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École Polytechnique Fédérale de Lausanne (EPFL), CH1015-Lausanne, Switzerland
{quoc.trandinh, volkan.cevher}@epfl.ch

Abstract
We introduce a model-based excessive gap technique to analyze first-order primal-
dual methods for constrained convex minimization. As a result, we construct first-
order primal-dual methods with optimal convergence rates on the primal objec-
tive residual and the primal feasibility gap of their iterates separately. Through a
dual smoothing and prox-center selection strategy, our framework subsumes the
augmented Lagrangian, alternating direction, and dual fast-gradient methods as
special cases, where our rates apply.

1 Introduction
In [1], Nesterov introduced a primal-dual technique, called the excessive gap, for constructing and
analyzing first-order methods for nonsmooth and unconstrained convex optimization problems. This
paper builds upon the same idea for constructing and analyzing algorithms for the following a class
of constrained convex problems, which captures a surprisingly broad set of applications [2, 3, 4, 5]:

f? := min
x∈Rn

{f(x) : Ax = b, x ∈ X} , (1)

where f : Rn → R∪{+∞} is a proper, closed and convex function; X ⊆ Rn is a nonempty, closed
and convex set; and A ∈ Rm×n and b ∈ Rm are given.
In the sequel, we show how Nesterov’s excessive gap relates to the smoothed gap function for a
variational inequality that characterizes the optimality condition of (1). In the light of this connec-
tion, we enforce a simple linear model on the excessive gap, and use it to develop efficient first-order
methods to numerically approximate an optimal solution x? of (1). Then, we rigorously characterize
how the following structural assumptions on (1) affect their computational efficiency:
Structure 1: Decomposability. We say that problem (1) is p-decomposable if its objective func-
tion f and its feasible set X can be represented as follows:

f(x) :=
∑p

i=1
fi(xi), and X :=

∏p

i=1
Xi, (2)

where xi ∈ Rni , Xi ∈ Rni , fi : Rni → R ∪ {+∞} is proper, closed and convex for
i = 1, . . . , p, and

∑p
i=1 ni = n. Decomposability naturally arises in machine learning applica-

tions such as group sparsity linear recovery, consensus optimization, and duality of empirical risk
minimization problems [5]. As an important example, a composite convex minimization problem
minx1

{f1(x1) + f2(Kx1)} can be cast into (1) with a 2-decomposable structure using an interme-
diate variable x2 = Kx1 to represent the linear constraints. Decomposable structure immediately
supports parallel and distributed implementations in synchronous hardware architectures.
Structure 2: Proximal tractability. By proximal tractability, we mean that the computation of
the following operation with a given proper, closed and convex function g is “efficient” (e.g., by a
closed form solution or by polynomial time algorithms) [6]:

proxg(z) := arg min
w∈Rnz

{g(w) + (1/2)‖w − z‖2}. (3)

When the constraint z ∈ Z is available, we consider the proximal operator of g(·)+δZ(·) instead of
g, where δZ is the indicator function of Z . Many smooth and non-smooth functions have tractable
proximal operators such as norms, and the projection onto a simple set [3, 7, 4, 5].
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Scalable algorithms for constrained convex minimization and their limitations.
We can obtain scalable numerical solutions of (1) when we augment the objective f with simple
penalty functions on the constraints. Despite the fundamental difficulties in choosing the penalty
parameter, this approach enhances our computational capabilities as well as numerical robustness
since we can apply modern proximal gradient, alternating direction, and primal-dual methods. Un-
fortunately, existing approaches invariably feature one or both of the following two limitations:
Limitation 1: Non-ideal convergence characterizations. Ideally, the convergence rate character-
ization of a first-order algorithm for solving (1) must simultaneously establish for its iterates xk ∈ X
both on the objective residual f(xk)− f? and on the primal feasibility gap ‖Axk − b‖ of its linear
constraints. The constraint feasibility is critical so that the primal convergence rate has any signif-
icance. Rates on a joint of the objective residual and feasibility gap is not necessarily meaningful
since (1) is a constrained problem and f(xk) − f? can easily be negative at all times as compared
to the unconstrained setting, where we trivially have f(xk)− f? ≥ 0.

