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Abstract

This paper proposes a new hybrid architecture that consists of a deep Convolu-
tional Network and a Markov Random Field. We show how this architecture is
successfully applied to the challenging problem of articulated human pose esti-
mation in monocular images. The architecture can exploit structural domain con-
straints such as geometric relationships between body joint locations. We show
that joint training of these two model paradigms improves performance and allows
us to significantly outperform existing state-of-the-art techniques.

1 Introduction

Despite a long history of prior work, human body pose estimation, or specifically the localization
of human joints in monocular RGB images, remains a very challenging task in computer vision.
Complex joint inter-dependencies, partial or full joint occlusions, variations in body shape, clothing
or lighting, and unrestricted viewing angles result in a very high dimensional input space, making
naive search methods intractable.

Recent approaches to this problem fall into two broad categories: 1) more traditional deformable
part models [27] and 2) deep-learning based discriminative models [15, 30]. Bottom-up part-based
models are a common choice for this problem since the human body naturally segments into articu-
lated parts. Traditionally these approaches have relied on the aggregation of hand-crafted low-level
features such as SIFT [18] or HoG [7], which are then input to a standard classifier or a higher level
generative model. Care is taken to ensure that these engineered features are sensitive to the part that
they are trying to detect and are invariant to numerous deformations in the input space (such as vari-
ations in lighting). On the other hand, discriminative deep-learning approaches learn an empirical
set of low and high-level features which are typically more tolerant to variations in the training set
and have recently outperformed part-based models [27]. However, incorporating priors about the
structure of the human body (such as our prior knowledge about joint inter-connectivity) into such
networks is difficult since the low-level mechanics of these networks is often hard to interpret.

In this work we attempt to combine a Convolutional Network (ConvNet) Part-Detector – which
alone outperforms all other existing methods – with a part-based Spatial-Model into a unified learn-
ing framework. Our translation-invariant ConvNet architecture utilizes a multi-resolution feature
representation with overlapping receptive fields. Additionally, our Spatial-Model is able to approx-
imate MRF loopy belief propagation, which is subsequently back-propagated through, and learned
using the same learning framework as the Part-Detector. We show that the combination and joint
training of these two models improves performance, and allows us to significantly outperform exist-
ing state-of-the-art models on the task of human body pose recognition.
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2 Related Work

For unconstrained image domains, many architectures have been proposed, including “shape-
context” edge-based histograms from the human body [20] or just silhouette features [13]. Many
techniques have been proposed that extract, learn, or reason over entire body features. Some use a
combination of local detectors and structural reasoning [25] for coarse tracking and [5] for person-
dependent tracking). In a similar spirit, more general techniques using “Pictorial Structures” such
as the work by Felzenszwalb et al. [10] made this approach tractable with so called ‘Deformable
Part Models (DPM)’. Subsequently a large number of related models were developed [1, 9, 31, 8].
Algorithms which model more complex joint relationships, such as Yang and Ramanan [31], use
a flexible mixture of templates modeled by linear SVMs. Johnson and Everingham [16] employ
a cascade of body part detectors to obtain more discriminative templates. Most recent approaches
aim to model higher-order part relationships. Pishchulin [23, 24] proposes a model that augments
the DPM model with Poselet [3] priors. Sapp and Taskar [27] propose a multi-modal model which
includes both holistic and local cues for mode selection and pose estimation. Following the Pose-
lets approach, the Armlets approach by Gkioxari et al. [12] employs a semi-global classifier for part
configuration, and shows good performance on real-world data, however, it is tested only on arms.
Furthermore, all these approaches suffer from the fact that they use hand crafted features such as
HoG features, edges, contours, and color histograms.

The best performing algorithms today for many vision tasks, and human pose estimation in partic-
ular ([30, 15, 29]) are based on deep convolutional networks. Toshev et al. [30] show state-of-art
performance on the ‘FLIC’ [27] and ‘LSP’ [17] datasets. However, their method suffers from inac-
curacy in the high-precision region, which we attribute to inefficient direct regression of pose vectors
from images, which is a highly non-linear and difficult to learn mapping.

