ λ ≤ ‖C‖

and 78T 2N (λ) log 8n
δ

m ≤ 1 the conditions are satisfied and we have β(λ) ≤ 2/3, so that

‖(I − Pm)C1/2‖2 ≤ 3λ,

with probability 1− 2δ.

Proposition 1 (Empirical Effective Dimension). Let N̂ (λ) = TrCnC
−1
nλ . Under the Assumption 3,

for any δ > 0 and n ≥ 405κ2 ∨ 67κ2 log 6κ2

δ , if 19κ2

n log n
4δ ≤ λ ≤ ‖C‖, then the following holds

with probability 1− δ,

|N̂ (λ)−N (λ)|
N (λ)

≤ 4.5q + (1 + 9q)

√
3q

N (λ)
+
q + 13.5q2

N (λ)
≤ 1.65,

with q =
4κ2 log 6

δ

3λn .

Proof. Let τ = δ/3. Define Bn = C
−1/2
λ (C − Cn)C

−1/2
λ . Choosing λ in the range 19κ2

n log n
4τ ≤

λ ≤ ‖C‖, Prop. 8 assures that λmax(Bn) ≤ 1/3 with probability 1 − τ . Then, using the fact that
C−1nλ = C

−1/2
λ (I −Bn)−1C

−1/2
λ (see the proof of Prop. 7) we have

|N̂ (λ)−N (λ)| = |TrC−1nλCn − CC
−1
λ = λTrC−1nλ (Cn − C)C−1λ |

= |λTrC
−1/2
λ (I −Bn)

−1
C
−1/2
λ (Cn − C)C

−1/2
λ C

−1/2
λ |

= |λTrC
−1/2
λ (I −Bn)

−1
BnC

−1/2
λ |.

Considering that for any symmetric linear operator X : H → H the following identity holds

(I −X)−1X = X +X(I −X)−1X,

when λmax(X) ≤ 1, we have

λ|TrC
−1/2
λ (I −Bn)

−1
BnC

−1/2
λ | ≤ λ|TrC

−1/2
λ BnC

−1/2
λ |︸ ︷︷ ︸

A

+ λ|TrC
−1/2
λ Bn (I −Bn)

−1
BnC

−1/2
λ |︸ ︷︷ ︸

B

.

To find an upperbound for A define the i.i.d. random variables ηi =
〈
Kxi , λC

−2
λ Kxi

〉
∈ R

with i ∈ {1, . . . , n}. By linearity of the trace and the expectation, we have M = Eη1 =
E
〈
Kxi , λC

−2
λ Kxi

〉
= ETr(λC−2λ Kx1

⊗Kx1
) = λTr(C−2λ C). Therefore,

λ|TrC
−1/2
λ BnC

−1/2
λ | =

∣∣∣∣∣M − 1

n

n∑
i=1

ηi

∣∣∣∣∣ ,
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and we can apply the Bernstein inequality (Prop. 10) with

|M − η1| ≤ λ‖C−2λ ‖‖Kx1
‖2 +M ≤ κ2

λ
+M ≤ 2κ2

λ
= L,

E(η1 −M)2 = Eη21 −M2 ≤ Eη21 ≤ LM = σ2.

An upperbound for M is M = Tr(λC−2λ C) = Tr((I − C−1λ C)C−1λ C) ≤ N (λ). Thus, we have

λ|TrC
−1/2
λ BnC

−1/2
λ | ≤

4κ2 log 2
τ

3λn
+

√
4κ2N (λ) log 2

τ

λn
,

with probability 1− τ .

To find an upperbound for B, let L be the space of Hilbert-Schmidt operators on H. L is a Hilbert
space with scalar product 〈U, V 〉HS = Tr (UV ∗) for all U, V ∈ L. Next, note that B = ‖Q‖2HS
where Q = λ1/2C

−1/2
λ Bn (I −Bn)

−1/2, moreover

‖Q‖2HS ≤ ‖λ1/2C
−1/2
λ ‖2‖Bn‖2HS‖(I −Bn)

−1/2‖2 ≤ 1.5‖Bn‖2HS ,
since ‖(I −Bn)−1/2‖2 = (1 − λmax(Bn))−1 ≤ 3/2 and (1 − σ)−1 is increasing and positive on
[−∞, 1).

