
Fast Prediction for Large-Scale Kernel Machines

Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon
Department of Computer Science

University of Texas at Austin
Austin, TX 78712 USA

{cjhsieh,ssi,inderjit}@cs.utexas.edu

Abstract

Kernel machines such as kernel SVM and kernel ridge regression usually con-
struct high quality models; however, their use in real-world applications remains
limited due to the high prediction cost. In this paper, we present two novel in-
sights for improving the prediction efficiency of kernel machines. First, we show
that by adding “pseudo landmark points” to the classical Nyström kernel approxi-
mation in an elegant way, we can significantly reduce the prediction error without
much additional prediction cost. Second, we provide a new theoretical analysis on
bounding the error of the solution computed by using Nyström kernel approxima-
tion method, and show that the error is related to the weighted kmeans objective
function where the weights are given by the model computed from the original ker-
nel. This theoretical insight suggests a new landmark point selection technique for
the situation where we have knowledge of the original model. Based on these two
insights, we provide a divide-and-conquer framework for improving the predic-
tion speed. First, we divide the whole problem into smaller local subproblems to
reduce the problem size. In the second phase, we develop a kernel approximation
based fast prediction approach within each subproblem. We apply our algorithm
to real world large-scale classification and regression datasets, and show that the
proposed algorithm is consistently and significantly better than other competitors.
For example, on the Covertype classification problem, in terms of prediction time,
our algorithm achieves more than 10000 times speedup over the full kernel SVM,
and a two-fold speedup over the state-of-the-art LDKL approach , while obtaining
much higher prediction accuracy than LDKL (95.2% vs. 89.53%).

1 Introduction
Kernel machines have become widely used in many machine learning problems, including clas-
sification, regression, and clustering. By mapping samples to a high-dimensional feature space,
kernel machines are able to capture the nonlinear properties and usually achieve better performance
compared to linear models. However, computing the decision function for the new test samples
is typically expensive which limits the applicability of kernel methods to real-world applications.
Therefore speeding up the prediction time of kernel methods has become an important research
topic. For example, recently [2, 10] proposed various heuristics to speed up kernel SVM predic-
tion, and kernel approximation based methods [27, 5, 21, 16] can also be applied to speed up the
prediction for general kernel machines. Among them, LDKL attracts much attention recently as it
performs much better than state-of-the-art kernel approximation and reduced set based methods for
fast prediction. Experimental results show that LDKL can reduce the prediction costs by more than
three orders of magnitude with little degradation of accuracy as compared with the original kernel
SVM.

In this paper, we propose a novel fast prediction technique for large-scale kernel machines. Our
method is built on the Nyström approximation, but with the following innovations:

1. We show that by adding “pseudo landmark points” to the Nyström approximation, the
kernel approximation error can be reduced without too much additional prediction cost.

1



2. We provide a theoretical analysis of the model approximation error ‖ᾱ − α∗‖, where ᾱ
is the model (solution) computed by Nyström approximation, and α∗ is the solution com-
puted from the original kernel. Instead of bounding the error ‖ᾱ−α∗‖ by kernel approxi-
mation error on the entire kernel matrix, we refine the bound by taking the α∗ weights into
consideration, which indicates that we only need to focus on approximating the columns
in the kernel matrix with large α∗ values (e.g., support vectors in kernel SVM problem).
We further show that the error bound is connected to the α∗-weighted kmeans objective
function, which suggests selecting landmark points based on α∗ values in Nyström ap-
proximation.

3. We consider the above two innovations under a divide-and-conquer framework for fast pre-
diction. The divide-and-conquer framework partitions the problem using kmeans clustering
to reduce the problem size, and for each subproblem we apply the above two techniques to
develop a kernel approximation scheme for fast prediction.

Based on the above three innovations, we develop a fast prediction scheme for kernel methods, DC-
Pred++, and apply it to speed up the prediction for kernel SVM and kernel ridge regression. The ex-
perimental results show that our method outperforms state-of-the-art methods in terms of prediction
time and accuracy. For example, on the Covertype classification problem, our algorithm achieves
a two-fold speedup in terms of prediction time, and yields a higher prediction accuracy (95.2% vs
89.53%) compared to the state-of-the-art fast prediction approach LDKL. Perhaps surprisingly, our
training time is usually faster or at least competitive with state-of-the-art solvers.