Hitherto, the convergence results of state-of-the-art methods are far from ideal; see Table 1 in [28].
Most algorithms have guarantees in the ergodic sense [8, 9, 10, 11, 12, 13, 14] with non-optimal
rates, which diminishes the practical performance; they rely on special function properties to im-
prove convergence rates on the function and feasibility [12, 15], which reduces the scope of their
applicability; they provide rates on dual functions [16], or a weighted primal residual and feasibility
score [13], which does not necessarily imply convergence on the primal residual or the feasibility;
or they obtain convergence rate on the gap function value sequence composed both the primal and
dual variables via variational inequality and gap function characterizations [8, 10, 11], where the
rate is scaled by a diameter parameter of the dual feasible set which is not necessary bounded.

Limitation 2: Computational inflexibility. Recent theoretical developments customize algo-
rithms to special function classes for scalability, such as convex functions with global Lipschitz
gradient and strong convexity. Unfortunately, these algorithms often require knowledge of func-
tion class parameters (e.g., the Lipschitz constant and the strong convexity parameter); they do
not address the full scope of (1) (e.g., with self-concordant [barrier] functions or fully non-smooth
decompositions); and they often have complicated algorithmic implementations with backtracking
steps, which can create computational bottlenecks. These issues are compounded by their penalty
parameter selection, which can significantly decrease numerical efficiency [17]. Moreover, they lack
a natural ability to handle p-decomposability in a parallel fashion at optimal rates.

Our specific contributions
To this end, this paper addresses the question: “Is it possible to efficiently solve (1) using only the
proximal tractability assumption with rigorous global convergence rates on the objective residual
and the primal feasibility gap?” The answer is indeed positive provided that there exists a solution
in a bounded feasible set X . Surprisingly, we can still leverage favorable function classes for fast
convergence, such as strongly convex functions, and exploit p-decomposability at optimal rates.
Our characterization is radically different from existing results, such as in [18, 8, 19, 9, 10, 11, 12,
13]. Specifically, we unify primal-dual methods [20, 21], smoothing (both for Bregman distances
and for augmented Lagrangian functions) [22, 21], and the excessive gap function technique [1] in
one. As a result, we develop an efficient algorithmic framework for solving (1), which covers aug-
mented Lagrangian method [23, 24], [preconditioned] alternating direction method-of-multipliers
([P]ADMM) [8] and fast dual descent methods [18] as special cases.
Based on the new technique, we establish rigorous convergence rates for a few well-known primal-
dual methods, which is optimal (in the sense of first order black-box models [25]) given our partic-
ular assumptions. We also discuss adaptive strategies for trading-off between the objective residual
|f(xk)−f?| and the feasibility gap ‖Axk−b‖, which enhance practical performance. Finally, we
describe how strong convexity of f can be exploited, and numerically illustrate theoretical results.

2 Preliminaries
2.1. A semi-Bregman distance. Let Z be a nonempty, closed convex set in Rnz . A nonnegative,
continuous and µb-strongly convex function b is called a µb-proximity function or prox-function of
Z if Z ⊆ dom (b). Then zc := argminz∈Z b(z) exists and is unique, called the center point of
b. Given a smooth µb-prox-function b of Z (with µb = 1), we define db(z, ẑ) := b(ẑ)−b(z)−
∇b(z)T (ẑ−z), ∀z, ẑ ∈ dom (b), as the Bregman distance between z and ẑ given b. As an example,
with b(z) := (1/2)‖z‖22, we have db(z, ẑ) = (1/2)‖z− ẑ‖22, which is the Euclidean distance.
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In order to unify both the Bregman distance and augmented Lagrangian smoothing methods, we
introduce a new semi-Bregman distance db(Sx,Sxc) between x and xc, given matrix S. Since S is
not necessary square, we use the prefix “semi” for this measure. We also denote by:

DS
X := sup{db(Sx,Sxc) : x,xc ∈ X}, (4)

the semi-diameter of X . If X is bounded, then 0 ≤ DS
X < +∞.

