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Abstract

Stochastic variational inference (SVI) uses stochastic optimization to scale up
Bayesian computation to massive data. We present an alternative perspective on
SVI as approximate parallel coordinate ascent. SVI trades-off bias and variance
to step close to the unknown true coordinate optimum given by batch variational
Bayes (VB). We define a model to automate this process. The model infers the lo-
cation of the next VB optimum from a sequence of noisy realizations. As a conse-
quence of this construction, we update the variational parameters using Bayes rule,
rather than a hand-crafted optimization schedule. When our model is a Kalman
filter this procedure can recover the original SVI algorithm and SVI with adaptive
steps. We may also encode additional assumptions in the model, such as heavy-
tailed noise. By doing so, our algorithm outperforms the original SVI schedule
and a state-of-the-art adaptive SVI algorithm in two diverse domains.

1 Introduction

Stochastic variational inference (SVI) is a powerful method for scaling up Bayesian computation to
massive data sets [1]. It has been successfully used in many settings, including topic models [2],
probabilistic matrix factorization [3], statistical network analysis [4, 5], and Gaussian processes [6].
SVI uses stochastic optimization to fit a variational distribution, following cheap-to-compute noisy
natural gradients that arise from repeatedly subsampling the data. The algorithm follows these
gradients with a decreasing step size [7]. One nuisance, as for all stochastic optimization techniques,
is setting the step size schedule.

In this paper we develop variational filtering, an alternative perspective of stochastic variational
inference. We show that this perspective leads naturally to a tracking algorithm—one based on
a Kalman filter—that effectively adapts the step size to the idiosyncrasies of data subsampling.
Without any tuning, variational filtering performs as well or better than the best constant learning
rate chosen in retrospect. Further, it outperforms both the original SVI algorithm and SVI with
adaptive learning rates [8].

In more detail, variational inference optimizes a high-dimensional variational parameter λ to find
a distribution that approximates an intractable posterior. A concept that is important in SVI is the
parallel coordinate update. This refers to setting each dimension of λ to its coordinate optimum, but
where these coordinates are computed parallel. We denote the resulting updated parameters λVB.

With this definition we have a new perspective on SVI. At each iteration it attempts to reach its par-
allel coordinate update, but one estimated from a randomly sampled data point. (The true coordinate
update requires iterating over all of the data.) Specifically, SVI iteratively updates an estimate of λ

∗Work carried out while a member of the University of Cambridge, visiting Princeton University.
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as follows,
λt = (1− ρt)λt−1 + ρtλ̂t, (1)

where λ̂t is a random variable whose expectation is λVB
t and ρt is the learning rate. The original

paper on SVI points out that this iteration works because λVB
t − λt is the natural gradient of the

variational objective, and so Eq 1 is a noisy gradient update. But we can also see the iteration as a
noisy attempt to reach the parallel coordinate optimum λVB

t . While λ̂ is an unbiased estimate of this
quantity, we will show that Eq 1 uses a biased estimate but with reduced variance.

This new perspective opens the door to other ways of updating λt based on the noisy estimates of
λVB
t . In particular, we use a Kalman filter to track the progress of λt based on the sequence of

noisy coordinate updates. This gives us a ‘meta-model’ about the optimal parameter, which we now
estimate through efficient inference. We show that one setting of the Kalman filter corresponds to
SVI; another corresponds to SVI with adaptive learning rates; and others, like using a t-distribution
in place of a Gaussian, account better for noise than any previous methods.

2 Variational Filtering

We first introduce stochastic variational inference (SVI) as approximate parallel coordinate ascent.
We use this view to present variational filtering, a model-based approach to variational optimization
that observes noisy parallel coordinate optima and seeks to infer the true VB optimum. We instan-
tiate this method with a Kalman filter, discuss relationships to other optimization schedules, and
extend the model to handle real-world SVI problems.