To find a bound for ‖Bn‖HS consider thatBn = T− 1
n

∑n
i=1 ζi where ζi are i.i.d. random operators

defined as ζi = C
−1/2
λ (Kxi ⊗Kxi)C

−1/2
λ ∈ L for all i ∈ {1, . . . , n}, and T = Eζ1 = C−1λ C ∈ L.

Then we can apply the Bernstein’s inequality for random vectors on a Hilbert space (Prop. 11), with
the following L and σ2:

‖T − ζ1‖HS ≤ ‖C−1/2λ ‖2‖Kx1
‖2H + ‖T‖HS ≤

κ2

λ
+ ‖T‖HS ≤

2κ2

λ
= L,

E‖ζ1 − T‖2 = ETr(ζ21 − T 2) ≤ ETr(ζ21 ) ≤ LETr(ζ1) = σ2,

where ‖T‖HS ≤ ETr(ζ1) = N (λ), obtaining

‖Bn‖HS ≤
4κ2 log 2

τ

λn
+

√
4κ2N (λ) log 2

τ

λn
,

with probability 1− τ . Then, by taking a union bound for the three events we have

|N̂ (λ)−N (λ)| ≤ q +
√

3qN (λ) + 1.5
(

3q +
√

3qN (λ)
)2
,

with q =
4κ2 log 6

δ

3λn , and with probability 1− δ. Finally, if the second assumption on λ holds, then we
have q ≤ 4/57. Noting that n ≥ 405κ2, and that N (λ) ≥ ‖CC−1λ ‖ = ‖C‖

‖C‖+λ ≥ 1/2, we have that

|N̂ (λ)−N (λ)| ≤

 q

3N (λ)
+

√
q

N (λ)
+ 1.5

(
q√
N (λ)

+
√
q

)2
N (λ) ≤ 1.65N (λ).

E Proofs of main theorem

A key step to derive the proof of Theorem 1 is the error decomposition given by the following
theorem, together with the probabilistic inequalities in the previous section.
Theorem 2 (Error decomposition for KRLS+Ny). Under Assumptions 1, 3, 4, let v = min(s, 1/2)

and f̂λ,m a KRLS + generalized Nyström solution as in Eq. (18). Then for any λ,m > 0 the error
is bounded by∣∣∣E(f̂λ,m)− E(fH)

∣∣∣1/2 ≤ q( S(λ, n)︸ ︷︷ ︸
Sample error

+ C(m)1/2+v︸ ︷︷ ︸
Computational error

+ λ1/2+v︸ ︷︷ ︸
Approximation error

), (21)

where S(λ, n) = ‖(C + λI)−1/2(S∗nŷn − CnfH)‖ and C(m) = ‖(I − Pm)(C + λI)1/2‖2 with
Pm = Z∗m(ZmZ

∗
m)†Zm. Moreover q = R(β2 ∨ (1 + θβ)), β = ‖(Cn + λI)−1/2(C + λI)1/2‖,

θ = ‖(Cn + λI)1/2(C + λI)−1/2‖.
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Proof. Let Cλ = C+λI and Cnλ = Cn+λI for any λ > 0. Let f̂λ,m as in Eq. (18). By Lemma 1,
Lemma 2 and Lemma 3 we know that f̂λ,m is characterized by f̂λ,m = gλm(Cn)S∗nŷn with
gλ,m(Cn) = V (V ∗CnV + λI)−1V ∗. By using the fact that E(f) − E(fH) = ‖C1/2(f − fH)‖2H
for any f ∈ H (see Prop. 1 Point 3 of [7]), we have

|E(f̂λ,m)− E(fH)|1/2 = ‖C1/2(f̂λ,m − fH)‖H = ‖C1/2(gλ,m(Cn)S∗nŷn − fH)‖H
= ‖C1/2(gλ,m(Cn)S∗n(ŷn − SnfH + SnfH)− fH)‖H
≤ ‖C1/2gλ,m(Cn)S∗n(ŷn − SnfH)‖H︸ ︷︷ ︸

A

+ ‖C1/2(I − gλ,m(Cn)Cn)fH‖H︸ ︷︷ ︸
B

.

