A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 3.3

Proof. For simplicity, we first consider the case of symmetric PSD A. Let $k^* = \operatorname{rank} A$. Consider $X \in \mathbb{R}^{n \times k}$ with $||X_i||_2 \leq 1$ and $k > k^*$ such that $\operatorname{LRP}_k(X) = \operatorname{tr}(X^{\mathsf{T}}AX)$ attains the optimal value of the SDP (this is possible in particular when k = n). We want to to transform X to the thinner $X^* \in \mathbb{R}^{n \times k^*}$ that still satisfies the row norm constraints $||X_i^*||_2 \leq 1$. Let $Q \in \mathbb{R}^{k \times k}$ be an orthonormal matrix ($QQ^{\mathsf{T}} = I_k$). Note that XQ still satisfies the row norm constraints (since each row of X_i just gets rotated). Thus, it suffices to find Q so that some columns of XQ fall into the null-space of A and can be discarded.

Suppose $A \succeq 0$. Let $A = LL^{\mathsf{T}}$ for $L \in \mathbb{R}^{n \times k^*}$ and let $Y = L^{\mathsf{T}}X \in \mathbb{R}^{k^* \times k}$. We can choose Q so that $YQ \in \mathbb{R}^{k^* \times k}$ has at most k^* non-zero columns, *i.e.* take $Q = [Q_{\text{basis}}, Q_{\text{null}}]$, where $Q_{\text{null}} \in \mathbb{R}^{k \times (k-k^*)}$ comprises the $k - k^*$ columns such that $YQ_{\text{null}} = 0$ and $Q_{\text{basis}} \in \mathbb{R}^{k \times k^*}$ comprises the first k^* columns of Q. Obtaining such a Q is possible by taking an orthonormal basis of the null space of Y as the columns of Q_{null} , and taking an orthonormal basis of the k^* -dimensional row space of Y as the columns of Q_{basis} . Both bases can be obtained by applying the Gram-Schmidt process.

Now when we transform X by Q to get $XQ = [XQ_{\text{basis}}, XQ_{\text{null}}]$, we can drop the columns XQ_{null} since $0 = YQ_{\text{null}} = L^{\mathsf{T}}XQ_{\text{null}}$, thus removing XQ_{null} does not change the objective. Setting $X^* = XQ_{\text{basis}} \in \mathbb{R}^{n \times k^*}$ gives that $\text{LRP}_k(X^*) = \text{LRP}_k(X)$ and we get the desired rank reduction without changing the objective and while maintaining satisfiability of the row norm constraints.

More generally if A is real symmetric (but not necessarily $A \succeq 0$) then we can consider instead the factorization $A = LR^{\mathsf{T}}$ where the columns of R are identical to the columns of L except possibly negated. Such a factorization is given by the eigendecomposition of a real symmetric matrix. In this case, Q still rotates both L and R correctly and the above argument follows in the same way. \Box

We remark that even more generally, if $A = LU^{\mathsf{T}}$ for $L, U \in \mathbb{R}^{n \times k^*}$ for $n \ge k \ge 2k^*$, then we can set Q_{basis} to be the basis of the row space of $Y = [L^{\mathsf{T}}X; U^{\mathsf{T}}X] \in \mathbb{R}^{2k^* \times k}$. Then the same argument still applies but we can only reduce the solution rank from k to $2k^* = 2 \operatorname{rank}(A)$.

A.1.2 Proof of Theorem 3.5

Proof. The proof relies on Grothendieck's identity: if $u, v \in \mathbb{R}^k$ and g is drawn uniformly from the unit sphere S^k , then

$$\mathbb{E}\left[\operatorname{sign}(u^{\mathsf{T}}g)\operatorname{sign}(v^{\mathsf{T}}g)\right] = \frac{2}{\pi}\operatorname{arcsin}(u^{\mathsf{T}}v).$$
(7)

Let $Y = f(XX^{\mathsf{T}}) \in \mathbb{R}^{n \times n}$ be the elementwise application of the scalar function

$$f(t) = \frac{2}{\pi} \left(\arcsin(t) - \frac{t}{\gamma(k)} \right). \tag{8}$$

Lemma 1 in [13] shows that f(t) is a function of the *positive type* on S^k , which by definition means that $Y \succeq 0$ provided $X_i \in S^k$ for all *i*. The underlying theory is developed in [14].

