
Minimax-optimal Inference from Partial Rankings:
Supplementary Material

We introduce some additional notations used in the proof. The first-order partial derivative of L(θ)
is given by

∇iL(θ) =
∑
j:i∈Sj

kj−1∑
`=1

I{σ−1
j (i)≥`}

[
I{σj(`)=i} −

exp(θi)

exp(θσj(`)) + · · ·+ exp(θσj(kj))

]
,∀i ∈ [n] (1)

and the Hessian matrix H(θ) ∈ Sn with Hii′(θ) = ∂2L(θ)
∂θi∂θi′

is given by

H(θ) = −1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
`=1

exp(θi + θi′)I{σ−1
j (i),σ−1

j (i′)≥`}
[exp(θσj(`)) + · · ·+ exp(θσj(kj))]

2
. (2)

It follows from the definition that −H(θ) is positive semi-definite for any θ ∈ Rn. Define Lj ∈ Sn
as

Lj =
1

2(kj − 1)

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>,

and then the Laplacian of the pairwise comparison graph G satisfies L =
∑m
j=1 Lj .

1 Proof of Theorem 1

We first introduce a key auxiliary result used in the proof. Let F be a fixed CDF (to be used in the
Thurstone model), let b > 0 and suppose θ is a parameter to be estimated with θ ∈ [−b, b] from
observation U = (U1, . . . , Ud), where the Ui’s are independent with the common CDF given by
F (c − θ). The following proposition gives a lower bound on the average MSE for a fixed prior
distribution based on Van Trees inequality [1].
Proposition 1. Let p0 be a probability density on [−1, 1] such that p0(1) = p0(−1) = 0 and define
the prior density of Θ as p(θ) = 1

bp0( θb ). Then for any estimator T (U) of Θ,

E[(Θ− T (U))2] ≥ 1

d

1

I(µ) + I(p0)/(b2d)
,

where µ is the probability density function of F with I(µ) =
∫ (µ′(x))

2

µ(x) dx and I(p0) =∫ 1

−1
(p′0(θ))

2

p0(θ)
dθ.

Proof. It follows from the Van Trees inequality that

E[(Θ− T (U))2] ≥ 1∫
I(θ)p(θ)dθ + I(p)

,

where the Fisher information I(θ) = dI(µ) and

I(p) =

∫ b

−b

(p′(θ))
2

p(θ)
dθ =

1

b2

∫ 1

−1

(p′0(θ))
2

p0(θ)
dθ =

1

b2
I(p0).
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Proof of Theorem 1. Let θ̂ be a given estimator. The minimax MSE for θ̂ is greater than or equal to
the average MSE for a given prior distribution on θ∗. Let p0(θ) = cos2(πθ/2), then I(p0) = π2.
Define p(θ) = 1

bp0( θb ). If n is even we use the following prior distribution. The prior distribution of
θ∗i for i odd is p(θ) and for i even, θ∗i ≡ −θ∗i−1. If n is odd use the same distribution for θ∗1 through
θ∗n−1 and set θ∗n ≡ 0. Note that θ∗ ∈ Θb with probability one. For simplicity, we assume n is odd in
the rest of this proof; the modification for n even is trivial. We use the genie argument, so that the
observer can see the hidden utilities in the Thurstone model. The estimation of θ∗ decouples into
bn2 c disjoint problems, so we can focus on the estimation of θ1 from the vector of random variables
U = (U1, . . . , Ud1) associated with item 1 and the vector of random variables V = (V1, . . . , Vd2)
associated with item 2. The distribution functions of the Ui’s are all F (c− θ∗1) and the distribution
functions of the Vi’s are all F (c + θ∗1), and the U ’s and V ’s are all mutually independent given
θ∗. Recall that µ is the probability density function of F , i.e., µ = F ′. The Fisher information for
each of the d1 + d2 observations is I(µ), so that Proposition 1 carries over to this situation with
d = d1 + d2. Therefore, for any estimator T (U, V ) of Θ∗1 (the random version of θ∗1),

E[(Θ∗1 − T (U, V ))2] ≥ 1

d1 + d2

1

I(µ) + π2/(b2(d1 + d2))

By this reasoning, for any odd value of i with 1 ≤ i < n we have

E[(θ̂i − θ∗i )2] + E[(θ̂i+1 − θ∗i+1)2] ≥ 2

I(µ) + π2/(b2(d1 + d2))

1

di + di+1

≥ 1

2I(µ) + 2π2/(b2(d1 + d2))

(
1

di+1
+

1

di+2

)
.