We begin by presenting related work in Section 2, while the background material is given in Section
3. In Section 4, we introduce the concept of pseudo landmark points in kernel approximation.
In Section 5, we present the divide-and-conquer framework, and theoretically analyze using the
weighted kmeans to select the landmark points. The experimental results on real-world data are
presented in Section 6.

2 Related Work
There has been substantial works on speeding up the prediction time of kernel SVMs, and most of
the approaches can be applied to other kernel methods such as kernel ridge regression. Most of the
previous works can be categorized into the following three types:

Preprocessing. Reducing the size of the training set usually yields fewer support vectors in the
model, and thus results in faster prediction speed. [20] proposed a “squashing” approach to reduce
the size of training set by clustering and grouping nearby points. [19] proposed to select the extreme
points in the training set to train kernel SVM. Nyström method [27, 4, 29] and Random Kitchen
Sinks (RKS) [21] form low-rank kernel approximations to improve both training and prediction
speed. Although RKS usually requires a larger rank than Nyström method, it can be further sped
up by using fast Hadamard transform [16]. Other kernel approximation methods [12, 18, 1] are also
proposed for different types of kernels.

Post-processing. Post-processing approaches are designed to reduce the number of support vectors
in the testing phase. A comprehensive comparison of these reduced-set methods has been conducted
in [11], and results show that the incremental greedy method [22] implemented in STRtool achieves
the best performance. Another randomized algorithm to refine the solution of the kernel SVM has
been recently proposed in [2].

Modified Training Process. Another line of research aims to reduce the number of support vec-
tors by modifying the training step. [13] proposed a greedy basis selection approach; [24] proposed
a Core Vector Machine (CVM) solver to solve the L2-SVM. [9] applied a cutting plane subspace
pursuit algorithm to solve the kernel SVM. The Reduced SVM (RSVM) [17] selected a subset of
features in the original data, and solved the primal problem of kernel SVM. Locally Linear SVM
(LLSVM) [15] represented each sample as a linear combination of its neighbors to yield efficient
prediction speed. Instead of considering the original kernel SVM problem, [10] developed a new
tree-based local kernel learning model (LDKL), where the decision value of each sample is com-
puted by a series of inner products when traversing the tree.

3 Background
Kernel Machines. In this paper, we focus on two kernel machines – kernel SVM and kernel
ridge regressions. Given a set of instance-label pairs {xi, yi}ni=1, xi ∈ Rd, the training process of
kernel SVM and kernel ridge regression generates α∗ ∈ Rn by solving the following optimization
problems:

2



Kernel SVM: α∗ ← argmin
α

1
2
αTQα− eTα s.t. 0 ≤ α ≤ C, (1)

Kernel Ridge Regression: α∗ ← argmin
α

αTGα+ λαTα− 2αTy, (2)

where G ∈ Rn×n is the kernel matrix with Gij = K(xi,xj); Q is an n by n matrix with Qij =
yiyjGij , and C, λ are regularization parameters.

In the prediction phase, the decision value of a testing data x is computed as
∑n
i=1 α

∗
iK(xi,x),

which in general requires O(n̄d) where n̄ is the number of nonzero elements in α∗. Note that for
kernel SVM problem, we may think α∗i is weighted by yi when computing decision value for x. In
comparison, linear models only require O(d) prediction time, but usually generate lower prediction
accuracy.

Nyström Approximation. Kernel machines usually do not scale to large-scale applications due
to the O(n2d) operations to compute the kernel matrix and O(n2) space to store it in memory. As
shown in [14], low-rank approximation of kernel matrix using the Nyström method provides an
efficient way to scale up kernel machines to millions of instances. Given m � n landmark points
{uj}mj=1, the Nyström method first forms two matrices C ∈ Rn×m and W ∈ Rm×m based on the
kernel function, where Cij = K(xi,uj) and Wij = K(ui,uj), and then approximates the kernel
matrix as

G ≈ Ḡ := CW †CT , (3)
where W † denotes the pseudo-inverse of W . By approximating G via Nyström method, the kernel
machines are usually transformed to linear machines, which can be solved efficiently. Given the
model α, in the testing phase, the decision value of x is evaluated as

c(W †CTα) = cβ,

where c = [K(x,u1), . . . ,K(x,um)], and β = W †CTα can be precomputed and stored. To ob-
tain the prediction on one test sample, Nyström approximation only needs O(md) flops to compute
c, and O(m) flops to compute the decision value cβ, so it becomes an effective ways to improve the
prediction speed. However, Nyström approximation usually needs more than 100 landmark points
to achieve reasonable good accuracy, which is still expensive for large-scale applications.