Joint training of neural-networks and graphical models has been previously reported by Ning et
al. [22] for image segmentation, and by various groups in speech and language modeling [4, 21].
To our knowledge no such model has been successfully used for the problem of detecting and lo-
calizing body part positions of humans in images. Recently, Ross et al. [26] use a message-passing
inspired procedure for structured prediction on computer vision tasks, such as 3D point cloud clas-
sification and 3D surface estimation from single images. In contrast to this work, we formulate our
message-parsing inspired network in a way that is more amenable to back-propagation and so can be
implemented in existing neural networks. Heitz et al. [14] train a cascade of off-the-shelf classifiers
for simultaneously performing object detection, region labeling, and geometric reasoning. However,
because of the forward nature of the cascade, a later classifier is unable to encourage earlier ones
to focus its effort on fixing certain error modes, or allow the earlier classifiers to ignore mistakes
that can be undone by classifiers further in the cascade. Bergtholdt et al. [2] propose an approach
for object class detection using a parts-based model where they are able to create a fully connected
graph on parts and perform MAP-inference using A∗ search, but rely on SIFT and color features to
create the unary and pairwise potentials.

3 Model

3.1 Convolutional Network Part-Detector
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Figure 1: Multi-Resolution Sliding-Window With Overlapping Receptive Fields
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The first stage of our detection pipeline is a deep ConvNet architecture for body part localization.
The input is an RGB image containing one or more people and the output is a heat-map, which
produces a per-pixel likelihood for key joint locations on the human skeleton.

A sliding-window ConvNet architecture is shown in Fig 1. The network is slid over the input image
to produce a dense heat-map output for each body-joint. Our model incorporates a multi-resolution
input with overlapping receptive fields. The upper convolution bank in Fig 1 sees a standard 64x64
resolution input window, while the lower bank sees a larger 128x128 input context down-sampled
to 64x64. The input images are then Local Contrast Normalized (LCN [6]) (after down-sampling
with anti-aliasing in the lower resolution bank) to produce an approximate Laplacian pyramid. The
advantage of using overlapping contexts is that it allows the network to see a larger portion of the
input image with only a moderate increase in the number of weights. The role of the Laplacian
Pyramid is to provide each bank with non-overlapping spectral content which minimizes network
redundancy.
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Figure 2: Efficient Sliding Window Model with Single Receptive Field

An advantage of the Sliding-Window model (Fig 1) is that the detector is translation invariant.
However a major drawback is that evaluation is expensive due to redundant convolutions. Recent
work [11, 28] has addressed this problem by performing the convolution stages on the full input
image to efficiently create dense feature maps. These dense feature maps are then processed through
convolution stages to replicate the fully-connected network at each pixel. An equivalent but efficient
version of the sliding window model for a single resolution bank is shown in Fig 2. Note that due
to pooling in the convolution stages, the output heat-map will be a lower resolution than the input
image.

For our Part-Detector, we combine an efficient sliding window-based architecture with multi-
resolution and overlapping receptive fields; the subsequent model is shown in Fig 3. Since the
large context (low resolution) convolution bank requires a stride of 1/2 pixels in the lower resolution
image to produce the same dense output as the sliding window model, the bank must process four
down-sampled images, each with a 1/2 pixel offset, using shared weight convolutions. These four
outputs, along with the high resolution convolutional features, are processed through a 9x9 convolu-
tion stage (with 512 output features) using the same weights as the first fully connected stage (Fig 1)
and then the outputs of the low resolution bank are added and interleaved with the output of high
resolution bank.

