
Appendix

A The SDCA/Finito Midpoint Algorithm
Using Lagrangian duality theory, SDCA can be shown at step k as minimising the following lower bound:

Ak(x) =
1

n
fj(x) +

1

n

n∑
i 6=j

[
fi(φ

k
i ) +

〈
f ′i(φ

k
i ), x− φki

〉]
+
µ

2
‖x‖2 .

Instead of directly including the regulariser in this bound, we can use the standard strong convexity lower bound for each
fi, by removing µ

2 ‖x‖
2 and changing the expression in the summation to fi(φki ) +

〈
f ′i(φ

k
i ), x− φki

〉
+ µ

2 ‖x− φi‖
2. The

transformation to having strong convexity within the fi functions yields the following simple modification to the algorithm:
φk+1
j = proxfj(µ(n−1))−1(z), where:

z =
1

n− 1

∑
i 6=j

φki −
1

µ(n− 1)

∑
i 6=j

f ′i(φ
k
i ).

It can be shown that after this update:

xk+1 = φk+1
j =

1

n

∑
i

φk+1
i − 1

µn

∑
i

f ′i(φ
k+1
i ).

Now the similarity to Finito is apparent if this equation is compared Equation 8: xk+1 = 1
n

∑
i φ

k
i − γ

∑n
i=1 f

′
i(φ

k
i ). The

only difference is that the vectors on the right hand side of the equation are at their values at step k + 1 instead of k. Note
that there is a circular dependency here, as φk+1

j := xk+1 but φk+1
j appears in the definition of xk+1. Solving the proximal

operator is the resolution of the circular dependency. This mid-point between Finito and SDCA is interesting in it’s own right,
as it appears experimentally to have similar robustness to permuted orderings as Finito, but it has no tunable parameters like
SDCA.

When the proximal operator above is fast to compute, say on the same order as just evaluating fj , then SDCA can be the
best method among those discussed. It is a little slower than the other methods discussed here, but it has no tunable parameters
at all. It is also the only choice when each fi is not differentiable. The major disadvantage of SDCA is that it can not handle
non-strongly convex problems directly. Although like most methods, adding a small amount of quadratic regularisation can
be used to recover a convergence rate. It is also not adapted to use proximal operators for the regulariser in the composite
objective case. The requirement of computing the proximal operator of each loss fi initially appears to be a big disadvantage,
however there are variants of SDCA that remove this requirement, but they introduce additional downsides.

B Lemmas
Lemma A1. Let f be µ-strongly convex and have Lipschitz continuous gradients with constant L. Then we have for all x and
y:

f(x) ≥ f(y) + 〈f ′(y), x− y〉+
1

2 (L− µ)
‖f ′(x)− f ′(y)‖2

+
µL

2 (L− µ)
‖y − x‖2 +

µ

(L− µ)
〈f ′(x)− f ′(y), y − x〉 .

Proof. Define the function g as g(x) = f(x)− µ
2 ‖x‖

2. Then the gradient is g′(x) = f ′(x)− µx. g has a Lipschitz gradient
with constant L− µ. By convexity, we have [1, Thm. 2.1.5]:

g(x) ≥ g(y) + 〈g′(y), x− y〉+
1

2(L− µ)
‖g′(x)− g′(y)‖2 .

Substituting in the definition of g and g′, and simplifying the terms gives the result.

1



Lemma 1. Let f(x) = 1
n

∑n
i=1 fi(x). Suppose each fi is µ-strongly convex and has Lipschitz continuous gradients with

constant L. Then for all x and x∗:

〈
f ′(x), x∗ − x

〉
≤ L− µ

L
[f(x∗)− f(x)]− µ

2
‖x∗ − x‖2 − 1

2Ln

∑
i

∥∥f ′i(x∗)− f ′i(x)∥∥2 − µ

L

〈
f ′(x∗), x− x∗

〉
.

Proof. This is a straight-forward corollary of Lemma A1, using y = x∗, and averaging over the fi functions.

Lemma 2. We have that for all φi and x∗:

1

n

∑
i

‖f ′i(φi)− f ′i(x∗)‖
2 ≤ 2L

[
1

n

∑
i

fi(φi)− f(x∗)− 1

n

∑
i

〈f ′i(x∗), φi − x∗〉

]
.