Summing over all odd values of i in the range 1 ≤ i < n yields the theorem. Furthermore, since∑n
i=1 di = mk, by Jensen’s inequality,

∑n
i=2

1
di
≥ (n−1)2∑n

i=2 di
≥ (n−1)2

mk .

2 Proof of Theorem 2

The Fisher information matrix is defined as I(θ) = −Eθ[H(θ)] and given by

I(θ) =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
l=1

Pθ[σ−1j (i), σ−1j (i′) ≥ `] eθi+θi′

[eθσj(`) + · · ·+ eθσj(kj) ]2
.

Since −H(θ) is positive semi-definite, it follows that I(θ) is positive semi-definite. Moreover,
λ1(I(θ)) is zero and the corresponding eigenvector is the normalized all-one vector. Fix any unbi-
ased estimator θ̂ of θ ∈ Θb. Since θ̂ ∈ U , θ̂ − θ is orthogonal to 1. The Cramér-Rao lower bound
then implies that E[‖θ̂ − θ‖2] ≥

∑n
i=2

1
λi(I(θ))

. Taking the supremum over both sides gives

sup
θ

E[‖θ̂ − θ‖2] ≥ sup
θ

n∑
i=2

1

λi(I(θ))
≥

n∑
i=2

1

λi(I(0))
.

If θ equals the all-zero vector, then

P[σ−1j (i), σ−1j (i′) ≥ `] =
(kj − 2)(kj − 3) · · · (kj − `)
kj(kj − 1) · · · (kj − `+ 2)

=
(kj − `+ 1)(kj − `)

kj(kj − 1)
.

It follows from the definition that

I(0) =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj−1∑
l=1

kj − `
kj(kj − 1)(kj − `+ 1)

≤

(
1− 1

kmax

kmax∑
`=1

1

`

)
L.

By Jensen’s inequality,
n∑
i=2

1

λi
≥ (n− 1)2∑n

i=2 λi
=

(n− 1)2

Tr(L)
=

(n− 1)2∑n
i=1 di

=
(n− 1)2

mk
.
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3 Proof of Lemma 1

The idea of the proof is to view∇L(θ∗) as the final value of a discrete time vector-valued martingale
with values in Rn. Consider a user that ranks items 1, . . . , k. The PL model for the ranking can be
generated in a series of k − 1 rounds. In the first round, the top rated item for the user is found.
Suppose it is item I . This contributes the term eI − (p1, p2, . . . , pk, 0, 0, . . . , 0) to ∇L(θ∗), where
pi = P{I = i}. This contribution is a mean zero random vector in Rn and its norm is less than
one. For notational convenience, suppose I = k. In the second round, item k is removed from the
competition, and an item J is to be selected at random from among {1, . . . , k − 1}. If qj denotes
P{J = j} for 1 ≤ j ≤ k − 1, then the contribution of the second round for the user to ∇L(θ∗) is
the random vector eJ − (q1, q2, . . . , qk−1, 0, 0, . . . , 0), which has conditional mean zero (given I)
and norm less than or equal to one. Considering all m users and kj − 1 rounds for user j, we see
that ∇L(θ∗) is the value of a discrete-time martingale at time m(k − 1) such that the martingale
has initial value zero and increments with norm bounded by one. By the vector version of the
Azuma-Hoeffding inequality found in [2, Theorem 1.8] we have

P{‖∇L(θ∗)‖ ≥ δ} ≤ 2e2e−
δ2

2m(k−1) ,

which implies the result.

4 Proof of Lemma 2

We first introduce a key auxiliary result used in the proof.

Claim 1. Given θ ∈ Rr, let A = diag(p)− ppT , where p is the column probability vector with
pi = eθi/(eθ1 + · · · + eθr ) for each i. If |θi| ≤ b, for 1 ≤ i ≤ r, then λ2(A) ≥ 1

re2b
. Equivalently,

e2bA ≥ B where B = 1
rdiag(1)− 1

r211
>.