4 Pseudo Landmark Points for Speeding up Prediction Time

In Nyström approximation, there is a trade-off in selecting the number of landmark points m. A
smaller m means faster prediction speed, but also yields higher kernel approximation error, which
results in a lower prediction accuracy. Therefore we want to tackle the following problem – can we
add landmark points without increasing the prediction time?

Our solution is to construct extra “pseudo landmark points” for the kernel approximation. Recall
that originally we have m landmark points {uj}mj=1, and now we add p pseudo landmark points
{vt}pt=1 to this set. In this paper, we consider pseudo landmark points are sampled from the training
dataset, while in general each pseudo landmark point can be any d-dimensional vector. The only
difference between pseudo landmark points and landmark points is that the kernel values K(x,vt)
are computed in a fast but approximate manner in order to speed up the prediction time. We use a
regression-based method to approximate {K(x,vt)}pt=1. Assume for each pseudo landmark point
vt, there exists a function ft : Rm → R, where the input to each ft is the computed kernel values
{K(x,uj)}mj=1, and the output is an estimator of K(x,vt). We can either design the function
for specific kernels, for example, in Section 4.1 we design ft for stationary kernels, or learn ft by
regression for general kernels (Section 4.2).

Before introducing the design or learning process for {ft}pt=1, we first describe how to use them to
form the Nystöm approximation.With p pseudo landmark points and {ft}pt=1 given, we can form
the following a n× (m+ p) matrix C̄, by adding the p extra columns to C:

C̄ = [C, C ′], where C ′it = ft({K(xi,uj)}mj=1) ∀i = 1, . . . , n and ∀t = 1, . . . , p. (4)

Then the kernel matrix G can be approximated by

G ≈ Ḡ = C̄W̄ C̄T , with W̄ = C̄†G(C̄†)T , (5)

where C̄† is the pseudo inverse of C̄; W̄ is the optimal solution to minimize ‖G − Ḡ‖F if Ḡ is
restricted to the range space of C̄, which is also used in [26]. Note that in our case W̄ cannot be

3



obtained by inverting an m+ p by m+ p matrix as in the original Nyström approach in (3), because
the kernel values between x and pseudo landmark points are the approximate kernel values. As a
result the time to form the Nyström approximation in (5) is slower than forming (3) since the whole
kernel matrix G has to be computed.

If the number of samples n is too large to compute G, we can estimate the matrix W̄ by minimizing
the approximation error on a submatrix of G. More specifically, we randomly select a submatrix
Gsub from G with row/and column indexes I. If we focus on approximating Gsub, the optimal W̄ is
W̄ = (C̄I,:)†Gsub((C̄I,:)†)T , which only requires computation of O(|I|2) kernel elements.

Based on the approximate kernel Ḡ, we can train a model ᾱ and store the vector β̄ = W̄ C̄T ᾱ
in memory. For a testing sample x, we first compute the kernel values between x and landmarks
points c = [K(x,u1), . . . ,K(x,um)], which usually requires O(md) flops, and then expand c to
an (m + p)-dimensional vector c̄ = [c, f1(c), . . . , fp(c)] based on the p pseudo landmark points
and the functions {ft}pt=1. Assume each ft(c) function can be evaluated with O(s) time, then we
can easily compute c̄ and the decision value c̄β̄ taking O(md + ps) time, where s is much smaller
than d. Overall, our algorithm can be summarized in Algorithm 1.

Algorithm 1: Kernel Approximation with Pseudo Landmark Points
Kernel Approximation Steps:

Select m landmark points {uj}mj=1.
Compute n×m matrix C where Cij = K(xi,uj).
Select p pseudo landmark points {vt}pt=1.
Construct p functions {ft}pt=1 by methods in Section 4.1 or Section 4.2.
Expand C to C̄ as C̄ = [C, C ′] by (4), and compute W̄ by (5).