2.2. The dual problem of (1). Let L(x,y) := f(x) + yT (Ax− b) be the Lagrange function of
(1), where y ∈ Rm is the Lagrange multipliers. The dual problem of (1) is defined as:

g? := max
y∈Rm

g(y), (5)

where g is the dual function, which is defined as:
g(y) := min

x∈X
{f(x) + yT (Ax− b)}. (6)

Let us denote by x?(y) the solution of (6) for a given y ∈ Rm. Corresponding to x?(y), we also
define the domain of g as dom (g) := {y ∈ Rm : x?(y) exists}. If f is continuous on X and if X is
bounded, then x?(y) exists for all y ∈ Rm. Unfortunately, g is nonsmooth, and numerical solutions
of (5) are difficult [25]. In general, we have g(y) ≤ f(x) which is the weak-duality condition in
convex analysis. To guarantee strong duality, i.e., f? = g? for (1) and (5), we need an assumption:
Assumption A. 1. The solution set X ? of (1) is nonempty. The function f is proper, closed and
convex. In addition, either X is a polytope or the Slater condition holds, i.e.: {x ∈ Rn : Ax = b}∩
relint(X ) 6= ∅, where relint(X ) is the relative interior of X .

Under Assumption A.1, the solution set Y? of (5) is also nonempty and bounded. Moreover, the
strong duality holds, i.e., f? = g?. Any point (x?,y?) ∈ X ? × Y? is a primal-dual solution to (1)
and (5), and is also a saddle point of L, i.e., L(x?,y) ≤ L(x?,y?) ≤ L(x,y?),∀(x,y) ∈ X ×Rm.

2.3. Mixed-variational inequality formulation and the smoothed gap function. We use w :=

[x;y] ∈ Rn × Rm to denote the primal-dual variable, and F (w) :=

[
ATy

b−Ax

]
to denote a partial

Karush-Kuhn-Tucker (KKT) mapping. Then, we can write the optimality condition of (1) as:
f(x)− f(x?) + F (w?)T (w −w?) ≥ 0, ∀w ∈ X × Rm, (7)

which is known as the mixed-variational inequality (MVIP) [26]. If we defineW := X × Rm and:
G(w?) := max

w∈W

{
f(x?)− f(x) + F (w?)T (w? −w)

}
, (8)

then G is known as the Auslender gap function of (7) [27]. By the definition of F , we can see that:
G(w?) := max

(x,y)∈W

{
f(x?)− f(x)− (Ax− b)Ty?

}
= f(x?)− g(y?) ≥ 0.

It is clear that G(w?) = 0 if and only if w? := [x?;y?] ∈ W? := X ?×Y?—i.e., the strong duality.

Since G is generally nonsmooth, we strictly smooth it by adding an augmented convex function:
dγβ(w) ≡ dγβ(x,y) := γdb(Sx,Sxc) + (β/2)‖y‖2, (9)

where db is a Bregman distance, S is a given matrix, and γ, β > 0 are smoothness parameters. The
smoothed gap function for G is defined as:

Gγβ(w̄) := max
w∈W

{
f(x̄)− f(x) + F (w̄)T (w̄ −w)− dγβ(w)

}
, (10)

where F is defined in (7). The function Gγβ can be considered as smoothed gap function for the
MVIP (7). By the definition of G and Gγβ , we can easily show that:

Gγβ(w̄) ≤ G(w̄) ≤ Gγβ(w̄) + max{dγβ(w) : w ∈ W}, (11)
which is key to develop the algorithm in the next section.

Problem (10) is convex, and its solution w?
γβ(w̄) can be computed as:

w?
γβ(w̄) := [x?γ(ȳ);y?β(x̄)]⇔

{
x∗γ(ȳ) := argmin

x∈X

{
f(x)+yT (Ax−b)+γdb(Sx,Sxc)

}
y∗β(x̄) := β−1(Ax̄− b).

(12)

In this case, the following concave function:
gγ(y) := min

x∈X

{
f(x) + yT (Ax− b) + γdb(Sx,Sxc)

}
, (13)

can be considered as a smooth approximation of the dual function g defined by (6).
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2.4. Bregman distance smoother vs. augmented Lagrangian smoother. Depending on the
choice of S and xc, we deal with two smoothers as follows:

1. If we choose S = I, the identity matrix, and xc is then center point of b, then we obtain a
Bregman distance smoother.