Bound for the term A Multiplying and dividing by C1/2
nλ and C1/2

λ we have

A ≤ ‖C1/2C
−1/2
nλ ‖‖C1/2

nλ gλ,m(Cn)C
1/2
nλ ‖‖C

−1/2
nλ C

1/2
λ ‖‖C

−1/2
λ S∗n(ŷn − SnfH)‖H ≤ β2 S(λ, n),

where the last step is due to Lemma 8 and the fact that

‖C1/2C
−1/2
nλ ‖ ≤ ‖C1/2C

−1/2
λ ‖‖C1/2

λ C
−1/2
nλ ‖ ≤ ‖C1/2

λ C
−1/2
nλ ‖.

Bound for the term B Noting that gλ,m(Cn)CnλV V
∗ = V V ∗, we have

I − gλ,m(Cn)Cn = I − gλ,m(Cn)Cnλ + λgλ,m(Cn)

= I − gλ,m(Cn)CnλV V
∗ − gλ,m(Cn)Cnλ(I − V V ∗) + λgλ,m(Cn)

= (I − V V ∗) + λgλ,m(Cn)− gλ,m(Cn)Cnλ(I − V V ∗).
Therefore, noting that by Ass. 4 we have ‖C−vλ fH‖H ≤ ‖C−sλ fH‖H ≤ ‖C−sfH‖H ≤ R, then, by

reasoning as in A, we have

B ≤ ‖C1/2(I − gλ,m(Cn)Cn)Cvλ‖‖C−vλ fH‖H
≤ R‖C1/2C

−1/2
λ ‖‖C1/2

λ (I − V V ∗)Cvλ‖+Rλ‖C1/2C
−1/2
nλ ‖‖C1/2

nλ gλ,m(Cn)Cvλ‖

+R‖C1/2C
−1/2
nλ ‖‖C1/2

nλ gλ,m(Cn)C
1/2
nλ ‖‖C

1/2
nλ C

−1/2
λ ‖‖C1/2

λ (I − V V ∗)Cvλ‖

≤ R(1 + βθ) ‖C1/2
λ (I − V V ∗)Cvλ‖︸ ︷︷ ︸

B.1

+Rβ λ‖C1/2
nλ gλ,m(Cn)Cvλ‖︸ ︷︷ ︸

B.2

,

where in the second step we applied the decomposition of I − gλm(Cn)Cn.

Bound for the term B.1 Since V V ∗ is a projection operator, we have that (I−V V ∗) = (I−V V ∗)s,
for any s > 0, therefore

B.1 = ‖C1/2
λ (I − V V ∗)2Cvλ‖ ≤ ‖C

1/2
λ (I − V V ∗)‖‖(I − V V ∗)Cvλ‖.

By applying Cordes inequality (Prop. 4) to ‖(I − V V ∗)Cvλ‖ we have,

‖(I − V V ∗)Cvλ‖ = ‖(I − V V ∗)2vC
1
2 2v

λ ‖ = ‖(I − V V ∗)C1/2
λ ‖

2v.

Bound for the term B.2 We have
B.2 ≤ λ‖C1/2

nλ gλ,m(Cn)Cvnλ‖‖C−vnλC
v
λ‖

≤ λ‖C1/2
nλ gλ,m(Cn)Cvnλ‖‖C

−1/2
nλ C

1/2
λ ‖

2v

≤ β2vλ‖(V ∗CnλV )1/2(V ∗CnλV )−1(V ∗CnλV )v‖
= β2vλ‖(V ∗CnV + λI)−(1/2−v)‖ ≤ βλ1/2+v,

where the first step is obtained multipling and dividing by Cvnλ, the second step by applying Cordes
inequality (see Prop. 4), the third step by Prop. 6.

Proposition 2 (Bounds for plain and ALS Nyström). For any δ > 0, let n ≥ 1655κ2 +

223κ2 log 6κ2

δ , let 19κ2

n log 6n
δ ≤ λ ≤ ‖C‖ and define

Cpl(m) = min

{
t > 0

∣∣∣∣ (67 ∨ 5N∞(t)) log
12κ2

tδ
≤ m

}
,

CALS(m) = min

{
19κ2

n
log

12n

δ
≤ t ≤ ‖C‖

∣∣∣∣ 78T 2N (t) log
48n

δ
≤ m

}
.