Training: Compute ᾱ based on Ḡ and precompute β̄ = W̄ C̄T ᾱ.
Prediction for a test point x:

Compute m dimensional vector c = [K(x,u1), . . . ,K(x,um)].
Compute m+ p dimensional vector c̄ = [c, f1(c), . . . , fp(c)].
Decision value: c̄β̄.

4.1 Design the functions for stationary kernels

Next we discuss various ways to design/learn the functions {ft}pt=1. First we consider the stationary
kernels K(x,vt) = κ(‖x − vt‖), where the kernel approximation problem can be reduced to
estimate ‖x−vt‖with low cost. Suppose we choose p pseudo landmark points {vt}pt=1 by randomly
sampling p points in the dataset. By the triangle inequality,

max
j

(|‖x− uj‖ − ‖vt − uj‖|) ≤ ‖x− vt‖ ≤ min
j

(‖x− uj‖+ ‖vt − uj‖) . (6)

Since ‖x − uj‖ has already been evaluated for all uj (to compute K(x,uj)) and ‖vt − uj‖ can
be precomputed, we can use either left hand side or right hand side of (6) to estimate K(x,vt). We
can see that approximating K(x,vt) using (6) only requires O(m) flops and is more efficient than
computing K(x,vt) from scratch when m� d (d is the dimensionality of data).

4.2 Learning the functions for general kernels

Next we consider learning the function ft for general kernels by solving a regression problem.
Assume each ft is a degree-D polynomial function (in the paper we only use D = 2). Let Z denote
the basis functions: Z = {(i1, . . . , im) | i1 + · · · + im = d}, and for each element z(q) ∈ Z we

denote the corresponding polynomial function as Z(q)(c) = c
z
(q)
1

1 c
z
(q)
2

2 . . . c
z(q)

m
m . Each ft can then

be written as ft(c) =
∑
q a

t
qZ

(q)(c). A naive way to apply the pseudo-landmark technique using

polynomial functions is: to learn the optimal coefficients {atq}
|Z|
q=1 for each t, and then compute

C̄, W̄ based on (4) and (5). However, this two-step procedure requires a huge amount of training
time, and the prediction time cannot be improved if |Z| is large.

Therefore, we consider implicitly applying the pseudo-landmark point technique. We expand C by

Ĉ = [C, C ′′], where C ′′iq = Z(q)(ci). (7)

4



(a) USPS,prediction cost vs approx.
error.

(b) Protein,prediction cost vs ap-
prox. error.

(c) MNIST,prediction cost vs ap-
prox. error.

Figure 1: Comparison of different pseudo landmark points strategy. The relative approximation error
is ‖G−Ḡ‖F /‖G‖F whereG and Ḡ is the real and approximate kernel respectively. We observe that
both Nys-triangle (using the triangular inequality to approximate kernel values) and Nys-dp (using
the polynomial expansion with the degree D = 2) can dramatically reduce the approximation error
under the same prediction cost.

where ci = [K(xi,u1), . . . ,K(xi,um)] and each Z(q)(·) is the q-th degree-D polynomial basis
with q = 1, . . . , |Z|. After forming Ĉ, we can then compute Ŵ = Ĉ†G(Ĉ†)T and approximate
the kernel by ĈŴ ĈT . This procedure is much more efficient than the previous two-step procedure
where we need to learn {atq}

|Z|
q=1, and more importantly, in the following lemma we show that this

approach gives better approximation to the previous two-step procedure.
Lemma 1. If {ft(·)}pt=1 are degree-D polynomial functions, C̄, W̄ are computed by (4), (5) and
Ĉ, Ŵ are computed by (7), (5), then ‖G− C̄W̄ C̄T ‖ ≥ ‖G− ĈŴ ĈT ‖.

The proof is in Appendix 7.3. In practice we do not need to form all the low degree polynomial basis
– just sample some of the basis fromZ is enough. Figure 1 compares using Nyström method with or
without pseudo landmark points for approximating Gaussian kernels. For each dataset, we choose
a few number of landmark points (2-30), and add pseudo landmark points according the triangular
inequality (6) or according to the polynomial function (7). We observe that the kernel approximation
error is dramatically reduced under the same prediction cost. Note that we can also apply this
pseudo-landmark points approach as a building block in other kernel approximation frameworks,
e.g., the Memory Efficient Kernel Approximation (MEKA) proposed in [23].