2. If we choose S = A, and xc ∈ X such that Axc = b, then we have the augmented
Lagrangian smoother.

Clearly, with both smoothing techniques, the function gγ is smooth and concave. Its gradient is
Lipschitz continuous with the Lipschitz constant Lgγ := γ−1‖A‖2 and Lgγ := γ−1, respectively.

3 Construction and analysis of a class of first-order primal-dual algorithms
3.1. Model-based excessive gap technique for (1). Since G(w?) = 0 iff w? = [x?;y?] is
a primal-dual optimal solution of (1)-(5). The goal is to construct a sequence {w̄k} such that
G(w̄k) → 0, which implies that {w̄k} converges to w?. As suggested by (11), if we can construct
two sequences {w̄k} and {(γk, βk)} such that Gγkβk

(w̄k)→ 0+ as γkβk ↓ 0+, then G(w̄k)→ 0.

Inspired by Nesterov’s excessive gap idea in [1], we construct the following model-based excessive
gap condition for (1) in order to achieve our goal.
Definition 1 (Model-based Excessive Gap). Given w̄k ∈ W and (γk, βk) > 0, a new point w̄k+1 ∈
W and (γk+1, βk+1) > 0 so that γk+1βk+1 < γkβk is said to be firmly contractive (w.r.t. Gγβ
defined by (10)) when it holds for Gγkβk

that:

Gk+1(w̄k+1) ≤ (1− τk)Gk(w̄k)− ψk, (14)
where Gk := Gγkβk

, τk ∈ [0, 1) and ψk ≥ 0.

From Definition 1, if
{
w̄k
}

and {(γk, βk)} satisfy (14), then we have Gk(w̄k) ≤ ωkG0(w̄0)−Ψk

by induction, where ωk :=
∏k−1
j=0 (1− τj) and Ψk := ψ0 +

∑k−1
j=1

∏j−1
i=0 (1− τi)ψj . If G0(w̄0) ≤ 0,

then we can bound the objective residual |f(x̄k)− f?| and the primal feasibility ‖Ax̄k − b‖ of (1):
Lemma 1 ([28]). Let Gγβ be defined by (10). Let

{
w̄k
}
k≥0 ⊂ W and {(γk, βk)}k≥0 ∈ R2

++ be
the sequences that satisfy (14). Then, it holds that:{

−
[
2βkD

?
Y + (2γkβkD

S
X )1/2

]
D?
Y ≤ f(x̄k)− f? ≤ γkDS

X ,
‖Ax̄k − b‖ ≤ 2βkD

?
Y + (2γkβkD

S
X )1/2,

(15)

where D?
Y := min {‖y?‖2 : y? ∈ Y?}, which is the norm of a minimum norm dual solutions.

Hence, we can derive algorithms based (γk, βk) with a predictable convergence rate via (15). In the
sequel, we manipulate τk and ψk to do just that in order to preserve (14) á la Nesterov [1]. Finally,
we say that x̄k ∈ X is an ε-solution of (1) if |f(x̄k)− f∗| ≤ ε and ‖Ax̄k − b‖ ≤ ε.
3.2. Initial points. We first show how to compute an initial point w0 such that G0(w̄0) ≤ 0.
Lemma 2 ([28]). Given x0

c ∈ X , w̄0 := [x̄0; ȳ0] ∈ W is computed by:{
x̄0 = x∗γ0(0m) := arg min

x∈X

{
f(x) + (γ0/2)db(Sx,Sx

0
c)
}
,

ȳ0 = y∗β0
(x̄0) := β−10 (Ax̄0 − b).

(16)

satisfies Gγ0β0
(w̄0) ≤ −γ0dp(Sx̄0,Sxc) ≤ 0 provided that β0γ0 ≥ L̄g , where L̄g is the Lipschitz

constant of∇gγ with gγ given Subsection 2.4.