Under the assumptions of Thm. 2 and Assumption 2, 3, if one of the following two conditions hold
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1. plain Nyström is used,

2. ALS Nyström is used with

(a) T -approximate leverage scores, for any t ≥ 19κ2

n log 12n
δ (see Def. 1),

(b) resampling probabilities Pt where t = CALS(m) (see Sect. 2),
(c) m ≥ 334 log 48n

δ ,

then the following holds with probability 1− δ∣∣∣E(f̂λ,m)− E(fH)
∣∣∣1/2 ≤ 6R

(
M
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

δ
+ 3RC(m)1/2+v + 3Rλ1/2+v

(22)

where C(m) = Cpl(m) in case of plain Nyström and C(m) = CALS(m) in case of ALS Nyström.

Proof. In order to get explicit bounds from Thm. 2, we have to control four quantities that
are β, θ,S(λ, n) and C(m). In the following we bound such quantities in probability and then
take a union bound. Let τ = δ/3. We can control both β and θ, by bounding b(λ) =

‖C−1/2λ (Cn − C)C
−1/2
λ ‖. Indeed, by Prop. 7, we have that β ≤ 1/(1− b(λ)), while

θ2 = ‖C−1/2λ CnλC
−1/2
λ ‖ = ‖I + C

−1/2
λ (Cn − C)C

−1/2
λ ‖ ≤ 1 + b(λ).

Exploiting Prop. 8, with the fact that N (λ) ≤ N∞(λ) ≤ κ2

λ and TrC ≤ κ2, we have that b(λ) ≤
2(κ2+λ)w

3λn +
√

2wκ2

λn for w = log 4κ2

τλ with probability 1− τ . Simple computations show that with n
and λ as in the statement of this corollary, we have b(λ) ≤ 1/3. Therefore β ≤ 1.5, while θ ≤ 1.16
and q = R(β2 ∨ (1 + θβ)) < 2.75R with probability 1 − τ . Next, we bound S(λ, n). Here we
exploit Lemma 4 which gives, with probability 1− τ ,

S(λ, n) ≤ 2

(
M
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

2

τ
.

To bound C(m) for plain Nyström, Lemma 6 gives C(m) ≤ 3t with probability 1 − τ , for a
t > 0 such that (67 ∨ 5N∞(t)) log 4κ2

tτ ≤ m. In particular, we choose t = Cpl(m) to satisfy
the condition. Next we bound C(m) for ALS Nyström. Using Lemma 7 with λ0 = 19κ2

n log 2n
τ ,

we have C(m) ≤ 3t with probability 1 − τ under some conditions on t,m, n, on the approximate
leverage scores and on the resampling probability. Here again the requirement on n is satisfied by the
hypotesis on n of this proposition, while the condition on the approximate leverage scores and on the
resampling probabilities are satisfied by conditions (a), (b) of this proposition. The remaining two
conditions are 19κ2

n log 4n
τ ≤ t ≤ ‖C‖ and (334 ∨ 78T 2N (t)) log 16n

τ ≤ m. They are satisfied by
choosing t = CALS(m) and by assuming that m ≥ 334 log 16n

τ . Finally, the proposition is obtained
by substituting each of the four quantities β, θ,S(λ, n), C(m) with the corresponding upperbounds
in Eq. (21), and by taking the union bounds on the associated events.

Proof of Theorem 1. By exploiting the results of Prop. 2, obtained from the error decomposition of
Thm. 2 we have that∣∣∣E(f̂λ,m)− E(fH)

∣∣∣1/2 ≤ 6R

(
M
√
N∞(λ)

n
+

√
σ2N (λ)

n

)
log

6

δ
+ 3RC(m)1/2+v + 3Rλ1/2+v

(23)

with probability 1 − δ, under conditions on λ,m, n, on the resampling probabilities and on the
approximate leverage scores. The last is satisfied by condition (a) in this theorem. The conditions
on λ, n are n ≥ 1655κ2 + 223κ2 log 6κ2

δ and 19κ2

n log 12n
δ ≤ λ ≤ ‖C‖. If we assume that n ≥

1655κ2 + 223κ2 log 6κ2

δ +
(

38p
‖C‖ log 114κ2p

‖C‖δ

)p
we satisfy the condition on n and at the same time

we are sure that λ = ‖C‖n−1/(2v+γ+1) satisfies the condition on λ. In the plain Nyström case,
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if we assume that m ≥ 67 log 12κ2

λδ + 5N∞(λ) log 12κ2

λδ , then C(m) = Cpl(m) ≤ λ. In the ALS
Nyström case, if we assume that m ≥ (334 ∨ 78T 2N (λ)) log 48n

δ the condition on m is satisfied,
then C(m) = CALS(m) ≤ λ, moreover the conditions on the resampling probabilities is satisfied
by condition (b) of this theorem. Therefore, by setting λ = ‖C‖n−1/(2v+γ+1) in Eq. (23) and
considering that N∞(λ) ≤ κ2λ−1 we easily obtain the result of this theorem.