Proof. Apply the standard inequality f(y) ≥ f(x) + 〈f ′(x), y − x〉 + 1
2L ‖f

′(x)− f ′(y)‖2, with y = φi and x = x∗, for
each fi, and sum.

Lemma 3. It holds that for any φki , x∗, xk and β > 0, with wk+1 as defined in Equation 1:

E
∥∥wk+1 − xk − γf ′(x∗)

∥∥2 ≤ γ2(1 + β−1)E
∥∥f ′j(φkj )− f ′j(x∗)

∥∥2 + γ2(1 + β)E
∥∥f ′j(xk)− f ′j(x∗)

∥∥2
− γ2β

∥∥f ′(xk)− f ′(x∗)
∥∥2 .

Proof. We follow a similar argument as occurs in the SVRG proof [2] for this term, but with a tighter argument. The tightening
comes from using ‖x+ y‖2 ≤ (1 +β−1) ‖x‖2 + (1 +β) ‖y‖2 instead of the simpler β = 1 case they use. The other key trick
is the use of the standard variance decomposition E[‖X − E[X]‖2] = E[‖X‖2]− ‖E[X]‖2 three times.

E
∥∥∥wk+1 − xk + γf ′(x∗)

∥∥∥2
= E

∥∥∥∥−γn∑
i

f ′i(φ
k
i ) + γf ′(x∗) + γ

[
f ′j(φ

k
j )− f ′j(xk)

]
︸ ︷︷ ︸

:= γX

∥∥∥∥2

= γ2E

∥∥∥∥∥
X︷ ︸︸ ︷[

f ′j(φ
k
j )− f ′j(x∗)−

1

n

∑
i

f ′i(φ
k
i ) + f ′(x∗)

]
−

[
f ′j(x

k)− f ′j(x∗)−

E[X]︷ ︸︸ ︷
f ′(xk) + f ′(x∗)

]∥∥∥∥∥
2

+ γ2

∥∥∥∥
E[X]︷ ︸︸ ︷

f ′(xk)− f ′(x∗)
∥∥∥∥2

≤ γ2(1 + β−1)E

∥∥∥∥∥f ′j(φkj )− f ′j(x∗)− 1

n

∑
i

f ′i(φ
k
i ) + f ′(x∗)

∥∥∥∥∥
2

+ γ2(1 + β)E
∥∥∥f ′j(xk)− f ′j(x∗)− f ′(xk) + f ′(x∗)

∥∥∥2 + γ2
∥∥∥f ′(xk)− f ′(x∗)∥∥∥2

(use variance decomposition twice more):

≤ γ2(1 + β−1)E
∥∥∥f ′j(φkj )− f ′j(x∗)∥∥∥2 + γ2(1 + β)E

∥∥∥f ′j(xk)− f ′j(x∗)∥∥∥2 − γ2β
∥∥∥f ′(xk)− f ′(x∗)∥∥∥2 .

C Non-strongly-convex Problems

Theorem 2. When each fi is convex, using γ = 1
3L , we have for x̄k = 1

k

∑k
t=1 x

t that:

E
[
F (x̄k)

]
− F (x∗) ≤ 4n

k

[
2L

n

∥∥x0 − x∗∥∥2 + f(x0)−
〈
f ′(x∗), x0 − x∗

〉
− f(x∗)

]
.

Here the expectation is over all choices of index jk up to step k.

Proof. A more detailed version of this proof is available in [3]. We proceed by using a similar argument as in Theorem 1, but
we add an additional α

∥∥xk − x∗∥∥2 together with the existing c
∥∥xk − x∗∥∥2 term in the Lyapunov function.

2



We will bound α
∥∥xk − x∗∥∥2 in a different manner to c

∥∥xk − x∗∥∥2. Define ∆ = − 1
γ

(
wk+1 − xk

)
− f ′(xk), the differ-

ence between our approximation to the gradient at xk and true gradient. Then instead of using the non-expansiveness property
at the beginning, we use a result proved for prox-SVRG [4, 2nd eq. on p.12]:

αE
∥∥xk+1 − x∗

∥∥2 ≤ α ∥∥xk − x∗∥∥2 − 2αγE
[
F (xk+1)− F (x∗)

]
+ 2αγ2E ‖∆‖2 .

Although their quantity ∆ is different, they only use the property that E[∆] = 0 to prove the above equation. A full proof of
this property for the SAGA algorithm that follows their argument appears in [3].