Stochastic Variational Inference Given data x1:N , we want to infer the posterior distribution
over model parameters θ, p(θ|x1:N ). For most interesting models exact inference is intractable and
we must use approximations. Variational Bayes (VB) formulates approximate inference as a batch
optimization problem. The intractable posterior distribution p(θ|x1:N ) is approximated by a simpler
distribution q(θ;λ) where λ are the variational parameters of q.1 These parameters are adjusted to
maximize a lower bound on the model evidence (the ELBO),

L(λ) =

N∑
i=1

Eq[log p(xi|θ)] + Eq[log p(θ)]− Eq[log q(θ)] . (2)

Maximizing Eq 2 is equivalent to minimizing the KL divergence between the exact and approximate
posterior, KL[q||p]. Successive optima of the ELBO often have closed-form [1], so to maximize
Eq 2 VB can perform successive parallel coordinate updates on the elements in λ, λt+1 = λVB

t .

Unfortunately, the sum over all N datapoints in Eq 2 means that λVB
t is too expensive on large

datasets. SVI avoids this difficulty by sampling a single datapoint (or a mini-batch) and optimizing
a cheap, noisy estimate of the ELBO L̂(λ). The optimum of L̂(λ) is denoted λ̂t,

L̂(λ) =NEq[log p(xi|θ)] + Eq[log p(θ)]− Eq[log q(θ)] , (3)

λ̂ := argmax
λ

L̂(λ) = Eq[N log p(xi|θ) + log p(θ)] . (4)

The constant N in Eq 4 ensures the noisy parallel coordinate optimum is unbiased with respect to
the full VB optimum, E[λ̂t] = λVB

t . After computing λ̂t, SVI updates the parameters using Eq 1.
This corresponds to using natural gradients [9] to perform stochastic gradient ascent on the ELBO.

We present an alternative perspective on Eq 1. SVI may be viewed as an attempt to reach the true
parallel coordinate optimum λVB

t using the noisy estimate λ̂t. The observation λ̂t is an unbiased
estimator of λVB

t with variance Var[λ̂t]. The variance may be large, so SVI makes a bias/variance
trade-off to reduce the overall error. The bias and variance in λt computed using SVI (Eq 1) are

E[λt − λVB
t ] = (1− ρt)(λt−1 − λVB

t ) , Var[λt] = ρ2
tVar[λ̂t] , (5)

respectively. Decreasing the step size reduces the variance but increases the bias. However, as the
algorithm converges, the bias decreases as the VB optima fall closer to the current parameters. Thus,

1To readers familiar with stochastic variational inference, we refer to the global variational parameters,
assuming that the local parameters are optimized at each iteration. Details can be found in [1].
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λt−1−λVB
t tends to zero and as optimization progresses, ρt should decay. This reduces the variance

given the same level of bias.

Indeed, most stochastic optimization schedules decay the step size, including the Robbins-Monro
schedule [7] used in SVI. Different schedules yield different bias/variance trade-offs, but the trade-
off is heuristic and these schedules often require hand tuning. Instead we use a model to infer the
location of λVB

t from the observations, and use Bayes rule to determine the optimal step size.

Probabilistic Filtering for SVI We described our view of SVI as approximate parallel coordinate
ascent. With this perspective, we can define a model to infer λVB

t . We have three sets of variables:
λt are the current parameters of the approximate posterior q(θ;λt); λVB

t is a hidden variable cor-
responding to the VB coordinate update at the current time step; and λ̂t is an unbiased, but noisy
observation of λVB

t .

We specify a model that observes the sequence of noisy coordinate optima λ̂1:t, and we use it
to compute a distribution over the full VB update p(λVB

t |λ̂1:t). When making a parallel coordinate
update at time twe move to the best estimate of the VB optimum under the model, λt = E[λVB

t |λ̂1:t].
Using this approach we i) avoid the need to tune the step size because Bayes rule determines how
the posterior mean moves at each iteration; ii) can use a Kalman filter to recover particular static
and adaptive step size algorithms; and iii) can add extra modelling assumptions to vary the step size
schedule in useful ways.

