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A Matrix Projection

In this section, we summarize the algorithm proposed in [1]] for solving the matrix projection prob-

lem (3.3). Let
Q= {a: =vec(X): X € S,\}

d
0y = {z =vee(Z): ZeRPLZ =27, 3 |2, < 1}.

ij=1
For any symmetric matrix V € R%*¢ and v = vec(V), define the projection of v onto §); as

’33 —VHQ, (A.1)

Pq,(v) = arg min
2

! xeQ;

for i = 1,2. The algorithm for solving (3:3) builds on solutions to the problems in (A-I). Solving
for Py, (v) is straightforward. It’s well known that

Pq,(v) = vec(UAUT), (A2)

where V. = UAUT is a spectral decomposition of V, A = diag(xn, . ,de) and A;; =
min{max{Aii, Amin } )\max} fori=1,...,d.

Next we solve for P, (v). Let sign(v) = {sign(v1), . sign(vd)}T be a vector of the signs of v’s
entries. Denote |v| = sign(v)ovand v = TM(|V|) where T}y is a permutation transformation

that sorts the elements of |v| in descending order. Now, if 1™v < 1, we set (z,7) = (v,0). If
17V > 1,let Av := (01 — o, ..., 041 — Uq,0q)" € RZ Note that Av; > 0fori=1,...,d and

Zi:l iAv; = 1Tv > 1. Thus, there exists a smallest integer K such that Zi:l iAv; > 1. In this
case, we set

K

~ 1 - - -
yK(Zlvil) andz = (0, — 7,...,0x —7,0,...,0)T € RL

Now we can express P, (V) as

Pq,(v) = sign(v) o T|;|1(5). (A3)



Algorithm 1 Solving matrix projection problem (3.3

RQ <— MatriXPrOjeCtion(ﬁQ, Arnin, Arnax, :I:O’ ZO, v, € N)
r + vec(RQ)
for k=0,...,N do

el « xk — Pq (¥ — 2F)

eF 2k — Po, (2" + 2k —7)
eF (el eh)
if || €”||max < €, then
break
else
2 gk (el — ek)/2
ZhHl 2k ’y(eer ef)/?
end if
end for _

return R® = mat(z")

Next we solve the matrix projection problem in (3.3). Recall that RQ is the matrix to be projected to
S,. Since for any vector y € R?, we have ||y||max = MaXceRrd |cf, <1 c'y, it follows that problem
(3.3) can be reformulated as the following mini-max problem:

min max zT{w — vec (ﬁQ) } (A4)
xeQ z€Q2

If (x°Pt, z°P') is a solution to problem (A-4), then mat(x°P") is a solution to problem (3.3). Al-
gorithm [T] gives the pseudo code for solving problem (A.4), and thus (3.3)). Recall that 0 < Apin <
Amax < 00 are the lower and upper bounds of the eigenvalues of the projection. ° € Q; and
20 € Q, are arbitrary initial points. v € (0,2) is a parameter controlling the step lengths of every
iteration. ¢ > 0 is a prespecified tolerance level. N € N is the maximum number of iterations
desired. The convergence of Algorithm I]is guaranteed by the following theorem.

Theorem A.1 ([1]). Let u®P* := (x°P*, 2°PY) be a solution to (BA). Denote uF := (xF' zF")T
and e¥ := (ekT e’Z“T)T. Then Algorithm produces a sequence {u*} satisfying

x

e e e e e[
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