3.3. An algorithmic template. Algorithm 1 combines the above ingredients for solving (1). We
observe that the key computational step of Algorithm 1 is Step 3, where we update [x̄k+1; ȳk+1]. In
the algorithm, we provide two update schemes (1P2D) and (2P1D) based on the updates of the
primal or dual variables. The primal step x∗γk(ȳk) is calculated via (12). At line 3 of (2P1D), the
operator proxS

βf is computed as:

proxS
βf (x̂, ŷ) := argmin

x∈X

{
f(x) + ŷTA(x− x̂) + β−1db(Sx,Sx̂)

}
, (17)

where we overload the notation of the proximal operator prox defined above. At Step 2 of Algorithm
1, if we choose S := I, i.e., db(Sx,Sxc) := db(x,xc) for xc being the center point of b, then we set
L̄g := ‖A‖2. If S := A, i.e., db(Sx,Sxc) := (1/2)‖Ax− b‖2, then we set L̄g := 1.

Theorem 1 characterizes three variants of Algorithm 1, whose proof can be found in [28].
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Algorithm 1: (A primal-dual algorithmic template using model-based excessive gap)
Inputs: Fix γ0>0. Choose c0∈(−1, 1].
Initialization:
1: Compute a0 := 0.5(1+c0+

√
4(1−c0)+(1+c0)2, τ0 := a−10 , and β0 := γ−10 L̄g (c.f. the text).

2: Compute [x̄0; ȳ0] as (16) in Lemma 2.
For k = 0 to kmax, perform:
3: If stopping criterion, terminate. Otherwise, use one of the following update schemes:

(2P1D) :


x̂k := (1− τk)x̄k + τkx

∗
γk

(ȳk)

ŷk := β−1k+1(Ax̂k − b)
x̄k+1 := proxS

βk+1f
(x̂k, ŷk)

ȳk+1 := (1− τk)ȳk + τkŷ
k.

(1P2D) :


ȳ?k := β−1k (Ax̄k − b),
ŷk := (1− τk)ȳk + τkȳ

?
k,

x̄k+1 := (1−τk)x̄k+τkx
∗
γk

(ŷk),
ȳk+1 := ŷk+γk

(
Ax∗γk(ŷ

k)−b
)
.

4: Update βk+1 := (1− τk)βk and γk+1 := (1− ckτk)γk. Update ck+1 from ck (optional).
5: Update ak+1 := 0.5

(
1 + ck+1 +

√
4a2k + (1− ck+1)2

)
and set τk+1 := a−1k+1.

End For

Theorem 1. Let
{

(x̄k, ȳk)
}

be the sequence generated by Algorithm 1 after k iterations. Then:

If S = A, i.e., using the augmented Lagrangian smoother, γ0 :=
√
L̄g = 1, and ck := 0, then the

(1P2D) update satisfies:{
‖Ax̄k−b‖2 ≤ 8D?

Y
(k+1)2 ,

− 1
2‖Ax̄k−b‖22−D?

Y‖Ax̄k−b‖2 ≤ f(x̄k)− f? ≤ 0,
(18)

for all k ≥ 0. As a consequence, the worst-case analytical complexity of Algorithm 1 to achieve an
ε-solution x̄k is O(

√
ε).

If S = I, i.e., using the Bregman distance smoother, γ0 :=
√
L̄g = ‖A‖, and ck := 1, then, for the

(2P1D) scheme, we have:

(2P1D) :

{
‖Ax̄k−b‖ ≤ ‖A‖(2D

?
Y+
√

2DI
X )

k+1 ,

−D?
Y‖Ax̄k−b‖ ≤ f(x̄k)− f? ≤ ‖A‖k+1D

I
X .

(19)

Similarly, if γ0 := 2
√
2‖A‖
K+1 and ck := 0 for all k = 0, 1, . . . ,K, then, for the (1P2D) scheme, we

have:

(1P2D) :

 ‖Ax̄K−b‖ ≤ 2
√
2‖A‖(D?

Y+
√
DI
X )

(K+1) ,

−D?
Y‖Ax̄K−b‖ ≤ f(x̄K)− f? ≤ 2

√
2‖A‖

(K+1) D
I
X .