5 Weighted Kmeans Sampling with a Divide-and-Conquer Framework

In all the related work, Nyström approximation is considered as a preprocessing step, which does
not incorporate the information from the model itself. In this section, we consider the case that the
model α∗ for kernel SVM or kernel ridge regression is given, and derive a better approach to select
landmark points. The approach can be used in conjunction with divide-and-conquer SVM [8] where
an approximate solution to α∗ can be computed efficiently.

Let α∗ be the optimal solution of the kernel machines computed with the original kernel matrix G,
and ᾱ be the approximate solution by using approximate kernel matrix Ḡ. We derive the following
upper bound of ‖ᾱ−α∗‖ for both kernel SVM and kernel ridge regression:
Theorem 1. Let α∗ be the optimal solution for kernel ridge regression with kernel matrix G, and
ᾱ is the solution for kernel ridge regression with kernel Ḡ obtained by Nyström approximation (3),
then

‖ᾱ−α∗‖ ≤ ∆/λ with ∆ =
n∑
i=1

|α∗i |‖Ḡ·,i −G·,i‖,

where λ is the regularization parameter in kernel ridge regression, and Ḡ·,i and G·,i are the i-th
column of Ḡ and G respectively.
Theorem 2. Let α∗ be the optimal solution for kernel SVM with kernel G, and ᾱ be the solution of
kernel SVM with kernel Ḡ obtained by Nyström approximation (3), then

‖ᾱ−α∗‖ ≤ θ2‖W‖2(1 + ρ)∆, (8)

where ρ is the largest eigenvalue of Ḡ, and θ is a positive constant independent on α∗, ᾱ.

5



The proof is in Appendix 7.4 and 7.5. Here we show that ‖ᾱ − ᾱ∗‖ can be upper bounded by a
weighted kernel approximation error. This result looks natural but has a significant consequence – to
get a good approximate model, we do not need to minimize the kernel approximation error on all the
n2 elements of G; instead, the quality of solution is mostly affected by a small portion of columns
of G with larger |α∗i |. For example, in the kernel SVM problem, α∗ is a sparse vector containing
many zero elements, and the above bound indicates that we just need to approximate the columns
in G with corresponding α∗i 6= 0 accurately. Based on the error bounds, we want to select landmark
points for Nyström approximation that minimize ∆. We focus on the kernel functions that satisfy

(K(a, b)−K(c,d))2 ≤ CK(‖a− c‖2 + ‖b− d‖2),∀a, b, c,d, (9)

where CK is a kernel-dependent constant. It has been shown in [29] that all the stationary kernels
(K(xi,xj) = κ(‖xi − xj‖)) satisfy (9). Next we show that the weighted kernel approximation
error ∆ is upper bounded by the weighted kmeans objective.
Theorem 3. If the kernel function satisfies condition (9), and let u1, . . . ,um be the landmark points
for constructing the Nyström approximation (Ḡ = CW †CT ), then

∆ ≤ (n+ n‖W †‖
√
kγmax)

√
Ck

√
D2

α∗
(
{uj}mj=1

)
,

where γmax is the upper bound of kernel function,

D2
α

(
{ui}mi=1

)
:=

n∑
i=1

α2
i ‖xi − uπ(i)‖2, (10)

and π(i) = argmins ‖us − xi‖2 is the landmark point closest to xi.

The proof is in Appendix 7.6. Note that D2
α∗({ui}mi=1) is the weighted kmeans objective function

with {(α∗i )2}ni=1 as the weights. Combining Theorems 1, 2, and 3, we conclude that for both
kernel SVM and ridge regression, the approximation error ‖ᾱ − α∗‖ can be upper bounded by
the weighted kmeans objective function. As a consequence, if α∗ is given, we can use weighted
kmeans with weights {(α∗i )2}ni=1 to find the landmark points u1, . . . ,um, which tends to minimize
the approximation error. In Figure 4 (in the Appendix) we show that for the kernel SVM problem,
selecting landmark points by weighted kmeans is a very effective strategy for fast and accurate
prediction in real-world datasets.

In practice we do not know α∗ before training the kernel machines, and exactly computing α∗ is
very expensive for large-scale datasets. However, using weighted kmeans to select landmark points
can be combined with any approximate solvers – we can use an approximate solver to quickly
approximate α∗, and then use it as the weights for the weighted kmeans. Next we show how to
combine this approach with the divide-and-conquer framework recently proposed in [8, 7].