The following lemma is a technical result needed in the error decomposition (Thm. 2).
Lemma 8. For any λ > 0, let V be such that V ∗V = I and Cn be a positive self-adjoint operator.
Then, the following holds,

‖(Cn + λI)1/2V (V ∗CnV + λI)−1V ∗(Cn + λI)1/2‖ ≤ 1.

Proof. Let Cnλ = Cn + λI and gλm(Cn) = V (V ∗CnV + λI)−1V ∗, then

‖C1/2
nλ gλm(Cn)C

1/2
nλ ‖

2 = ‖C1/2
nλ gλm(Cn)Cnλgλm(Cn)C

1/2
nλ ‖

= ‖C1/2
nλ V (V ∗CnλV )−1(V ∗CnλV )(V ∗CnλV )−1V ∗C

1/2
nλ ‖

= ‖C1/2
nλ gλm(Cn)C

1/2
nλ ‖,

and therefore the only possible values for ‖C1/2
nλ gλm(Cn)C

1/2
nλ ‖ are 0 or 1.

F Auxiliary results

Proposition 3. Let H,K,F three separable Hilbert spaces, let Z : H → K be a bounded linear
operator and letW be a projection operator onH such that ranP = ranZ∗. Then for any bounded
linear operator F : F → H and any λ > 0 we have

‖(I − P )X‖ ≤ λ1/2‖(Z∗Z + λI)−1/2X‖.

Proof. First of all note that λ(Z∗Z + λI)−1 = I − Z∗(ZZ∗ + λI)−1Z, that Z = ZP and that
‖Z∗(ZZ∗ + λI)−1Z‖ ≤ 1 for any λ > 0. Then for any v ∈ H we have〈

v, Z∗(ZZ∗ + λI)−1Zv
〉

=
〈
v, PZ∗(ZZ∗ + λI)−1ZPv

〉
= ‖(ZZ∗ + λI)−1/2ZPv‖2

≤ ‖(ZZ∗ + λI)−1/2Z‖2‖Pv‖2 ≤ ‖Pv‖2 = 〈v, Pv〉

therefore P −Z∗(ZZ∗ + λI)−1Z is a positive operator, and (I −Z∗(ZZ∗ + λI)−1Z)− (I − P )
too. Now we can apply Prop. 5.

Proposition 4 (Cordes Inequality [9]). Let A,B two positive semidefinite bounded linear operators
on a separable Hilbert space. Then

‖AsBs‖ ≤ ‖AB‖s when 0 ≤ s ≤ 1.

Proposition 5. LetH,K,F ,G be three separable Hilbert spaces and let X : H → K and Y : H →
F be two bounded linear operators. For any bounded linear operator Z : G → H, if Y ∗Y −X∗X
is a positive self-adjoint operator then ‖XZ‖ ≤ ‖Y Z‖.

Proof. If Y ∗Y −X∗X is a positive operator then Z∗(Y ∗Y −X∗X)Z is positive too. Thus for all
f ∈ H we have that 〈f, (Q− P )f〉 ≥ 0, where Q = Z∗Y ∗Y Z and P = Z∗X∗XZ. Thus, by
linearity of the inner product, we have

‖Q‖ = sup
f∈G
〈f,Qf〉 = sup

f∈G
{〈f, Pf〉+ 〈f, (Q− P )f〉} ≥ sup

f∈G
〈f, Pf〉 = ‖P‖.