Proof. Fix θ satisfying the conditions of the lemma. It is easy to see that for each i, pi ≥ 1
re2b

.
The matrix A is positive semidefinite, and its smallest eigenvalue is zero, with the corresponding
eigenvector 1. So λ2(A) = minα α

TAα subject to the constraints αT1 = 0 and ‖α‖2 = 1. For α
satisfying the constraints,

αTAα =
∑
i

α2
i pi −

∑
j

αjpj

2

=
∑
i

αi −∑
j

αjpj

2

pi

= min
c

r∑
i=1

(αi − c)2pi ≥ min
c

r∑
i=1

(αi − c)2
1

re2b

=

r∑
i=1

α2
i

1

re2b
=

1

re2b

The proof of the first part of the lemma is complete. We remark that the bound of the lemma is
nearly tight for the case θ1 = . . . = θr−1 = b and θr = −b, for which λ2(A) = e2br

((r−1)e2b+1)2
.

The final equivalence mentioned in the lemma follows from the facts λ1(e2bA) = λ1(B) = 0 with
common corresponding eigenvector 1, and λi(e2bA) ≥ 1

r = λi(B) for 2 ≤ i ≤ r.

Proof of Lemma 2. Case kj = 2,∀j ∈ [m]: The Hessian matrix simplifies as

H(θ) = −1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
exp(θi)

exp(θi) + exp(θi′)

exp(θi′)

exp(θi) + exp(θi′)
.

Observe that H(θ) is deterministic given Sm1 . Since |θi| ≤ b,∀i ∈ [n],

exp(θi) exp(θi′)

[exp(θi) + exp(θi′)]
2 ≥

e2b

(1 + e2b)2
.
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It follows that −H(θ) ≥ e2b

(1+e2b)2
L and the theorem follows.

Case kj > 2 for some j ∈ [m]: The Hessian matrix H(θ) depends on σm1 and therefore is random
given Sm1 . For a given user j, and ` with 1 ≤ ` ≤ kj − 1, let S(j,`) denote the set of items
contending for the `th position in the ranking of user j after higher ranking items have been selected:
S(j,`) = {i : σ−1j (i) ≥ `}, let 1(j,`) denote the indicator vector for the set S(j,`), and let p(j,`) denote
the corresponding probability column vector for the selection:

p
(j,`)
i = P (σj(`) = i|σj(1), . . . , σj(`− 1)) =

1
(j,`)
i eθi∑
i′∈Sj,` e

θi′

The Hessian can be written as H(θ) =
∑m
j=1

∑kj−1
`=1 H(j,`) where

−H(j,`) =
1

2

∑
i,i′∈S(j,`)

(ei − ei′)(ei − ei′)>p(j,`)i p
(j,`)
i′ = diag(p(j,`))− p(j,`)(p(j,`))>

By Claim 1 applied to the restriction of −H(j,`) to S(j,`) × S(j,`),

− e2bH(j,`) ≥ 1

kj − `+ 1
diag(1(j,`))− 1

(kj − `+ 1)2
1(j,`)(1(j,`))>

=
1

2(kj − `+ 1)2

∑
i,i′∈S(j,`)

(ei − ei′)(ei − ei′)> (3)

Summing over j and ` in (3) and noting that kj − `+ 1 ≤ kj for all j, ` yields

−e2bH(θ) ≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

k2j

kj−1∑
`=1

I{σ−1
j (i),σ−1

j (i′)≥`} := L̃ (4)

Observe that
kj−1∑
`=1

Pθ
[
σ−1j (i), σ−1j (i′) ≥ `

]
= 1 +

∑
i′′∈Sj

I{i′′ 6=i,i′}
eθi′′

eθi + eθi′ + eθi′′
≥ 1 +

kj − 2

2e2b + 1
≥ kj + 1

3e2b
.

Recall that L is the Laplacian of G and L =
∑m
j=1 Lj . It follows that

Eθ[L̃] =
1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

k2j

kj−1∑
`=1

Pθ[σ−1j (i), σ−1j (i′) ≥ `]

≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
kj + 1

3e2bk2j

≥ 1

2

m∑
j=1

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
1

4e2b(kj − 1)
=

1

4e2b
L (5)

Define aii′ = 1
k2j

∑kj−1
`=1

(
I{σ−1

j (i),σ−1
j (i′)≥`} − Pθ[σ−1j (i), σ−1j (i′) ≥ `]

)
. Then

L̃− Eθ[L̃] =
1

2

m∑
j=1

 ∑
i,i′∈Sj

aii′(ei − ei′)(ei − ei′)>
 :=

m∑
j=1

Yj .