(20)

Hence, the worst-case analytical complexity to achieve an ε-solution x̄k of (1) is O
(
ε−1
)
.

The (1P2D) scheme has close relationship to some well-known primal dual methods we describe
below. Unfortunately, 1P2D has the drawback of fixing the total number of iterations a priori, which
2P1D can avoid at the expense of one more proximal operator calculation at each iteration.
3.4. Impact of strong convexity. We can improve the above schemes when f ∈ Fµ, i.e., f is
strongly convex with parameter µf > 0. The dual function g given in (6) is smooth and Lipschitz
gradient with Lgf := µ−1f ‖A‖2. Let us illustrate this when S = I and using the (1P2D) scheme as:

(1P2Dµ)


ŷk := (1−τk)ȳk+τky

?
βk

(x̄k),

x̄k+1 := (1−τk)x̄k+τkx
?(ŷk),

ȳk+1 := ŷk+ 1
Lg

f

(
Ax?(ŷk)−b

)
.

We can still choose the starting point as in (16) with β0 := Lgf . The parameters βk and τk at Steps
4 and 5 of Algorithm 1 are updated as βk+1 := (1− τk)βk, and τk+1 := τk

2 (
√
τ2k + 4− τk), where

β0 := Lgf and τ0 := (
√

5− 1)/2. The following corollary illustrates the convergence of Algorithm
1 using (1P2Dµ); see [28] for the detail proof.
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Corollary 1. Let f ∈ Fµ and
{

(x̄k, ȳk)
}
k≥0 be generated by Algorithm 1 using (1P2Dµ). Then:

‖Ax̄k − b‖2 ≤
4‖A‖2

µf (k + 2)2
D?
Y , and −D?

Y‖Ax̄k − b‖ ≤ f(x̄k)− f? ≤ 0.

Moreover, we also have ‖x̄k − x?‖ ≤ 4‖A‖
(k+2)µf

D?
Y .

It is important to note that, when f ∈ Fµ, we only have one smoothness parameter β and, hence,
we do not need to fix the number of iterations a priori (compared with [18]).

4 Algorithmic enhancements through existing methods
Our framework can directly instantiate concrete variants of some popular primal-dual methods for
(1). We illustrate three connections here and establish one convergence result for the second variant.
We also borrow adaptation heuristics from other algorithms to enhance our practical performance.

4.1. Proximal-point methods. We can choose xkc := x?γk−1
(ŷk−1). This makes Algorithm 1

similar to the proximal-based decomposition algorithm in [29], which employs the proximal term
db(·, x̂?k−1) with the Bregman distance db. The convergence analysis can be found in [28].

4.2. Primal-dual hybrid gradient (PDHG). When f is 2-decomposable, i.e., f(x) := f1(x1) +
f2(x2), we can choose xkc by applying one gradient step to the augmented Lagrangian term as:

xkc := [gk1 ;gk2 ] with
{
gk1 := xk1−‖A1‖−2AT

1 (A1x
k
1+A2x

k
2−b),

gk2 := xk2−‖A2‖−2AT
2 (A1x

k+1
1 +A2x

k
2 − b).

(PADMM)

In this case, (1P2D) leads to a new variant of PADMM in [8] or PDHG in [9].
Corollary 2 ([28]). Let

{
(x̄k, ȳk)

}
k≥0 be a sequence generated by (1P2D) in Algorithm 1 using

xkc as in (PADMM). If γ0 := 2
√
2‖A‖2
K+1 and ck := 0 for all k = 0, 1, . . . ,K, then we have ‖Ax̄K−b‖ ≤ 2

√
2‖A‖(D?

Y+DX )

(K+1) ,

−D?
Y‖Ax̄K−b‖ ≤ f(x̄K)− f? ≤ 2

√
2‖A‖

(K+1) D
2
X ,

(21)

where DX := 4 max {‖x− x̂‖ : x, x̂ ∈ X}.

