Supplementary material

Proof of Theorem 2.1

Algorithm SIMPLEHC correctly reconstructs the graph G if for every edge e = {i,j} not
in E(G), at least one observed independent set vector o) contains both i and j. Let

Afj = {Ufk) =0or aj(k) = 0} be the event that at least one of i or j is missing from o(*)
and let A;; = ﬂzzlAf’j We have by the union bound and independence of Ak for different

k,
penon) <P( 1) < (5)Piieiaty = (5)peaty < (B)a-or

(i,j)€E*

The last inequality is from Lemma 2.3, with the value of v the quantity in the statement of
the Lemma. To make P(error) approach zero at the rate 1/p it suffices to take n = 3y~ logp.
This proves the theorem. O

Proof of Theorem 2.2

Consider the set of graphs G,, obtained by taking an arbitrary graph on m nodes with
maximum degree d, and to each vertex v adding d nodes uq, ..., uq with edges {v,u;}. The
total number of nodes is p = m(d+1). Thus we are working with the set of graphs consisting
of m =p/(d+ 1) stars of degree d, with all remaining edges going between centers of stars.

The goal is to determine the correct subset of the (72) remaining edges. Fix a constant ¢ > 0
and consider any graph G € G, missing at least ¢m edges. Note that such graphs consist
of almost all of G,,, (a proportion 1 — o(1)).

We bound the number of samples required by the maximum-likelihood (ML) rule (equiv-
alent to algorithm SIMPLEHC) to reconstruct G. As observed in Section 2, the ML graph
contains the edge e = {i,j} between star centers ¢ and j if and only if none of the sets
oW @ . ¢ contains both i and j. Thus, in order for ML to give the correct graph, for
each missing edge e = {i, j} it is necessary to observe a “witness” o(*) with Jfk) = J§k) =1.
We proceed by upper bounding the probability of observing a witness for each of the cm
missing edges. Each star center i is included in a particular random independent set o(¥)
with probability at most
1

1= 5 2N’
hence o(®) is a witness for missing edge {i, 7} with probability at most ¢2. Hence the expected

number of missing edges which within n samples have no witness is at least em(1 — ¢*)",
and a second moment argument shows that one must take

logm 2d
> (1 1)) ————— =2((2 1
n > (1+o( ))—log(l—qz) ((22)**logm)
where we used the fact that —log(1 — ¢%) = ¢® + o(¢*) and ¢~ = (2)\)™. O

Proof of Lemma 2.3

We can decompose the partition function as

Z)\III_ Z A Z A Z A Z A

1€80 . » 1€Sy I1€S;,» IeS; ;
i=Zoot L+ Zisg+ Ly, (4.4)

where S;; ={[:4,j €1}, S;zg={I1:1€1,j¢ I}, etc. Now, Zg and Zg4. are the same
except Zgye does not have the last term Z; ;. We bound the last term by first noting that

1Si41 - 2% > |95, (4.5)
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This is because for each independent set I with i € I, there are at most 2¢ distinct inde-
pendent sets I’ with ¢ ¢ I’ with some subset of (at most d) neighbors of 7 included. One
way of observing this is defining the map f : Sz ; — S;; by I+ {i} UI \ N (¢). The map
f takes at most 2% sets I’ € S ;j to each I € S, ;, which implies (4.5).

Now, each such set I’ mapping to I has weight at most a factor A4~ ! larger than I, so

2N Z > D (4.6)
Similar reasoning gives
20N Z, > Ty, and 222727 0> 7 5 (4.7)
Using these estimates, we obtain
L p .
P({i,jy CI)= Zlgj})\gz = Zgj > 114 (2)\)d—11_|_ 4-(2n)2d-2°
proving the lemma. O

Proof of Lemma 3.2

We start by defining restricted partition function summations: Let
Sap ={0 €{0,1}? : 04 = 0p = 1},
Sez = {0 €{0,1}* : 0, = 1,0, =0},

and analogously for Sgp and Sgz. We then define Z,, = >
analogously for Z, gz, Zgp, Zoo-

ves,, €XP(H (o)) and again

We first prove case (i) of the lemma, in which we assume that (a,b) ¢ E(G) and lower
bound the probability

Zab
Zab+ Zoy
To this end, consider the map f : Sgp — Sap defined by taking a configuration o, setting
o; = 0 for neighbors i € N(a), and then setting o, = 1. Since the assumption (a,b) ¢ E(G)
implies that o, = 0 = 1 is a valid assignment to these variables, the definition of f implies
in particular that (f(c)), = 1if 0, = 1, so indeed f(c) € Sap for o € Sgy.

Plog=1lop =1) =

Now, at most 29¢8(2) sets are mapped by f to any one set (since the neighbors of a can be in
any configuration), and for any o € Sgyp, exp(H(f(0)) > exp(H (o) — h(deg(a) + 1)). This
shows that 29°8(®) exp[h(deg(a) + 1)]Zap > Zgp , and proves part (i) of the lemma.

We now turn to case (ii), assuming that (a,b) € E(G). Consider the map g : Sqp — Sep
taking o € S, and setting o, = 0 (removing node a from the independent set). The map g
is one-to-one, and H increases by 3 due to resolving the conflict on edge (a, b), but decreases
by h, < h due to omitting node a: exp(H(g(c))) > exp(H (o) + 8 — h). This shows that
Db > e‘ﬁ+thb, and completes the proof. O

Proof of Lemma 3.5

We start by computing the probability that a particular sample o is in Ay, or equivalently
that oy = 0. Let W C V be any subset of nodes, and denote by xy an assignment
to the corresponding variables. Due to the antiferromagnetic nature of the interaction,
the distribution (3.2) satisfies the monotonicity property P(o, = llow = zw) < P(o, =
llow = xw, op = 0) for any neighbor b € N(a)\W. This monotonicity together with Bayes’
rule gives

|U| [U|
P(UU = 0) = H P(Uuq = 0|Uu1 = =0y, = O) > H P(Juq = O|UN(Ui) = 0)
i=1 =1
[U|
=11 +ett
=1
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Denoting the last displayed quantity by ¢, we see that the number of samples obtained, |Ay|,
stochastically dominates a Binom(n, ¢) random variable. Hoeffding’s inequality proves the
lemma. O

Proof of Lemma 4.4

Calculating correlation relative to the uniform distribution U (see Equation (4.1)), we have
for S # T with |SﬂT\ =

(-1 -1) = X 27@ps(e) - )@pr(e) - 1)

U U
ze{—1,+1}r
= 3 Pps(epr(e) - 1. (48)
ze{—1,+1}r
Now
> 2ps(@)pr(z) = Z2 Zexp ) + x7(2)))

ze{—-1,+1}P
9p . 9p—2N+A

== > > ewlc (xs@) +xr(2)
TSNT TSAT
2P . Qp 2N+ 1
(J Z 92N—2X - c+6726+2)
rsnT
22p—2

72
Step (a) follows from the fact that for any fixed 2507, half the assignments to xg\p result in
Xs = 1 and half x5 = —1, and similarly for zp\g; step (b) is from the formula (4.3) for Z.

(e + 6_0)2 ® 1.

For the case S =T, we have

> 2ps(a)p ZeXp x) + xr(2)))
ze{—1,+1}»

2p . op—1 e

= 7Z2 (62 +e 2 )
22p—2 4 4

=" 2(e"+e 9)? - =2 :

72 (6 te ) (ec + 676)2 (ec + efc)Q
Plugging this into (4.8) completes the proof. O
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