To improve training time we simplify the above architecture by replacing the lower-resolution stage
with a single convolution bank as shown in Fig 4 and then upscale the resulting feature map. In our
practical implementation we use 3 resolution banks. Note that the simplified architecture is no longer
equivalent to the original sliding-window network of Fig 1 since the lower resolution convolution
features are effectively decimated and replicated leading into the fully-connected stage, however we
have found empirically that the performance loss is minimal.

Supervised training of the network is performed using batched Stochastic Gradient Descent (SGD)
with Nesterov Momentum. We use a Mean Squared Error (MSE) criterion to minimize the distance
between the predicted output and a target heat-map. The target is a 2D Gaussian with a small
variance and mean centered at the ground-truth joint locations. At training time we also perform
random perturbations of the input images (randomly flipping and scaling the images) to increase
generalization performance.
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Figure 4: Approximation of Fig 3

3.2 Higher-Level Spatial-Model

The Part-Detector (Section 3.1) performance on our validation set predicts heat-maps that contain
many false positives and poses that are anatomically incorrect; for instance when a peak for face de-
tection is unusually far from a peak in the corresponding shoulder detection. Therefore, in spite of
the improved Part-Detector context, the feed forward network still has difficulty learning an implicit
model of the constraints of the body parts for the full range of body poses. We use a higher-level
Spatial-Model to constrain joint inter-connectivity and enforce global pose consistency. The ex-
pectation of this stage is to not increase the performance of detections that are already close to the
ground-truth pose, but to remove false positive outliers that are anatomically incorrect.

Similar to Jain et al. [15], we formulate the Spatial-Model as an MRF-like model over the distribu-
tion of spatial locations for each body part. However, the biggest drawback of their model is that the
body part priors and the graph structure are explicitly hand crafted. On the other hand, we learn the
prior model and implicitly the structure of the spatial model. Unlike [15], we start by connecting
every body part to itself and to every other body part in a pair-wise fashion in the spatial model to
create a fully connected graph. The Part-Detector (Section 3.1) provides the unary potentials for
each body part location. The pair-wise potentials in the graph are computed using convolutional
priors, which model the conditional distribution of the location of one body part to another. For
instance, given that body part B is located at the center pixel, the convolution prior PA|B (i, j) is the
likelihood of the body part A occurring in pixel location (i, j). For a body part A, we calculate the
final marginal likelihood p̄A as:

p̄A =
1

Z

∏
v∈V

(
pA|v ∗ pv + bv→A

)
(1)

where v is the joint location, pA|v is the conditional prior described above, bv→a is a bias term used
to describe the background probability for the message from joint v to A, and Z is the partition
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function. Evaluation of Eq 1 is analogous to a single round of sum-product belief propagation.
Convergence to a global optimum is not guaranteed given that our spatial model is not tree structured.
However, as it can been seen in our results (Fig 8b), the inferred solution is sufficiently accurate for
all poses in our datasets. The learned pair-wise distributions are purely uniform when any pairwise
edge should to be removed from the graph structure. Fig 5 shows a practical example of how the
Spatial-Model is able to remove an anatomically incorrect strong outlier from the face heat-map by
incorporating the presence of a strong shoulder detection. For simplicity, only the shoulder and face
joints are shown, however, this example can be extended to incorporate all body part pairs. If the
shoulder heat-map shown in Fig 5 had an incorrect false-negative (i.e. no detection at the correct
shoulder location), the addition of the background bias bv→A would prevent the output heat-map
from having no maxima in the detected face region.
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Figure 5: Didactic Example of Message Passing Between the Face and Shoulder Joints

Fig 5 contains the conditional distributions for face and shoulder parts learned on the FLIC [27]
dataset. For any part A the distribution PA|A is the identity map, and so the message passed from
any joint to itself is its unary distribution. Since the FLIC dataset is biased towards front-facing poses
where the right shoulder is directly to the lower right of the face, the model learns the correct spatial
distribution between these body parts and has high probability in the spatial locations describing
the likely displacement between the shoulder and face. For datasets that cover a larger range of the
possible poses (for instance the LSP [17] dataset), we would expect these distributions to be less
tightly constrained, and therefore this simple Spatial-Model will be less effective.