4.4. ADMM. When f is 2-decomposable as f(x) := f1(x1) + f2(x2), we can choose db, S and
xkc such that db(Sx,Sxc) := (1/2)

[
‖A1x1 + A2x

k − b‖2 + ‖A1x
k+1
1 + A2x2 − b‖2

]
. Then

Algorithm 1 reduces to a new variant of ADMM. Its convergence guarantee is fundamentally as
same as Corollary 2. More details of the algorithm and its convergence can be found in [28].

4.5. Enhancements of our schemes. For the PADMM and ADMM methods, a great deal of
adaptation techniques has been proposed to enhance their convergence. We can view some of these
techniques in the light of model-based excessive gap condition. For instance, Algorithm 1 decreases
the smoothed gap function Gγkβk

as illustrated in Definition 1. The actual decrease is then given by
f(x̄k) − f? ≤ γk(DS

X − Ψk/γk). In practice, Dk := DS
X − Ψk/γk can be dramatically smaller

than DS
X in the early iterations. This implies that increasing γk can improve practical performance.

Such a strategy indeed forms the basis of many adaptation techniques in PADMM, and ADMM.

Specifically, if γk increases, then τk also increases and βk decreases. Since βk measures the primal
feasibility gap Fk := ‖Ax̄k − b‖ due to Lemma 1, we should only increase γk if the feasibility
gap Fk is relatively high. Indeed, in the case xkc := [gk1 ;gk2 ], we can compute the dual feasibility
gap as Hk := γk‖AT

1 A2((x̂?2)k+1 − (x̂?2)k)‖. Then, if Fk ≥ sHk for some s > 0, we increase
γk+1 := cγk for some c > 1. We use ck = c := 1.05 in practice. We can also decrease the
parameter γk in (1P2D) by γk+1 := (1 − ckτk)γk, where ck := db(Sx

?
γk

(ŷk),Sxc)/D
S
X ∈ [0, 1]

after or during the update of (x̄k+1, ȳk+1) as in (2P1D) if we know the estimate DS
X .

5 Numerical illustrations
5.1. Theoretical vs. practical bounds. We demonstrate the empirical performance of Algorithm
1 w.r.t. its theoretical bounds via a basic non-overlapping sparse-group basis pursuit problem:

min
x∈Rn

{∑ng

i=1
wi‖xgi‖2 : Ax = b, ‖x‖∞ ≤ ρ

}
, (22)
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where ρ > 0 is the signal magnitude, and gi andwi’s are the group indices and weights, respectively.
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Figure 1: Actual performance vs. theoretical bounds: [top row] the decomposable Bregman distance smoother
(S = I) and [bottom row] the augmented Lagrangian smoother (S = A).

In this test, we fix xc = 0n and db(x,xc) := (1/2)‖x‖2. Since ρ is given, we can evaluate DX
numerically. By solving (22) with the SDPT3 interior-point solver [30] up to the accuracy 10−8, we
can estimate D?

Y and f?. In the (2P1D) scheme, we set γ0 = β0 =
√
L̄g , while, in the (1P2D)

scheme, we set γ0 := 2
√

2‖A‖(K + 1)−1 with K := 104 and generate the theoretical bounds
defined in Theorem 1.

We test the performance of the four variants using a synthetic data: n = 1024, m = bn/3c = 341,
ng = bn/8c = 128, and x\ is a bng/8c-sparse vector. Matrix A are generated randomly using the iid
standard Gaussian and b := Ax\. The group indices gi is also generated randomly (i = 1, · · · , ng).

The empirical performance of two variants: (2P1D) and (1P2D) of Algorithm 1 is shown in Fig-
ure 1. The basic algorithm refers to the case when xkc := xc = 0n and the parameters are not
tuned. Hence, the iterations of the basic (1P2D) use only 1 proximal calculation and applies A and
AT once each, and the iterations of the basic (2P1D) use 2 proximal calculations and applies A
twice and AT once. In contrast, (2P1D) and (1P2D) variants whose iterations require one more
application of AT for adaptive parameter updates.