In variational inference, our ‘target’ is λVB
t . It moves because the parameters of approximate pos-

terior λt change as optimization progresses. Therefore, we use a dynamic tracking model, the
Kalman filter [10]. We compute the posterior over next VB optimum given previous observations,
p(λVB

t |λ̂1:t). In tracking, this is called filtering, so we call our method variational filtering (VF).2 At
each time t, VF has a current set of model parameters λt−1 and takes these steps.

1. Sample a datapoint xt.
2. Compute the noisy estimate of the coordinate update λ̂t using Eq 3.
3. Run Kalman filtering to compute the posterior over the VB optimum, p(λVB

t |λ̂1:t).
4. Update the parameters to the posterior mean λt = E[λVB

t |λ̂1:t] and repeat.

Variational filtering uses the entire history of observations, encoded by the posterior, to infer the
location of the VB update. Standard optimization schedules use only the current parameters λt to
regularize the noisy coordinate update, and these methods require tuning to balance bias and variance
in the update. In our setting, Bayes rule automatically makes this trade-off.

To illustrate this perspective we consider a small problem. We fit a variational distribution for latent
Dirichlet allocation on a small corpus of 2.5k documents from the ArXiv. For this problem we can
compute the full parallel coordinate update and thus compute the tracking error ||λVB

t − λt||22 and
the observation noise ||λVB

t − λ̂t||22 for various algorithms. We emphasize that λ̂t is unbiased, and
so the observation noise is completely due to variance. A reduction in tracking error indicates an
advantage to incurring bias for a reduction in variance.

We compared variational filtering (Alg. 1) to the original Robbins-Monro schedule used in SVI [1],
and a large constant step size of 0.5. The same sequence of random documents was handed to each
algorithm. Figs. 1 (a-c) show the tracking error of each algorithm. The large constant step size yields
large error due to high variance, see Eq 5. The SVI updates are too small and the bias dominates.
Here, the bias is even larger than the variance in the noisy observations during early stages, but it
decays as the term (λt−λVB

t−1) in Eq 5 slowly decreases. The variational filter automatically balances
bias and variance, yielding the smallest tracking error. As a result of following the VB optima more
closely, the variational filter achieves larger values of the ELBO, shown in Fig. 1 (d).

3 Kalman Variational Filter

We now detail our Kalman filter for SVI. Then we discuss different settings of the parameters and
estimating these online. Finally, we extend the filter to handle heavy-tailed noise.

2 We do not perform ‘smoothing’ in our dynamical system because we are not interested in old VB coordi-
nate optima after the parameters have been optimized further.
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(a) Variational Filtering (b) SVI, Robbins-Monro (c) Constant Rate (d) ELBO
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Figure 1: (a-c) Curves show the error in tracking the VB update. Markers depict the error in the
noisy observations λ̂t to the VB update. (d) Evolution of the ELBO computed on the entire dataset.

The Gaussian Kalman filter (KF) is attractive because inference is tractable and, in SVI, computa-
tional time is the limiting factor, not the rate of data acquisition. The model is specified as

p(λVB
t+1|λVB

t ) = N (λVB
t , Q) , p(λ̂t|λVB

t ) = N (λVB
t , R) , (6)

where R models the variance in the noisy coordinate updates and Q models how far the VB optima
move at each iteration. The observation noise has zero mean because the noisy updates are unbiased.
We assume no systematic parameter drift, so E[λVB

t+1] = λVB
t . Filtering in this linear-Gaussian model

is tractable, given the current posterior p(λVB
t−1|λ̂1:t−1) = N (µt−1; Σt−1) and a noisy coordinate

update λ̂t, the next posterior is computed directly using Gaussian manipulations [11],

p(λVB
t |λ̂1:t) = N

(
[1− Pt]µt−1 + Ptλ̂t, [1− Pt]

−1[Σt−1 +Q]
)
, (7)

Pt = [Σt−1 +Q][Σt−1 +Q+R]−1 . (8)

The variable Pt is known as the Kalman gain. Notice the update to the posterior mean has the same
form as the SVI update in Eq 1. The gain Pt is directly equivalent to the SVI step size ρt.3 Different
modelling choices to get different optimization schedules. We now present some key cases.