Proposition 6. Let H,K be two separable Hilbert spaces, let A : H → H be a positive lin-
ear operator, V : H → K a partial isometry and B : K → K a bounded operator. Then
‖ArV BV ∗As‖ ≤ ‖(V ∗AV )rB(V ∗AV )s‖, for all 0 ≤ r, s ≤ 1/2.
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Proof. By Hansen’s inequality (see [10]) we know that (V ∗AV )2t−V ∗A2tV is positive selfadjoint
operator for any 0 ≤ t ≤ 1/2, therefore we can apply Prop. 5 two times, obtaining

‖ArV (BV ∗As)‖ ≤ ‖(V ∗AV )r(BV ∗As)‖ = ‖((V ∗AV )rB)V ∗As‖ ≤ ‖((V ∗AV )rB)(V ∗AV )s‖.

Proposition 7. LetH be a separable Hilbert space, letA,B two bounded self-adjoint positive linear
operators and λ > 0. Then

‖(A+ λI)−1/2B1/2‖ ≤ (1− β)−1/2

when
β = λmax

[
(B + λI)−1/2(B −A)(B + λI)−1/2

]
< 1.

Proof. Let Bλ = B + λI . Note that

(A+ λI)−1 = [(B + λI)− (B −A)]
−1

=
[
B

1/2
λ

(
I −B−1/2λ (B −A)B

−1/2
λ

)
B

1/2
λ

]−1
= B

−1/2
λ

[
I −B−1/2λ (B −A)B

−1/2
λ

]−1
B
−1/2
λ .

Now let X = (I −B−1/2λ (B −A)B
−1/2
λ )−1. We have that,

‖(A+ λI)−1/2B1/2‖ = ‖B1/2(A+ λI)−1B1/2‖1/2

= ‖B1/2B
−1/2
λ XB

−1/2
λ B1/2‖1/2

= ‖X1/2B
−1/2
λ B1/2‖,

because ‖Z‖ = ‖Z∗Z‖1/2 for any bounded operator Z. Note that

‖X1/2B
−1/2
λ B1/2‖ ≤ ‖X‖1/2‖B−1/2λ B1/2‖ ≤ ‖X‖1/2.

Finally let Y = B
−1/2
λ (B −A)B

−1/2
λ and assume that λmax(Y ) < 1, then

‖X‖ = ‖(I − Y )−1‖ = (1− λmax(Y ))−1,

since X = w(Y ) with w(σ) = (1 − σ)−1 for −∞ ≤ σ < 1, and w is positive and monotonically
increasing on the domain.

G Tail bounds

Let ‖·‖HS denote the Hilbert-Schmidt norm.

Proposition 8. Let v1, . . . , vn with n ≥ 1, be independent and identically distributed random vec-
tors on a separable Hilbert spacesH such that Q = E v⊗ v exists, is trace class, and for any λ > 0
there exists a constantN∞(λ) <∞ such that

〈
v, (Q+ λI)−1v

〉
≤ N∞(λ) almost everywhere. Let

Qn = 1
n

∑n
i=1 vi ⊗ vi and take 0 < λ ≤ ‖Q‖. Then for any δ ≥ 0, the following holds

‖(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2‖ ≤ 2β(1 +N∞(λ))

3n
+

√
2βN∞(λ)

n

with probability 1− 2δ. Here β = log 4TrQ
λδ . Moreover it holds that

λmax

(
(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2

)
≤ 2β

3n
+

√
2βN∞(λ)

n

with probability 1− δ.
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Proof. Let Qλ = Q+ λI . Here we apply Prop. 12 on the random variables Zi = M −Q−1/2λ vi ⊗
Q
−1/2
λ vi withM = Q

−1/2
λ QQ

−1/2
λ for 1 ≤ i ≤ n. Note that the expectation of Zi is 0. The random

vectors are bounded by

‖Q−1/2λ QQ
−1/2
λ −Q−1/2λ vi ⊗Q−1/2λ vi‖ ≤

〈
v,Q−1λ v

〉
+ ‖Q−1/2λ QQ

−1/2
λ ‖ ≤ N∞(λ) + 1

and the second orded moment is

E(Z1)2 = E
〈
v1, Q

−1
λ v1

〉
Q
−1/2
λ v1 ⊗Q−1/2λ v1 − Q−2λ Q2

≤ N∞(λ)EQ−1/2λ v1 ⊗Q−1/2λ v1 = N∞(λ)Q = S.

