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1 Reformulation as an infinite tensor mixture model
Our proposed model has similar properties to the infinite tensor mixture (ITM) model in [1], which
uses a nonnegative PARAFAC tensor decomposition [2], when we look at the stationary distribution
over brain states. Though similar in many ways, the PARAFAC decomposition is fundamentally
different than the higher order SVD (HOSVD) decomposition [3], which is used in the simplex
factor model of [4]. To reformulate our model as a nonnegative PARAFAC decomposition, we
follow [1] and define probabilities over clusters π(aw) according to an infinite tensor factorization
(ITF)

pr(z(a1)
w = `1, . . . , z

(aR)
w = `R) = π

(aw)
`1,...,`R

, π(aw) =
∑∞

h=1
pr(s(a)

w = h)
⊗R

r=1
φ

(r)
h , (1)

where ⊗ represents the tensor product. In [1], pr(s(a)
w ) is drawn as a GEM distribution, whereas, in

our work, pr(s(a)
w ) is represented by the stationary distribution of the iHMM for animal a. In this

infinite tensor reformulation, each brain state is represented as a rank-1, R-way probability tensor.
Given brain state h, the distribution over cluster assignments for region r is given by the probability
vector φ(r)

h . In our model, the prior distributions on φ(r)
h are still equivalent to their definitions in

the paper, whereas in [1] they are stick-breaking processes. The resulting probability tensor π(aw)

represents the stationary joint distribution of cluster assignments for all regions.

Our clustering model differs from this ITF model of [1] in three significant ways: we place Marko-
vian dynamics on state assignments for each animal, we model separate draws from the prior jointly
for each animal, and we share cluster atoms across all regions through use of an HDP. These are
significant differences that change the dynamics and interpretation of our model. For example, a
primary difference is that, in our model, two regions assigned to the same index cluster are drawn
iid from the same atom in the mixture model.

2 Parameter updates
As listed in the paper, the variational lower bound of our model is

L(q) = E[ln p(Y |Z,Θ)] + E[ln p(Z,S|Φ,Λ,Ψ)] + E[ln p(Φ|η)] + E[ln p(η)] + E[ln p(Λ|β)]

+ E[ln p(β)] + E[ln p(Ψ)] + E[ln p(Θ)] + H[q(Z)] + H[q(S)] + H[q(Φ)] + H[q(Λ)], (2)
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with a variational posterior factorization over model parameters

q(Z) =
∏

a,r,w
Cat(z(ar)

w ; ζ(ar)
w ), q(Φ) =

∏
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h ;ν

(r)
h ), q(η) = δη∗(η),
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∏
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q({s(a)
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Dir(λ(a)

g ;κ(a)
g ), q(β) = δβ∗(β),

q(Ψ) =
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a
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∏
j
δΘ∗j (Θj). (3)

The following subsections detail the updates in this model.

2.1 Updates for cluster parameters

The variational updates for ζ(ar)
w` and ν(r)

h` are standard:

ζ
(ar)
w` ∝

H∑
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ρ
(a)
whE

[
lnφ
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h`

]
− 1

2
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2
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w (4)
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∗ +
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where E
[
lnφ

(r)
h`

]
= ψ

(
ν

(r)
h`

)
− ψ

(∑L
i=1 ν

(r)
hi

)
and ψ(·) is the digamma function.

2.2 Updates for state parameters

States are assigned according to a hidden Markov model (HMM). The VBM step for this procedure
is:

ψ
(a)∗
h ∝ 1 + E

[
q(s

(a)
1 = h)

]
(6)

κ
(a)
gh = α0β

∗ +
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E
[
q(s

(a)
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]

(7)

where ρ(a)
wh = E

[
q(s

(a)
w = h)

]
and E

[
q(s

(a)
w−1 = g, s

(a)
w = h)

]
are obtained in a VBE step through

the forwards backwards algorithm for variational inference. See (Beal, 2003) for more details.

2.3 Updates for global probability vectors

For both η and β we have a non-conjugate update. We generalize these two updates to be within the
framework of the following update for β:

πc ∼ DP(α0β) β ∼ GEM(γ0) (8)
where GEM(γ0) is the stick-breaking construction for the atom weights, defined by

βk = β′k

k−1∏
i=1

(1− β′i) β′k ∼ Beta(1, γ0) (9)

We define an objective function `(β′) for β′ as the portions of the variational log-posterior distribu-
tion that depends on β′. The goal is to obtain a point estimate for β′ that maximizes the objective.
This log-posterior distribution is found as:

`(β′) = log

(
K∏
k=1

Beta(β′k; 1, γ0)

)
+ E

[
log

(
C∏
c=1

Dir(πc|α0β)

)]
+ const (10)

=

K∑
k=1

(γ0 − 1) log(1− β′k) +

C∑
c=1

E

[
− log(B(α0β)) +

K∑
k=1

(α0βk − 1) log(πck)

]
+ const

(11)

=

K∑
k=1

(γ0 − 1) log(1− β′k)︸ ︷︷ ︸
`1(β′)

+

K∑
k=1

(α0βk − 1)