To bound the ∆ term, a small modification of the argument in Lemma 3 can be used, giving:

E ‖∆‖2 ≤
(
1 + β−1

)
E
∥∥f ′j(φkj )− f ′j(x∗)

∥∥2 + (1 + β)E
∥∥f ′j(xk)− f ′j(x∗)

∥∥2 .
Applying this gives:

αE
∥∥xk+1 − x∗

∥∥2 ≤ α ∥∥xk − x∗∥∥2 − 2αγE
[
F (xk+1)− F (x∗)

]
+ 2(1 + β−1)αγ2E

∥∥f ′j(φkj )− f ′j(x∗)
∥∥2 + 2 (1 + β)αγ2E

∥∥f ′j(xk)− f ′j(x∗)
∥∥2 .

As in Theorem 1, we then apply Lemma 2 to bound E
∥∥f ′j(φkj )− f ′j(x∗)

∥∥2. Combining with the rest of the Lyapunov function
as was derived in Theorem 1 gives (we basically add the α terms to inequality (10) with µ = 0):

E[T k+1]− T k

≤
(

1

n
− 2cγ

)[
f(xk)− f(x∗)−

〈
f ′(x∗), xk − x∗

〉]
− 2αγE

[
F (xk+1)− F (x∗)

]
+

(
4(1 + β−1)αLγ2 + 2(1 + β−1)cLγ2 − 1

n

)[
1

n

∑
i

fi(φ
k
i )− f(x∗)− 1

n

∑
i

〈
f ′i(x

∗), φki − x∗
〉]

+
(

(1 + β)cγ + 2(1 + β)αγ − c

L

)
γE
∥∥f ′j(xk)− f ′j(x∗)

∥∥2 .
As before, the terms in square brackets are positive by convexity. Given that our choice of step size is γ = 1

3L (to match the
adaptive to strong convexity step size), we can set the three round brackets to zero by using β = 1, c = 3L

2n and α = 3L
8n . We

thus obtain:
E[T k+1]− T k ≤ − 1

4n
E
[
F (xk+1)− F (x∗)

]
.

These expectations are conditional on information from step k. We now take the expectation with respect to all previous steps,
yielding E[T k+1] − E[T k] ≤ − 1

4nE
[
F (xk+1)− F (x∗)

]
, where all expectations are unconditional. Further negating and

summing for k from 0 to k − 1 results in telescoping of the T terms, giving:

1

4n
E

[
k∑
t=1

[
F (xt)− F (x∗)

]]
≤ T 0 − E[T k].

We can drop the −E
[
T k
]

term since T k is always positive. Then we apply convexity to pull the summation inside of F , and
multiply through by 4n/k, giving:

E

[
F (

1

k

k∑
t=1

xt)− F (x∗)

]
≤ 1

k
E

[
k∑
t=1

[
F (xt)− F (x∗)

]]
≤ 4n

k
T 0.

We get a (c+ α) = 15L
8n ≤

2L
n term that we use in T 0 for simplicity.

D Example Code for Sparse Least Squares & Ridge Regression
The SAGA method is quite easy to implement for dense gradients, however the implementation for sparse gradient problems
can be tricky. The main complication is the need for just-in-time updating of the elements of the iterate vector. This is needed
to avoid having to do any full dense vector operations at each iteration. We provide below a simple implementation for the
case of least-squares problems that illustrates how to correctly do this. The code is in the compiled Python (Cython) language.

3



import random

import numpy as np

cimport numpy as np

cimport cython

from cython.view cimport array as cvarray

# Performs the lagged update of x by g.

cdef inline lagged_update(long k, double[:] x, double[:] g, unsigned long[:] lag,

long[:] yindices, int ylen, double[:] lag_scaling , double a):

cdef unsigned int i

cdef long ind

cdef unsigned long lagged_amount = 0

for i in range(ylen):

ind = yindices[i]

lagged_amount = k−lag[ind]
lag[ind] = k

x[ind] += lag_scaling[lagged_amount]∗(a∗g[ind])

# Performs x += a∗y, where x is dense and y is sparse.
cdef inline add_weighted(double[:] x, double[:] ydata , long[:] yindices, int ylen, double a):

cdef unsigned int i

for i in range(ylen):

x[yindices[i]] += a∗ydata[i]