For our practical implementation we treat the distributions above as energies to avoid the evalua-
tion of Z. There are 3 reasons why we do not include the partition function. Firstly, we are only
concerned with the maximum output value of our network, and so we only need the output energy
to be proportional to the normalized distribution. Secondly, since both the part detector and spa-
tial model parameters contain only shared weight (convolutional) parameters that are equal across
pixel positions, evaluation of the partition function during back-propagation will only add a scalar
constant to the gradient weight, which would be equivalent to applying a per-batch learning-rate
modifier. Lastly, since the number of parts is not known a priori (since there can be unlabeled peo-
ple in the image), and since the distributions pv describe the part location of a single person, we
cannot normalize the Part-Model output. Our final model is a modification to Eq 1:

ēA = exp

(∑
v∈V

[
log
(
SoftPlus

(
eA|v

)
∗ ReLU (ev) + SoftPlus (bv→A)

)])
(2)

where: SoftPlus (x) = 1/β log (1 + exp (βx)) , 1/2 ≤ β ≤ 2

ReLU (x) = max (x, ε) , 0 < ε ≤ 0.01

Note that the above formulation is no longer exactly equivalent to an MRF, but still satisfactorily
encodes the spatial constraints of Eq 1. The network-based implementation of Eq 2 is shown in
Fig 6. Eq 2 replaces the outer multiplication of Eq 1 with a log space addition to improve numerical
stability and to prevent coupling of the convolution output gradients (the addition in log space means
that the partial derivative of the loss function with respect to the convolution output is not dependent
on the output of any other stages). The inclusion of the SoftPlus and ReLU stages on the weights,
biases and input heat-map maintains a strictly greater than zero convolution output, which prevents
numerical issues for the values leading into the Log stage. Finally, a SoftPlus stage is used to
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maintain continuous and non-zero weight and bias gradients during training. With this modified
formulation, Eq 2 is trained using back-propagation and SGD.
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Figure 6: Single Round Message Passing Network

The convolution sizes are adjusted so that the largest joint displacement is covered within the con-
volution window. For our 90x60 pixel heat-map output, this results in large 128x128 convolution
kernels to account for a joint displacement radius of 64 pixels (note that padding is added on the
heat-map input to prevent pixel loss). Therefore for such large kernels we use FFT convolutions
based on the GPU implementation by Mathieu et al. [19].

The convolution weights are initialized using the empirical histogram of joint displacements created
from the training examples. This initialization improves learned performance, decreases training
time and improves optimization stability. During training we randomly flip and scale the heat-map
inputs to improve generalization performance.

3.3 Unified Model

Since our Spatial-Model (Section 3.2) is trained using back-propagation, we can combine our Part-
Detector and Spatial-Model stages in a single Unified Model. To do so, we first train the Part-
Detector separately and store the heat-map outputs. We then use these heat-maps to train a Spatial-
Model. Finally, we combine the trained Part-Detector and Spatial-Models and back-propagate
through the entire network.

This unified fine-tuning further improves performance. We hypothesize that because the Spatial-
Model is able to effectively reduce the output dimension of possible heat-map activations, the Part-
Detector can use available learning capacity to better localize the precise target activation.

4 Results

The models from Sections 3.1 and 3.2 were implemented within the Torch7 [6] framework (with
custom GPU implementations for the non-standard stages above). Training the Part-Detector takes
approximately 48 hours, the Spatial-Model 12 hours, and forward-propagation for a single image
through both networks takes 51ms 1.