Static Parameters If the parameters Q and R are fixed, the step size progression in Eq 7 can
be computed a priori as Pt+1 = [Q/R + Pt][1 + Q/R + Pt]

−1. This yields a fixed sequence of
decreasing step size. A popular schedule is the Robbins-Monro routine, ρ ∝ (t0 + t)−κ also used in
SVI [1]. If we set Q = 0 the variational filter returns a Robbins-Monro schedule with κ = 1. This
corresponds to online estimation of the mean of a Gaussian. This is because Q = 0 assumes that the
optimization has converged and the filter simply averages the noisy updates.

In practice, decay rates slower that κ = 1 perform better [2, 8]. This is because updates which
were computed using old parameter values are forgotten faster. Setting Q > 0 yields the same
reduced memory. In this case, the step size tends to a constant limt→∞ Pt = [

√
1 + 4R/Q +

1][
√

1 + 4R/Q + 1 + 2R/Q]−1. Larger the noise-to-signal ratios R/Q result in smaller limiting
step sizes. This demonstrates the automatic bias/variance trade-off. If R/Q is large, the variance in
the noisy updates Var[λ̂t] is assumed large. Therefore, the filter uses a smaller step size, yielding
more bias (Eq 5), but with lower overall error. Conversely, if there is no noise R/Q = 0, P∞ = 1
and we recover batch VB.

Parameter Estimation Normally the parameters will not be known a priori. Further, if Q is
fixed then the step size does not tend to zero and so Robbins-Monro criteria do not hold [7]. We can
address both issues by estimating Q and R online.

The parameter R models the variance in the noisy optima, and Q measures how near the process is
to convergence. These parameters are unknown and will change as the optimization progresses. Q
will decrease as convergence is approached; R may decrease or increase. In our demonstration in
Fig. 1, it increases during early iterations and then plateaus. Therefore we estimate these parameters
online, similar to [8, 12]. The desired parameter values are

R = E[||λ̂t − λVB
t ||2] = E[||λ̂t − λVB

t−1||22]− ||λVB
t − λVB

t−1||22 , (9)

Q = ||λVB
t − λVB

t−1||22 . (10)

3 In general, Pt is a full-rank matrix update. For simplicity, and to compare to scalar learning rates, we
present the 1D case. The multi-dimensional generalization is straightforward.

4



0 5000 10000 15000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

# docs

lo
g
(ρ

t
)

 

 

Students t Filter
Gaussian Filter
SVI−adapt [Ran13]

Figure 2: Step sizes learned by the Gaussian
Kalman filter, the Student’s t filter (Alg. 1) and
the adaptive learning rate in [8], on non-stationary
ArXiv data. The adaptive algorithms react to the
dataset shift by increasing the step size. The vari-
ational filters react even faster than adaptive-SVI
because not only do Q and R adjust, but the pos-
terior variance increases at the shift which further
augments the next step size.

We estimate these using exponentially weighted moving averages. To estimate the two terms in Eq 9,
we estimate the expected difference between the current state and the observation gt = E[λ̂t−λVB

t−1],
and the norm of this difference ht = E[||λ̂t − λVB

t−1||22], using

gt = (1− τ−1
t )gt−1 + τ−1

t (λ̂t − µt−1) , ht = (1− τ−1
t )ht−1 + τ−1

t ||λ̂t − µt−1||22 , (11)

where τ is the window length and µt−1 is the current posterior mean. The parameters are estimated
as R = ht − ||gt||22 and Q = ||gt||22. After filtering, the window length is adjusted to τt+1 =
(1 − Pt)τt + 1. Larger steps result in shorter memory of old parameter values. Joint parameter
and state estimation can be poorly determined. Initializing the parameters to appropriate values
with Monte Carlo sampling, as in [8], mitigates this issue. In our experiments we avoid this under-
specification by tying the filtering parameters across the filters for each variational parameter.