Now we can apply Prop. 12. Now some considerations on β. It is β = log 4TrS
‖S‖δ =

4TrQ−1
λ Q

‖Q−1
λ Q‖δ , now

TrQ−1λ Q ≤ 1
λ TrQ. We need a lowerbound for ‖Q−1λ Q‖ = σ1

σ1+λ
where σ1 = ‖Q‖ is the biggest

eigenvalue of Q, now λ ≤ σ1 thus TrQ
λδ .

For the second bound of this proposition, the analysis remains the same except for L, indeed

sup
f∈H
〈f, Z1f〉 = sup

f∈H

〈
f,Q−1λ Qf

〉
−
〈
f,Q

−1/2
λ vi

〉2
≤ sup
f∈H

〈
f,Q−1λ Qf

〉
≤ 1.

Remark 1. In Prop. 8, let define κ2 = infλ>0N∞(λ)(‖Q‖+ λ). When n ≥ 405κ2 ∨ 67κ2 log κ2

2δ

and 9κ2

n log n
2δ ≤ λ ≤ ‖Q‖ we have that

λmax

(
(Q+ λI)−1/2(Q−Qn)(Q+ λI)−1/2

)
≤ 1

2
,

with probability 1− δ, while it is less than 1/3 with the same probability, if 19κ2

n log n
4δ ≤ λ ≤ ‖Q‖.

Proposition 9 (Theorem 2 [11]. Approximation of matrix products.). Let n, n be positive in-
tegers. Consider a matrix A ∈ Rn×n and denote by ai the i-th column of A. Let m ≤ n
and I = {i1, . . . , im} be a subset of N = {1, . . . , n} formed by m elements chosen randomly
with replacement, according to a distribution that associates the probability P (i) to the element
i ∈ N . Assume that there exists a β ∈ (0, 1] such that the probabilities P (1), . . . , P (n) satisfy
P (i) ≥ β ‖ai‖

2

TrAA>
for all i ∈ N . For any δ > 0 the following holds

‖AA> − 1

m

∑
i∈I

1

P (i)
aia
>
i ‖ ≤

2L log 2n
δ

3m
+

√
2LS log 2n

δ

m

with probability 1− δ. Here L = ‖A‖2 and S = 1
β TrAA>.

Proposition 10 (Bernstein’s inequality for sum of random variables). Let x1, . . . , xn be a sequence
of independent and identically distributed random variables on R with zero mean. If there exists an
L, S ∈ R such that x1 ≤ L almost everywhere and Ex21 ≤ S, then for any δ > 0 the following holds
with probability 1− δ:

1

n

n∑
i=1

xi ≤
2L log 1

δ

3n
+

√
2S log 1

δ

n
.

If there exists an L′ ≥ |x1| almost everywhere, then the same bound, computed with L′ instead of
L, holds for the for the absolute value of the left hand side, with probability 1− 2δ.

Proof. It is a restatement of Theorem 3 of [12].

Proposition 11 (Bernstein’s inequality for sum of random vectors). Let z1, . . . , zn be a sequence
of independent identically distributed random vectors on a separable Hilbert space H. Assume
µ = Ez1 exists and let σ,M ≥ 0 such that

E‖z1 − µ‖pH ≤
1

2
p!σ2Lp−2

22



for all p ≥ 2. Then for any τ ≥ 0:

‖ 1

n

n∑
i=1

zi − µ‖H ≤
2L log 2

δ

n
+

√
2σ2 log 2

δ

n

with probability greater or equal 1− δ.

Proof. restatement of Theorem 3.3.4 of [13].

Proposition 12 (Bernstein’s inequality for sum of random operators). LetH be a separable Hilbert
space and let X1, . . . , Xn be a sequence of independent and identically distributed self-adjoint
positive random operators on H. Assume that there exists EX1 = 0 and λmax(X1) ≤ L almost
everywhere for some L > 0. Let S be a positive operator such that E(X1)2 ≤ S. Then for any
δ ≥ 0 the following holds

λmax

(
1

n

n∑
i=1

Xi

)
≤ 2Lβ

3n
+

√
2‖S‖β
n

with probability 1− δ. Here β = log 2TrS
‖S‖δ .

If there exists an L′ such that L′ ≥ ‖X1‖ almost everywhere, then the same bound, computed with
L′ instead of L, holds for the operatorial norm with probability 1− 2δ.

Proof. The theorem is a restatement of Theorem 7.3.1 of [14] generalized to the separable Hilbert
space case by means of the technique in Section 4 of [15].
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