Observe that |aii′ | ≤ 1
kj

and therefore − (kj−1)
kj

Lj ≤ Yj ≤ (kj−1)
kj

Lj . Furthermore, ‖Lj‖ =
kj
kj−1

and thus ‖Yj‖ ≤ 1. Moreover, Y 2
j =

∑
i,i′,i′′∈Sj aii′aii′′(ei − ei′)(ei − ei′′)

>. It follows that for
any vector x ∈ Rn,

x>Y 2
j x =

∑
i,i′,i′′∈Sj

aii′aii′′(xi − xi′)(xi − xi′′) ≤
1

k2j

∑
i,i′,i′′∈Sj

|xi − xi′ ||xi − xi′′ |

=
1

k2j

∑
i∈Sj

∑
i′∈Sj

|xi − xi′ |

2

≤ 1

kj

∑
i,i′∈Sj

(xi − xi′)2 = 2x>Ljx,
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where the last inequality follows from the Cauchy-Swartz inequality. Therefore, Y 2
j ≤ 2Lj . It fol-

lows that
∑m
j=1 Eθ[Y 2

j ] ≤ 2L and thus ‖
∑m
j=1 Eθ[Y 2

j ]‖ ≤ 2λn. By the matrix Bernstein inequality
[3], with probability at least 1− n−1,

‖L̃− Eθ[L̃]‖ ≤ 2
√
λn log n+

2

3
log n.

By the assumption that λn ≥ C log n for some sufficiently large constant C, ‖L̃ − Eθ[L̃]‖ ≤
4
√
λn log n. It follows from (4) and (5) that

λ2(−H(θ)) ≥ 1

e2b
λ2(L̃) ≥ 1

e2b

(
1

4e2b
λ2 − 4

√
λn log n

)
.

5 Proof of Corollary 1

Recall that L =
∑m
j=1 Lj . Observe that E[Lj ] =

kj
n−1

(
I − 1

n11
>) . Define Zj = Lj − E[Lj ].

Then Z1, . . . , Zm are independent symmetric random matrices with zero mean. Note that

‖Zj‖ ≤ ‖Lj‖+ ‖E[Lj ]‖ ≤
kj

kj − 1
+

kj
n− 1

≤ 4.

Moreover,

E[Z2
j ] =

k2j
(kj − 1)(n− 1)

(
I − 1

n
11>

)
−

k2j
(n− 1)2

(
I − 1

n
11>

)
.

Therefore, ‖
∑m
j=1 E[Z2

j ]‖ ≤ 2mk
n−1 . By the matrix Bernstein inequality [3], with probability at least

1− n−1,

‖L− E[L]‖ ≤ 2

√
mk log n

n− 1
+

8

3
log n ≤ 4

√
mk log n

n− 1
≤ mk

2(n− 1)
.

where the last two inequalities follow from the assumption that mk ≥ C log n for some sufficiently
large constant C. Since E[L] = mk

n−1
(
I − 1

n11
>), the smallest eigenvalue of E[L] is zero and all

the other eigenvalues equal mk
n−1 . It follows that

|λi −
mk

n− 1
| ≤ ‖L− E[L]‖ ≤ mk

2(n− 1)
, 2 ≤ i ≤ n,

and thus λ2 ≥ mk
2(n−1) and λn ≤ 3mk

2(n−1) . By the assumption that mk ≥ Ce2b log n for some suffi-
ciently large constant C, λ2 − 16e2b

√
λn log n ≥ mk

4n . Then the corollary follow from Theorem 3.

6 Proof of Corollary 2

Without loss of generality, assume kj is even for all j ∈ [m]. After the random IB, there are mk/2
independent pairwise comparisons and let L denote the Laplacian of the comparison graph after the
breaking. Recall that L =

∑m
j=1 Lj . With random IB, we have E[Lj ] =

kj
n−1

(
I − 1

n11
>) . Define

Zj = Lj − E[Lj ]. Then Z1, . . . , Zm are independent symmetric random matrices with zero mean.
Moreover,

‖Zj‖ ≤ ‖Lj‖+ ‖E[Lj ]‖ ≤ 2 +
kj

n− 1
≤ 4,

and

E[Z2
j ] =

2kj
n− 1

(
I − 1

n
11>

)
−

k2j
(n− 1)2

(
I − 1

n
11>

)
.

Therefore, ‖
∑m
j=1 E[Z2

j ]‖ ≤ 2mk
n−1 . Following the same argument for proving Corollary 1, we can

show that λ2(LIB) ≥ mk
2(n−1) and the corollary follows by Theorem 3 with k = 2.
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