The variational filter with parameter estimation recovers an automatic step size similar to the
adaptive-SVI algorithm in [8]. Their step size is equivalent to ρt = Q/[Q + R]. Variational fil-
tering uses Pt = [Σt−1 + Q]/[Σt−1 + Q + R], Eq 7. If this posterior variance Σt−1 is zero the
updates are identical. If Σt−1 is large, as in early time steps, the filter produces a larger step size.
Fig. 3 demonstrates how the these methods react to non-stationary data. LDA was run on ArXiv
abstracts whose category changed every 5k documents. Variational filtering and adaptive-SVI react
to the shift by increasing the step size, the ELBO is similar for both methods.

Student’s t Filter In SVI, the noisy estimates λ̂t are often heavy-tailed. For example, in ma-
trix factorization heavy-tailed parameters distributions [13] produce to heavy-tailed noisy updates.
Empirically, we observe similar heavy tails in LDA. Heavy tails may also arise from computing
Euclidean distances between parameter vectors and not using the more natural Fisher information
metric [9]. We add robustness these sources of noise with a heavy-tailed Kalman filter.

We use a t-distributed noise model, p(λ̂t|λVB
t ) = T (λVB

t , R, δ), where T (m,V, d) denotes a t-
distribution with mean m, covariance V and d degrees of freedom. For computational convenience
we also use a t-distributed transition model, p(λVB

t+1|λVB
t ) = T (λVB

t , Q, γ). If the current posterior
is t-distributed, p(λVB

t |λ̂1:t) = T (µt,Σt, ηt) and the degrees of freedom are identical, ηt = γ = δ,
then filtering has closed-form,

p(λVB
t |λ̂1:t) =T

(
(1− Pt)µt−1 + Ptλ̂t,

ηt−1 + ∆2

ηt−1 + ||λ||0
(1− Pt)[Σt−1 +Q], ηt−1 + ||λ||0

)
, (12)

where Pt =
Σt−1 +Q

Σt−1 +Q+R
, and ∆2 =

||λ̂t − µt−1||22
Σt−1 +Q+R

. (13)

The update to the mean is the same as in the Gaussian KF. The crucial difference is in the update to
the variance in Eq 12. If an outlier λ̂t arrives, then ∆2, and hence Σt, are augmented. The increased
posterior uncertainty at time t + 1 yields an increased gain Pt+1. This allows the filter to react
quickly to a large perturbation. The t-filter differs fundamentally to the Gaussian KF in that the step
size is now a direct function of the observations. In the Gaussian KF the dependency is indirect,
through the estimation of R and Q.

Eq 12 has closed-form because the d.o.f. are equal. Unfortunately, this will not generally be the
case because the posterior degrees of freedom grow, so we require an approximation. Following
[14], we approximate the ‘incompatible’ t-distributions by adjusting their degrees of freedom to be
equal. We choose all of these to equal η̃t = min(ηt, γ, δ). We match the degrees of freedom in
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this way because it prevents the posterior degree of freedom from growing over time. If ηt, Eq 12
were allowed to grow large, the t-distributed filter reverts back to a Gaussian KF. This is undesirable
because the heavy-tailed noise does not necessarily disappear at convergence.

To account for adjusting the degrees of freedom, we moment match the old and new t-distributions.
This has closed-from; to match the second moments of T (m, Σ̃, η̃) to T (m,Σ, η), the variance is set
to Σ̃ = η(η̃−2)

(η−2)η̃Σ. This results in tractable filtering and has the same computational cost as Gaussian
filtering. The routine is summarized in Algorithm 1.

Algorithm 1 Variational filtering with Student’s t-distributed noise
1: procedure FILTER(data x1:N )
2: Initialize filtering distribution Σ0, µ0, η0, see § 5
3: Initialize statistics g0, h0, τ0 with Monte-Carlo sampling
4: Set initial variational parameters λ0 ← µ0

5: for t = 1, . . . , T do
6: Sample a datapoint xt . Or a mini-batch of data.
7: λ̂t ← f(λt, xt), f given by Equation Eq 4 . Noisy estimate of the coordinate optimum.
8: Compute gt and ht using Eq 11.
9: R← ht − g2

t , Q← ht . Update parameters of the filter.
10: η̃t−1 ← min(ηt−1, γ, δ) . Match degrees of freedom.
11: Σ̃t−1 ← ηt−1(η̃t−1 − 2)[(ηt−1 − 2)η̃t−1]−1Σt−1, similar for R̃, Q̃ . Moment match.
12: Pt ← [Σ̃t−1 + Q̃][Σ̃t−1 + Q̃+ R̃]−1 . Compute gain, or step size.
13: ∆2 ← ||λ̂t − µt−1||22[Σ̃t−1 + Q̃+ R̃]−1