Divide and Conquer Approach. The divide-and-conquer SVM (DC-SVM) was proposed in [8]
to solve the kernel SVM problem. The main idea is to divide the whole problem into several smaller
subproblems, where each subproblem can be solved independently and efficiently. [8] proposed to
partition the data points by kernel clustering, but this approach is expensive in terms of prediction
efficiency. Therefore we use kmeans clustering in the input space to build the hierarchical clustering.

Assume we have k clusters as the leaf nodes, the DC-SVM algorithm computes the solutions
{(α(i))∗}ki=1 for each cluster independently. For a testing sample, they use an “early prediction”
scheme, where the testing sample is first assigned to the nearest cluster and then the local model
in that cluster is used for prediction. This approach can reduce the prediction time because it only
computes the kernel values between the testing sample and all the support vectors in one cluster.
However, the model in each cluster may still contain many support vectors, so we propose to ap-
proximate the kernel in each cluster by Nyström based kernel approximation as mentioned in Section
4 to further reduce the prediction time. In the prediction step we first go through the hierarchical
tree to identify the nearest cluster, and then compute the kernel values between the testing sample
and the landmark points in that cluster. Finally, we can compute the decision value based on the
kernel values and the prediction model. The same idea can be applied to kernel ridge regression.
Our overall algorithm – DC-Pred++ is presented in Algorithm 2.

6 Experimental Results

In this section, we compare our proposed algorithm with other fast prediction algorithms for kernel
SVM and kernel ridge regression problems. All the experiments are conducted on a machine with

6



Algorithm 2: DC-Pred++: our proposed divide-and-conquer approach for fast Prediction.
Input : Training samples {xi}ni=1, kernel function K.
Output: A fast prediction model.
Training:

Construct a hierarchical clustering tree with k leaf nodes by kmeans.
Compute local models {(α(i))∗}ki=1 for each cluster.
For each cluster, use weighted kmeans centroids as landmark points.
For each cluster, run the proposed kernel approximation with pseudo landmark points
(Algorithm 1) and use the approximate kernel to train a local prediction model.

Prediction on x:
Identify the nearest cluster.
Run the prediction phase of Algorithm 1 using local prediction models.

Table 1: Comparison of kernel SVM prediction on real datasets. Note that the actual prediction time
is normalized by the linear prediction time. For example, 12.8x means the actual prediction time
= 12.8× (time for linear SVM prediction time).

Dataset Metric DC-Pred++ LDKL kmeans Nyström AESVM STPRtool Fastfood
Letter Prediction Time 12.8x 29x 140x 1542x 50x 50x

ntrain = 12, 000, Accuracy 95.90% 95.78% 87.58% 80.97% 85.9% 89.9%
ntest = 6, 000, d = 16 Training Time 1.2s 243s 3.8s 55.2s 47.7s 15s

CovType Prediction Time 18.8x 35x 200x 3157x 50x 60x
ntrain = 522, 910, Accuracy 95.19% 89.53% 73.63% 75.81% 82.14% 66.8%

ntest = 58, 102, d = 54 Training Time 372s 4095s 1442s 204s 77400s 256s
Usps Prediction Time 14.4x 12.01x 200x 5787x 50x 80x

ntrain = 7291, Accuracy 95.56% 95.96% 92.53% 85.97% 93.6% 94.39%
ntest = 2007, d = 256 Training Time 2s 19s 4.8s 55.3s 34.5s 12s

Webspam Prediction Time 20.5x 23x 200x 4375x 50x 80x
ntrain = 280, 000, Accuracy 98.4% 95.15% 95.01% 98.4% 91.6% 96.7%

ntest = 70, 000, d = 254 Training Time 239s 2158s 181s 909s 32571s 1621s
Kddcup Prediction Time 11.8x 26x 200x 604x 50x 80x

ntrain = 4, 898, 431, Accuracy 92.3% 92.2% 87% 92.1% 89.8% 91.1%
ntest = 311, 029, d = 134 Training Time 154s 997s 1481s 2717s 4925s 970s

a9a Prediction Time 12.5x 32x 50x 4859x 50x 80
ntrain = 32, 561, Accuracy 83.9% 81.95% 83.9% 81.9% 82.32% 61.9%

ntest = 16, 281, d = 123 Training Time 6.3s 490s 1.28s 33.17s 69.1s 59.9s

an Intel 2.83GHz CPU with 32G RAM. Note that the prediction cost is shown as actual prediction
time dividing by the linear model’s prediction time. This measurement is more robust to the actual
hardware configuration and provides a comparison with the linear methods.