C∑
c=1

E[log(πck)]︸ ︷︷ ︸
`2(β′)

−C log(B(α0β))︸ ︷︷ ︸
`3(β′)

+const

(12)
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where B(·) is the multivariate beta function. In order to maximize this log-posterior objective,
we take the derivative with respect of β′ and perform a first-order conjugate gradient optimization
algorithm. The derivatives of each component (`1,`2, and `3) are found as follows:

• For `1(β′),

∂`1
∂β′k

=
1− γ0

1− β′k
(13)

• For `2(β′), we first begin by expanding the stick-breaking representation of βk

`2 =

K∑
k=1

(
α0β

′
k

k−1∏
i=1

(1− β′i)− 1

)
C∑
c=1

E[log(πck)] (14)

∂`2
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dk

C∑
c=1

E[log πck]︸ ︷︷ ︸
ζk

−
K∑
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α0β
′
l

l−1∏
i=1;i 6=k

(1− β′i)︸ ︷︷ ︸
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C∑
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E[log πcl]︸ ︷︷ ︸
ζl

(15)

= dkζk −
K∑

l=k+1

eklζl (16)

• For `3(β′), we first begin by expanding the stick-breaking representation of βk

`3 = −C log(B(α0β)) (17)

= −C

[
K∑
k=1

log Γ(α0βk)− log Γ

(
α0

K∑
k=1

βk

)]
(18)

= −C

[
K∑
k=1

log Γ(ak)− log Γ(b)

]
(19)

where the following equalities hold:

ak = α0βk (20)

b = α0

K∑
k=1

βk (21)

∂a`
∂β′k

=


0, if k > `

dk, if k = `

ekl, if k < `

(22)

∂b

∂β′k
=

K∑
`=1

∂a`
∂β′k

(23)

We now take the derivative of `3 with respect to β′k. In this derivation, we take the derivative
of a gamma function where ∂Γ(x)

∂x = Γ(x)ψ0(x) where ψ0(·) is termed the polygamma
function.

∂`3
∂β′k

= −C

[
K∑
`=1

ψ0(a`)
∂a`
∂β′k
− ψ0(b)

∂b

∂β′k

]
(24)

= −C

[
dkfk −

K∑
`=k+1

ek`f`

]
(25)

where f` = ψ0(a`)− ψ0(b)
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Combining equations 13, 16 and 24, we are able to obtain the first derivative of the objective function
`(β′) with respect to β′k,

∂`

∂β′k
=
∂`1
∂β′k

+
∂`2
∂β′k

+
∂`3
∂β′k

(26)
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+

[
dkζk −

K∑
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]
− C

[
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]
(27)

=
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1− β′k
+ dk(ζk − Cfk) +

K∑
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ek`(Cf` − ζ`) (28)

=
1− γ0

1− β′k
+ α0

K∑
`=k

∂β`
∂β′k

[(∑
c

E[log πc`]

)
− C(ψ0(α0βk)− ψ0(α0))

]
(29)

=
1− γ0

1− β′k
+ α0

K∑
`=k

∂β`
∂β′k

[(∑
c

E[log πc`]

)
− CE[log πck]

]
(30)

Most line search methods should suffice to update β using this derivative. We use a resilient back
propagation method; see (Toussaint, 2012) for more details on this particular method.

2.4 Updates for kernel parameters

To update the parameters in Θ, we take the derivative of the variational lower bound with respect to
each parameter Θj .

∂

∂Θj
E[ln p(Y |Z,Θ)] =

1

2

L∑
`=1

ζ
(ar)
w`

[
y(ar)T
w Σ−1

`

∂Σ`

∂Θj
Σ−1
` y

(ar)
w − tr

(
Σ−1
`

∂Σ`

∂Θj

)]
(31)

where expectations are removed from the kernel parameters for notational simplicity and the deriva-
tive of the covariance matrix Σ` with respect to the parameter Θj is represented by the symmetric
toeplitz matrix, ∂Σ`

∂Θj
= toeplitz( ∂

∂Θj
k(τ ;θ`, γ)). The derivatives of the kernel are computed to be

∂

∂wq
k(τ ;θ, γ) = exp(−2π2τ2νq) cos(2πτµq) (32)

∂

∂νq
k(τ ;θ, γ) = −2π2τ2wq exp(−2π2τ2νq) cos(2πτµq) (33)

∂

∂µq
k(τ ;θ, γ) = −2πτwq exp(−2π2τ2νq) sin(2πτµq) (34)

∂

∂γ
k(τ ;θ, γ) = − 1

γ2
δτ (35)

Using equation 31, any simple gradient descent algorithm can be used to optimize the marginal
likelihood. We use a resilient back propagation method in order to not rely heavily on the size of the
gradients.

3 Tensor method details
With the tensor factorization method, STFT coefficients are computed using 5–Hz increments in
frequency and 1–minute increments in time, with half-window overlap. The tensor decomposition
algorithm is applied to the 3–way tensor of brain region, frequency band and time. Each dimension
of the score vectors is associated with a subset of frequency bands and brain regions. K-means is
used to group the score vectors into K = 4 ad hoc states.
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