For $A, Y \succeq 0$ we have that $tr(AY) \ge 0$. Rearranging terms and applying Grothendieck's identity,

$$0 \le \operatorname{tr}(AY) = \operatorname{tr}\left(A\frac{2}{\pi}\left(\operatorname{arcsin}(XX^{\mathsf{T}}) - \frac{XX^{\mathsf{T}}}{\gamma(k)}\right)\right)$$
(9)

$$\iff \operatorname{tr}\left(A\frac{2}{\pi}\operatorname{arcsin}(XX^{\mathsf{T}})\right) \ge \frac{2}{\pi\gamma(k)}\operatorname{tr}(AXX^{\mathsf{T}}) \tag{10}$$

$$\implies \mathbb{E}[\operatorname{IQP}(\operatorname{rrd}(X))] \ge \frac{2}{\pi\gamma(k)} \operatorname{LRP}_k(X), \tag{11}$$

as claimed.

A.2 MRF to IQP reduction

1 0

Using the shorthand $\psi_{i;u} = \psi_i(u)$ and $\theta_{ij;uv} = \theta_{i,j}(u, v)$, the negative energy can be written as a sum of terms $\psi_{i;1}x_i + \psi_{i;0}(1-x_i)$ and of terms

$$\theta_{ij;11}x_ix_j + \theta_{ij;10}x_i(1-x_j) + \theta_{ij;01}(1-x_i)x_j + \theta_{ij;00}(1-x_i)(1-x_j)$$
(12)

for every *i*, *j*, *i.e.* negative energy is a quadratic form over $\{0, 1\}^n$, and finding its maximum is precisely the MAP problem. This quadratic form over can be written as $x^T M x + \beta^T x + \beta_0$, where

$$M_{i,j} \stackrel{\text{def}}{=} \theta_{ij;11} + \theta_{ij;00} - \theta_{ij;10} - \theta_{ij;01} \qquad \qquad \text{for } i < j \qquad (13)$$

$$\beta_{i} \stackrel{\text{def}}{=} \psi_{i;1} - \psi_{i;0} + \sum_{j>i} \left(\theta_{ij;10} - \theta_{ij;00}\right) + \sum_{j$$

$$\beta_0 \stackrel{\text{def}}{=} \sum_i \psi_{i;0} + \sum_{i < j} \theta_{ij;00} \tag{15}$$

This in turn can be written more compactly as $x^{\mathsf{T}}(M' + \operatorname{diag}(\beta))x + \beta_0$, where $M' = (M + M^{\mathsf{T}})/2$ is taken for symmetry. In summary, MAP in the MRF reduces to maximizing the term left of β_0 (that which we can control), which is now in a form that differs from IQP only by the domain of x.

One can then reduce the problem from the $x \in \{0, 1\}^n$ domain to $x \in \{-1, 1\}^n$ by a linear change of variables. Given an IQP as in (1) with objective $x^T A x$ over $x \in \{0, 1\}^n$, we can equivalently optimize $[\frac{1}{2}(\tilde{x} + 1)]^T A[\frac{1}{2}(\tilde{x} + 1)]$ over $\tilde{x} \in \{-1, 1\}^n$. This reduction introduces cross-terms. Define

$$b \stackrel{\text{def}}{=} \mathbf{1}^{\mathsf{T}} A + A \mathbf{1} = 2A \mathbf{1} \in \mathbb{R}^{n} \qquad b_{0} \stackrel{\text{def}}{=} \mathbf{1}^{\mathsf{T}} A \mathbf{1} = \frac{1}{2} \mathbf{1}^{\mathsf{T}} b \in \mathbb{R}^{n} \qquad (16)$$

Now, optimizing over $x \in \{-1, 1\}^n$, we can fold b and b_0 into A by introducing a single auxiliary variable x_0 (so the new domain is $x' = (x_0, x)$) and augmenting A to

$$A' = \frac{1}{4} \begin{bmatrix} b_0 & \frac{1}{2}b^\mathsf{T} \\ \frac{1}{2}b & A \end{bmatrix}.$$
 (17)

The variable x_0 must be constrained to 1, but in practice such a constraint can be ignored up until we output a final solution, because negating all of x has no effect on the IQP objective.

A.3 Additional figures

Figure 4 shows empirical histograms of objectives of random roundings from an LRP $_k$ solution.

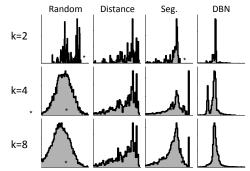


Figure 4: Distribution of the value of random roundings across problem instances and ranks. From top to bottom, rows vary across k = 2, 4, 8. From left to right, columns show: (1) random A; (2) a pairwise distance matrix formed by MNIST digits 4 and 9; (3) an instance from **seg**; (4) an instance from **dbn**. The range of the x-axis is identical in each column.