14: µt ← [I − Pt]µt−1 + Ptλ̂t, . Update filter posterior.
15: Σt ← η̃t−1+∆2

η̃t−1+||λ||0 [I − Pt][Σ̃t−1 + Q̃], ηt ← ηt−1 + 1

16: λt ← µt . Update the variational parameters of q.
17: end for
18: return λT
19: end procedure

4 Related Work

Stochastic and Streamed VB SVI performs fast inference on a fixed dataset of known size N .
Online VB algorithms process an infinite stream of data [15, 16], but these methods cannot use a
re-sampled datapoint. Variational filtering falls between both camps. The noisy observations require
an estimate of N . However, Kalman filtering does not try to optimize a static dataset like a fixed
Robbins-Monro schedule. As observed in Fig. 3 the algorithm can adapt to a regime change, and
forgets the old data. The filter simply tries to move to the VB coordinate update at each step, and is
not directly concerned about asymptotic convergence on static dataset.

Kalman filters for parameter learning Kalman filters have been used to learn neural network
parameters. Extended Kalman filters have been used to train supervised networks [17, 18, 19].
The network weights evolve because of data non-stationarity. This problem differs fundamentally
to SVI. In the neural network setting, the observations are the fixed data labels, but in SVI the
observations are noisy realizations of a moving VB parallel coordinate optimum. If the VF draws
the same datapoint, the observations λ̂ will still change because λt will have changed. In the work
with neural nets, the same datapoint always yields the same observation for the filter.

Adaptive learning rates Automatic step size schedules have been proposed for online estimation
of the mean of a Gaussian [20], or drifting parameters [21]. The latter work uses a Gaussian KF for
parameter estimation in approximate dynamic programming. Automatic step sizes are derived for
stochastic gradient descent in [12] and SVI in [8]. These methods set the step size to minimize the
expected update error. Our work is the first Bayesian approach to learn the SVI schedule.

Meta-modelling Variational filtering is a ‘meta-model’, these are models that assist training of a
more complex method. They are becoming increasingly popular, examples include Kalman filters
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Figure 3: Final performance achieved by each algorithm on the two problems. Stars indicate the
best performing non-oracle algorithm and those statistically indistinguishable at p = 0.05. (a-c)
LDA: Value of the ELBO after observing 0.5M documents. (d-f) BMF: recall@10 after observing
2 · 108 cells.

for training neural networks [17], Gaussian process optimization for hyperparameter search [22] and
Gaussian process regression to construct Bayesian quasi-Newton methods [23].

5 Empirical Case Studies

We tested variational filtering on two diverse problems: topic modelling with Latent Dirichlet Allo-
cation (LDA) [24], a popular testbed for scalable inference routines, and binary matrix factorization
(BMF). Variational filtering outperforms Robbins-Monro SVI and a state-of-the-art adaptive method
[8] in both domains. The Student’s t filter performs substantially better than the Gaussian KF and is
competitive with an oracle that picks the best constant step size with hindsight.

Models We used 100 topics in LDA and set the Dirichlet hyperparameters to 0.5. This value is
slightly larger than usual because it helps the stochastic routines escape local minima early on. For
BMF we used a logistic matrix factorization model with a Gaussian variational posterior over the
latent matrices [3]. This task differs to LDA in two ways. The variational parameters are Gaussian
and we sample single cells from the matrix to form stochastic updates. We used minibatches of 100
documents in LDA, and 5 times the number of rows in BMF.