We evaluated our architecture on the FLIC [27] and extended-LSP [17] datasets. These datasets
consist of still RGB images with 2D ground-truth joint information generated using Amazon Me-
chanical Turk. The FLIC dataset is comprised of 5003 images from Hollywood movies with actors
in predominantly front-facing standing up poses (with 1016 images used for testing), while the
extended-LSP dataset contains a wider variety of poses of athletes playing sport (10442 training and
1000 test images). The FLIC dataset contains many frames with more than a single person, while
the joint locations from only one person in the scene are labeled. Therefore an approximate torso
bounding box is provided for the single labeled person in the scene. We incorporate this data by
including an extra “torso-joint heat-map” to the input of the Spatial-Model so that it can learn to
select the correct feature activations in a cluttered scene.

1We use a 12 CPU workstation with an NVIDIA Titan GPU
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The FLIC-full dataset contains 20928 training images, however many of these training set
images contain samples from the 1016 test set scenes and so would allow unfair over-
training on the FLIC test set. Therefore, we propose a new dataset - called FLIC-plus
(http://cims.nyu.edu/∼tompson/flic plus.htm) - which is a 17380 image subset from the FLIC-plus
dataset. To create this dataset, we produced unique scene labels for both the FLIC test set and FLIC-
plus training sets using Amazon Mechanical Turk. We then removed all images from the FLIC-plus
training set that shared a scene with the test set. Since 253 of the sample images from the original
3987 FLIC training set came from the same scene as a test set sample (and were therefore removed
by the above procedure), we added these images back so that the FLIC-plus training set is a superset
of the original FLIC training set. Using this procedure we can guarantee that the additional samples
in FLIC-plus are sufficiently independent to the FLIC test set samples.

For evaluation of the test-set performance we use the measure suggested by Sapp et. al. [27]. For a
given normalized pixel radius (normalized by the torso height of each sample) we count the number
of images in the test-set for which the distance of the predicted UV joint location to the ground-truth
location falls within the given radius.

Fig 7a and 7b show our model’s performance on the the FLIC test-set for the elbow and wrist joints
respectively and trained using both the FLIC and FLIC-plus training sets. Performance on the LSP
dataset is shown in Fig 7c and 8a. For LSP evaluation we use person-centric (or non-observer-
centric) coordinates for fair comparison with prior work [30, 8]. Our model outperforms existing
state-of-the-art techniques on both of these challenging datasets with a considerable margin.
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(a) FLIC: Elbow
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(b) FLIC: Wrist
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Figure 7: Model Performance

Fig 8b illustrates the performance improvement from our simple Spatial-Model. As expected the
Spatial-Model has little impact on accuracy for low radii threshold, however, for large radii it in-
creases performance by 8 to 12%. Unified training of both models (after independent pre-training)
adds an additional 4-5% detection rate for large radii thresholds.
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The impact of the number of resolution banks is shown in Fig 8c). As expected, we see a big
improvement when multiple resolution banks are added. Also note that the size of the receptive
fields as well as the number and size of the pooling stages in the network also have a large impact on
the performance. We tune the network hyper-parameters using coarse meta-optimization to obtain
maximal validation set performance within our computational budget (less than 100ms per forward-
propagation).

Fig 9 shows the predicted joint locations for a variety of inputs in the FLIC and LSP test-sets. Our
network produces convincing results on the FLIC dataset (with low joint position error), however,
because our simple Spatial-Model is less effective for a number of the highly articulated poses in
the LSP dataset, our detector results in incorrect joint predictions for some images. We believe that
increasing the size of the training set will improve performance for these difficult cases.

Figure 9: Predicted Joint Positions, Top Row: FLIC Test-Set, Bottom Row: LSP Test-Set

5 Conclusion

We have shown that the unification of a novel ConvNet Part-Detector and an MRF inspired Spatial-
Model into a single learning framework significantly outperforms existing architectures on the task
of human body pose recognition. Training and inference of our architecture uses commodity level
hardware and runs at close to real-time frame rates, making this technique tractable for a wide variety
of application areas.

For future work we expect to further improve upon these results by increasing the complexity and
expressiveness of our simple spatial model (especially for unconstrained datasets like LSP).
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