As can be seen from Figure 1 (row 1) that the empirical performance of the basic variants roughly
follows theO(1/k) convergence rate in terms of |f(x̄k)−f?| and ‖Ax̄k−b‖2. The deviations from
the bound are due to the increasing sparsity of the iterates, which improves empirical convergence.
With a kick-factor of ck = −0.02/τk and adaptive xkc , both turned variants (2P1D) and (1P2D)
significantly outperform theoretical predictions. Indeed, they approach x? up to 10−13 accuracy,
i.e., ‖x̄k − x?‖ ≤ 10−13 after a few hundreds of iterations.

Similarly, Figure 1 (row 2) illustrates the actual performance vs. the theoretical bounds O(1/k2) by
using the augmented Lagrangian smoother. Here, we solve the subproblems (13) and (17) by using
FISTA [31] up to 10−8 accuracy as suggested in [28]. In this case, the theoretical bounds and the
actual performance of the basis variants are very close to each other both in terms of |f(x̄k) − f?|
and ‖Ax̄k − b‖2. When the parameter γk is updated, the algorithms exhibit a better performance.

5.2. Binary linear support vector machine. This example is concerned with the following
binary linear support vector machine problem:

min
x∈Rn

{
F (x) :=

∑m

j=1
`j(yj ,w

T
j x− bj) + g(x)

}
, (23)

where `j(s, τ) is the Hinge loss function given by `j(s, τ) := max {0, 1− sτ} = [1 − sτ ]+, wj

is the column of a given matrix W ∈ Rm×n, b ∈ Rn is the bias vector, y ∈ {−1,+1}m is a
classifier vector g is a given regularization function, e.g., g(x) := (λ/2)‖x‖2 for the `2-regularizer
or g(x) := λ‖x‖1 for the `1-regularizer, where λ > 0 is a regularization parameter.

By introducing a slack variable r = Wx− b, we can write (23) in terms of (1) as:

min
x∈Rn,r∈Rm

{∑m

j=1
`j(yj , rj) + g(x) : Wx− r = b

}
. (24)
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Now, we apply the (1P2D) variant to solve (24). We test this algorithm on (24) and compare it
with LibSVM [32] using two problems from the LibSVM data set available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets/. The first problem is a1a, which has p = 119
features andN = 1605 data points, while the second problem is news20, which has p = 1′355′191
features and N = 19′996 data points.

We compare Algorithm 1 and the LibSVM solver in terms of the final value F (xk) of the orig-
inal objective function F , the computational time, and the classification accuracy caλ := 1 −
N−1

∑N
j=1

[
sign(Wxk − r) 6= y)

]
of both training and test data set. We randomly select 30%

data in a1a and news20 to form a test set, and the remaining 70% data is used for training. We
perform 10 runs and compute the average results. These average results are plotted in Fig. 2 for two
separate problems, respectively. The upper and lower bounds show the maximum and minimum
values of these 10 runs.
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Figure 2: The average performance results of the two algorithms on the a1a (first row) and news20
(second row) problems.

As can be seen from these results that both solvers give relatively the same objective values, the
accuracy for these two problems, while the computational of (1P2D) is much lower than LibSVM.
We note that LibSVM becomes slower when the parameter λ becomes smaller due to its active-set
strategy. The (1P2D) algorithm is almost independent of the regularization parameter λ, which is
different from active-set methods. In addition, the performance of (1P2D) can be improved by tak-
ing account its parallelization ability, which has not fully been exploited yet in our implementation.

6 Conclusions
We propose a model-based excessive gap (MEG) technique for constructing and analyzing first-
order primal-dual methods that numerically approximate an optimal solution of constrained convex
optimization problems (1). Thanks to a combination of smoothing strategies and MEG, we propose,
to the best of our knowledge, the first primal-dual algorithmic schemes for (1) that theoretically
obtain optimal convergence rates directly without averaging the iterates and that seamlessly handle
the p-decomposability structure. In addition, our analysis techniques can be simply adapt to handle
inexact oracle produced by solving approximately the primal subproblems (c.f. [28]), which is
important for the augmented Lagrangian versions with lower-iteration counts. We expect a deeper
understanding of MEG and different smoothing strategies to help us in tailoring adaptive update
strategies for our schemes (as well as several other connected and well-known schemes) in order to
further improve the empirical performance.
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