6.1 Kernel SVM

We use six public datasets (shown in Table 1) for the comparison of kernel SVM prediction time.
The parameters γ,C are selected by cross validation, and the detailed description of parameters for
other competitors are shown in Appendix 7.1. We compare with the following methods:

1. DC-Pred++: Our proposed framework, which involves Divide-and-Conquer strategy and
applies weighted kmeans to select landmark points and then uses these landmark points to
generate pseudo-landmark points in Nyström approximation for fast prediction.

2. LDKL: The Local Deep Kernel Learning method proposed in [10]. They learn a tree-based
primal feature embedding to achieve faster prediction speed.

3. Kmeans Nyström: The Nyström approximation using kmeans centroids as landmark points
[29]. The resulting linear SVM problem is solved by LIBLINEAR [6].

4. AESVM: Approximate Extreme points SVM solver proposed in [19]. It uses a preprocess-
ing step to filter out unimportant points to get a smaller model.

5. Fastfood: Random Hadamard features for kernel approximation [16].
6. STPRtool: The kernel computation toolbox that implemented the reduced-set post process-

ing approach using the greedy iterative solver proposed in [22].

Note that [10] reported that LDKL achieves much faster prediction speed compared with Locally
Linear SVM [15], and reduced set methods [9, 3, 13], so we omit their comparisons here.

The results presented in Table 1 show that DC-Pred++ achieves the best prediction efficiency and
accuracy in 5 of the 6 datasets. In general, DC-Pred++ takes less than half of the prediction time and

7



(a) Letter (b) Covtype (c) Kddcup

Figure 2: Comparison between our proposed method and LDKL for fast prediction in kernel SVM
problem.x-axis is the prediction cost and y-axis shows the prediction accuracy. For results on more
datasets, please see Figure 5 in the Appendix.

(a) Cadata (b) YearPredictionMSD (c) mnist2M

Figure 3: Kernel ridge regression results for various datasets. x-axis is the prediction cost and y-axis
shows the Test RMSE. All the results are averaged over five independent runs. For results on more
datasets, please see Figure 7 in the Appendix.

can still achieve better accuracy than LDKL. Interestingly, in terms of the training time, DC-Pred++
is almost 10 times faster than LDKL on most of the datasets. Since LDKL is the most competitive
method, we further show the comparison with LDKL by varying the prediction cost in Figure 2.
The results show that on 5 datasets DC-Pred++ achieves better prediction accuracy using the same
prediction time.

Note that our approach is an improvement over the divide-and-conquer SVM (DC-SVM) proposed
in [8], therefore we further compare DC-Pred++ with DC-SVM in Appendix 7.8. The results clearly
demonstrate that DC-Pred++ achieves faster prediction speed, and the main reason is due to the two
innovations presented in this paper – adding pseudo landmark points and weighted kmeans to select
landmark points to improve Nyström approximation. Finally, we also present the trade-off of two
parameters in our algorithm, number of clusters and number of landmark points, in Appendix 7.9.

Table 2: Dataset statistics
dataset Cpusmall Cadata Census YearPredictionMSD mnist2M
ntrain 6,553 16,521 18,277 463,715 1,500,000
ntest 1,639 4,128 4,557 51,630 500,000
d 12 137 8 90 800

6.2 Kernel Ridge Regression

We further demonstrate the benefits of DC-Pred++ for fast prediction in kernel ridge regression
problem on five public datasets listed in Table 2. Note that for mnist2M, we perform regression
on two digits and set the target variables to be 0 and 1. We compare DC-Pred++ with other four
state-of-the-art kernel approximation methods for kernel ridge regression including the standard
Nystrom(Nys)[5], Kmeans Nystrom(KNys)[28], Random Kitchen Sinks(RKS)[21], and Fastfood
[16]. All experimental results are based on Gaussian kernel. It is unclear how to generalize LDKL
for kernel ridge regression, so we do not compare with LDKL here. The parameters used are cho-
sen by five fold cross-validation (see Appendix 7.1). Figure 3 presents the Test RMSE(root mean
squared error on the test data) by varying the prediction cost. To control the prediction cost, for
Nys, KNys, and DC-Pred++, we vary the number of landmark points, and for RKS and fastfood, we
vary the number of random features. In Figure 3, we can observe that with the same prediction cost,
DC-Pred++ always yields lower Test RMSE than other methods.