Datasets We trained LDA on three large document corpora: 630k abstracts from the ArXiv,
1.73M New York Times articles, and Wikipedia, which has ≈ 4M articles. For BMF we used three
recommendation matrices: clickstream data from the Kosarak news portal; click data from an e-
commerce website, BMS-WebView-2 [25]; and the Netflix data, treating 4-5 star ratings as ones.
Following [3] we kept the 1000 items with most ones and sampled up to 40k users.

Algorithms We ran our Student’s t variational filter in Algorithm 1 (TVF) and the Gaussian
version in § 3 (GVF). The variational parameters were initialized randomly in LDA and with an
SVD-based routine [26] in BMF. The prior variance was set to Σ0 = 103 and t-distribution’s degrees
of freedom to η0 = 3 to get the heaviest tails with a finite variance for moment matching.

In general, VF can learn full-rank matrix stepsizes. LDA and BMF, however, have many parameters,
and so we used the simplest setting of VF in which a single step size was learned for all of them;
that is, Q and R are constrained to be proportional to the identity matrix. This choice reduces the
cost of VF from O(N3) to O(N). Empirically, this computational overhead was negligible. Also
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learning curves of
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it allows us to aggregate statistics across the variational parameters, yielding more robust estimates.
Finally, we can directly compare our Bayesian adaptive rate to the single adaptive rate in [8].

We compared to the SVI schedule proposed in [1]. This is a Robbins-Monro schedule
ρt = (t0 + t)−κ, we used κ = 0.7; t0 = 1000 for LDA as these performed well in [1, 2, 8] and
κ = 0.7, t0 = 0 for BMF, as in [3]. We also compared to the adaptive-SVI routine in [8]. Finally, we
used an oracle method that picked the constant learning rate from a grid of rates 10−k, k ∈ 1, . . . , 5,
that gave the best final performance. In BMF, the Robbins-Monro SVI schedule learns a different
rate for each row and column. All other methods computed a single rate.

Evaluation In LDA, we evaluated the algorithms using the per-word ELBO, estimated on random
sets of held-out documents. Each algorithm was given 0.5M documents and the final ELBO was
averaged over the final 10% of the iterations. We computed statistical significance between the
algorithms with a t-test on these noisy estimates of the ELBO. Our BMF datasets were from item
recommendation problems, for which recall is a popular metric [27]. We computed recall at N by
removing a single one from each row during training. We then ranked the zeros by their posterior
probability of being a one and computed the fraction of the rows in which the held-out one was in
the top N . We used a budget of 2 · 108 observations and computed statistical significance over 8
repeats of the experiment, including the random train/test split.

Results The final performance levels on both tasks are plotted in Fig. 3. These plots show that over
the six datasets and two tasks the Student’s t variational filter is the strongest non-oracle method.
SVI [1] and Adapt-SVI [8] come close on LDA, which they were originally used for, but on the
WebView and Kosarak binary matrices they yield a substantially lower recall. In terms of the ELBO
in BMF (not plotted), TVF was the best non-oracle method on WebView and Kosarak and SVI was
best on Netflix, with TVF second best. The Gaussian Kalman filter worked less well. It produced
high learning rates due to the inaccurate Gaussian noise assumption.

The t-distributed filter appears to be robust to highly non-Gaussian noise. It was even competitive
with the oracle method (2 wins, 2 draws, 1 loss). Note that the oracle picked the best final perfor-
mance at time T , but at t < T the variational filter converged faster, particularly in LDA. Fig. 4
(a) shows example learning curves on the ArXiv data. Although the oracle just outperforms TVF at
0.5M documents, TVF converged much faster. Fig. 4 (b) shows example learning curves in BMF
on the WebView data. This figure shows that most of the BMF routines converge within the budget.
Again, TVF not only reached the best solution, but also converged fastest.

Conclusions We have presented a new perspective on SVI as approximate parallel coordinate de-
scent. With our model-based approach to this problem, we shift the requirement from hand tuning
optimization schedules to constructing an appropriate tracking model. This approach allows us to
derive a new algorithm for robust SVI that uses a model with Student’s t-distributed noise. This Stu-
dent’s t variational filtering algorithm performed strongly on two domains with completely different
variational distributions. Variational filtering is a promising new direction for SVI.
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