# Dot product of a dense vector with a sparse vector

cdef inline spdot(double[:] x, double[:] ydata , long[:] yindices, int ylen):

cdef unsigned int i

cdef double v = 0.0

for i in range(ylen):

v += ydata[i]∗x[yindices[i]]

return v

def saga_lstsq(A, double[:] b, unsigned int maxiter, props):

# temporaries

cdef double[:] ydata

cdef long[:] yindices

cdef unsigned int i, j, epoch, lagged_amount

cdef long indstart , indend, ylen, ind

cdef double cnew, Aix, cchange, gscaling

# Data points are stored in columns in CSC format.

cdef double[:] data = A.data

cdef long[:] indices = A.indices

cdef long[:] indptr = A.indptr

cdef unsigned int m = A.shape[0] # dimensions

cdef unsigned int n = A.shape[1] # datapoints

4



cdef double[:] xk = np.zeros(m)

cdef double[:] gk = np.zeros(m)

cdef double eta = props[’eta’] # Inverse step size = 1/gamma

cdef double reg = props.get(’reg’, 0.0) # Default 0

cdef double betak = 1.0 # Scaling factor for xk.

# Tracks for each entry of x, what iteration it was last updated at.

cdef unsigned long[:] lag = np.zeros(m, dtype=’I’)

# Initialize gradients

cdef double gd = −1.0/n
for i in range(n):

indstart = indptr[i]

indend = indptr[i+1]

ydata = data[indstart:indend]

yindices = indices[indstart:indend]

ylen = indend−indstart
add_weighted(gk, ydata, yindices, ylen, gd∗b[i])

# This is just a table of the sum the geometric series (1−reg/eta)
# It is used to correctly do the just−in−time updating when
# L2 regularisation is used.

cdef double[:] lag_scaling = np.zeros(n∗maxiter+1)
lag_scaling[0] = 0.0

lag_scaling[1] = 1.0

cdef double geosum = 1.0

cdef double mult = 1.0 − reg/eta
for i in range(2,n∗maxiter+1):

geosum ∗= mult
lag_scaling[i] = lag_scaling[i−1] + geosum

# For least−squares, we only need to store a single
# double for each data point, rather than a full gradient vector.

# The value stored is the A_i ∗ betak ∗ x product
cdef double[:] c = np.zeros(n)

cdef unsigned long k = 0 # Current iteration number

for epoch in range(maxiter):

for j in range(n):

if epoch == 0:

i = j

else:

i = np.random.randint(0, n)

# Selects the (sparse) column of the data matrix containing datapoint i.

indstart = indptr[i]

indend = indptr[i+1]

ydata = data[indstart:indend]

yindices = indices[indstart:indend]

ylen = indend−indstart

# Apply the missed updates to xk just−in−time
lagged_update(k, xk, gk, lag, yindices, ylen, lag_scaling , −1.0/(eta∗betak))

5



Aix = betak ∗ spdot(xk, ydata, yindices, ylen)

cnew = Aix

cchange = cnew−c[i]
c[i] = cnew

betak ∗= 1.0 − reg/eta

# Update xk with sparse step bit (with betak scaling)

add_weighted(xk, ydata, yindices, ylen, −cchange/(eta∗betak))

k += 1

# Perform the gradient−average part of the step
lagged_update(k, xk, gk, lag, yindices, ylen, lag_scaling , −1.0/(eta∗betak))

# update the gradient average

add_weighted(gk, ydata, yindices, ylen, cchange/n)

# Perform the just in time updates for the whole xk vector, so that all entries are up−to−date.
gscaling = −1.0/(eta∗betak)
for ind in range(m):

lagged_amount = k−lag[ind]
lag[ind] = k

xk[ind] += lag_scaling[lagged_amount]∗gscaling∗gk[ind]
return betak ∗ np.asarray(xk)

References
[1] Yu. Nesterov. Introductory Lectures On Convex Programming. Springer, 1998.

[2] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. NIPS, 2013.

[3] Aaron Defazio. New Optimization Methods for Machine Learning. PhD thesis, (draft under examination) Australian
National University, 2014. http://www.aarondefazio.com/pubs.html.

[4] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduction. Technical report,
Microsoft Research, Redmond and Rutgers University, Piscataway, NJ, 2014.

6


	The SDCA/Finito Midpoint Algorithm
	Lemmas
	Non-strongly-convex Problems
	Example Code for Sparse Least Squares & Ridge Regression