Acknowledgements
This research was supported by NSF grants CCF-1320746 and CCF-1117055. C.-J.H also acknowl-
edges support from an IBM PhD fellowship.

8



References
[1] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and testing low-degree

polynomial data mappings via linear SVM. JMLR, 11:1471–1490, 2010.
[2] M. Cossalter, R. Yan, and L. Zheng. Adaptive kernel approximation for large-scale non-linear svm pre-

diction. In ICML, 2011.
[3] A. Cotter, S. Shalev-Shwartz, and N. Srebro. Learning optimally sparse support vector machines. In

ICML, 2013.
[4] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices iii: Computing a

compressed approximate matrix decomposition. SIAM J. Comput., 36(1):184–206, 2006.
[5] P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix for improved

kernel-based learning. JMLR, 6:2153–2175, 2005.
[6] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear

classification. JMLR, 9:1871–1874, 2008.
[7] C.-J. Hsieh, I. S. Dhillon, P. Ravikumar, and A. Banerjee. A divide-and-conquer method for sparse inverse

covariance estimation. In NIPS, 2012.
[8] C.-J. Hsieh, S. Si, and I. S. Dhillon. A divide-and-conquer solver for kernel support vector machines. In

ICML, 2014.
[9] T. Joachims and C.-N. Yu. Sparse kernel svms via cutting-plane training. Machine Learning, 76(2):179–

193, 2009.
[10] C. Jose, P. Goyal, P. Aggrwal, and M. Varma. Local deep kernel learning for efficient non-linear svm

prediction. In ICML, 2013.
[11] H. G. Jung and G. Kim. Support vector number reduction: Survey and experimental evaluations. IEEE

Transactions on Intelligent Transportation Systems, 2014.
[12] P. Kar and H. Karnick. Random feature maps for dot product kernels. In AISTATS, 2012.
[13] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier

complexity. JMLR, 7:1493–1515, 2006.
[14] S. Kumar, M. Mohri, and A. Talwalkar. Ensemble Nyström methods. In NIPS, 2009.
[15] L. Ladicky and P. H. S. Torr. Locally linear support vector machines. In ICML, 2011.
[16] Q. V. Le, T. Sarlos, and A. J. Smola. Fastfood – approximating kernel expansions in loglinear time. In

ICML, 2013.
[17] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. In SDM, 2001.
[18] S. Maji, A. C. Berg, and J. Malik. Efficient classification for additive kernel svms. IEEE PAMI, 35(1),

2013.
[19] M. Nandan, P. R. Khargonekar, and S. S. Talathi. Fast svm training using approximate extreme points.

JMLR, 15:59–98, 2014.
[20] D. Pavlov, D. Chudova, and P. Smyth. Towards scalable support vector machines using squashing. In

KDD, pages 295–299, 2000.
[21] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184,

2007.
[22] B. Schölkopf, P. Knirsch, A. J. Smola, and C. J. C. Burges. Fast approximation of support vector kernel

expansions, and an interpretation of clustering as approximation in feature spaces. In Mustererkennung
1998—20. DAGM-Symposium, Informatik aktuell, pages 124–132, Berlin, 1998. Springer.

[23] S. Si, C.-J. Hsieh, and I. S. Dhillon. Memory efficient kernel approximation. In ICML, 2014.
[24] I. Tsang, J. Kwok, and P. Cheung. Core vector machines: Fast SVM training on very large data sets.

JMLR, 6:363–392, 2005.
[25] P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex optimization.

JMLR, 15:1523–1548, 2014.
[26] S. Wang and Z. Zhang. Improving cur matrix decomposition and the nyström approximation via adaptive

sampling. JMLR, 14:2729–2769, 2013.
[27] C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In T. Leen,

T. Dietterich, and V. Tresp, editors, NIPS, 2001.
[28] K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold learning and dimension

reduction. Trans. Neur. Netw., 21(10):1576–1587, 2010.
[29] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low rank approximation and error analysis. In

ICML, 2008.

9


