
A Technical Proofs Related to Computational Algorithm

A.1 Proof of Theorem 2.2

Proof. We consider the following decomposition

||Y �XB(t)||
2,1 + �||B(t)||

1,p � ||Y �XbB||
2,1 � �||bB||

1,p = ||Y �XB(t)||
2,1 + �||B(t)||

1,p

� ||Y �XeB||µ � �||eB||
1,p + ||Y �XeB||µ + �||eB||

1,p � ||Y �XbB||
2,1 � �||bB||

1,p. (A.1)

By (2.6), we have

||Y �XB(t)||
2,1  mµ

2

+ ||Y �XB(t)||µ and ||Y �XbB||
2,1 � ||Y �XbB||µ. (A.2)

Combining (A.1) and(A.2), we have

||Y �XB(t)||
2,1 + �||B(t)||

1,p � ||Y �XbB||
2,1 � �||bB||

1,p

 mµ
2

+ ||Y �XB(t)||µ + �||B(t)||
1,p � ||Y �XeB||µ � �||eB||

1,p

+ ||Y �XeB||µ + �||eB||
1,p � ||Y �XbB||µ � �||bB||

1,p. (A.3)

Since eB is the minimizer of (2.8), we have

||Y �XeB||µ + �||eB||
1,p  ||Y �XbB||µ + �||bB||

1,p. (A.4)

By Theorem 5.1 in [4], we have

||Y �XB(t)||µ + �||B(t)||
1,p � ||Y �XeB||µ � �||eB||

1,p  2�||B(0) � eB||2
F

µ(t+ 1)

2

. (A.5)

Note that (A.5) implies that given a pre-specified accuracy ✏, after

t = ||B(0) � eB||
F

p

2�/
p
µ✏� 1 = O(1/

p
µ✏) (A.6)

iterations, we have ||Y�XB(t)||µ+�||B(t)||
1,p� ||Y�XeB||µ��||eB||

1,p  ✏. By combining (A.3), (A.4)
and (A.5), we have

||Y �XB(t)||
2,1 + �||B(t)||

1,p � ||Y �XbB||
2,1 � �||bB||

1,p  mµ
2

+

2�||B(0) � eB||2
F

µ(t+ 1)

2

. (A.7)

Since µ = ✏/2m, to make L.H.S. of (A.7) no smaller than ✏, we need

2m�||B(0) � eB||2
F

✏(t+ 1)

2

 ✏
2

.

By solving the inequality above, we obtain

t � 2

p
m�||B(0) � eB||

F

✏
� 1,

which completes the proof.

A.2 ADMM Solver for CMR

We give a brief derivation of the alternating direction method of multipliers (ADMM) for solving CMR. We
first reparametrize (2.1) as follows,

(

bB, bR) = argmin

B, R
||R||

2,1 + �||B||
1,p subject to: Y �XB = R.

Then for t = 1, 2, ..., ADMM adopts the iterative scheme

B(t)
=argmin

B

�
⇢
||B||

1,p +

1

2

||U(t�1)/⇢+Y �R(t�1) �XB||2
F

, (A.8)

R(t)
=argmin

R

1

⇢
||R||

2,1 +
1

2

||U(t�1)/⇢+Y �R�XB(t)||2
F

, (A.9)

U(t)
= U(t�1)

+ ⇢
⇣

Y �R(t) �XB(t)
⌘

. (A.10)
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where ⇢ is a penalty parameter and U is the Lagrange multiplier matrix. The algorithm stops when

max

n

||B(t) �B(t�1)||
F

, ||R(t) �R(t�1)||
F

, ||U(t) �U(t�1)||
F

o

 ",

where " is the stopping precision. By adopting the group soft thresholding procedure, (A.9) has a closed form
solution as follows,

R(t)
⇤k =

eR(t)
⇤k ·max{1� 1/(⇢||eR⇤k||2), 0},

where eR = U(t�1)/⇢ +Y �XB(t). There are multiple choices to solve (A.8). Let eY = U(t�1)/⇢ +Y �
R(t�1), then (A.8) can be rewritten as

B(t)
=argmin

B

1

2

|| eY �XB||2
F

+

�
⇢
||B||

1,p. (A.11)

(A.11) is equivalent to (1.1) in the sense of optimization, therefore it can also be solved by existing OMR
solvers. While a more efficient alternative is to approximately solve (A.8) using a linearization step at B =

B(t�1) as follows,

B(t)
=argmin

B

�
⇢
||B||

1,p +

1

2⌘
||B� eB||2

F

, (A.12)

where eB = Bt�1 � ⌘(XTXBt�1 � eYTX) and ⌘ is a positive constant such that
1

2

|| eY �XB(t)||2
F

1

2

|| eY �XB(t�1)||2
F

+ hXTXBt�1 � eYTX,B(t) �B(t�1)i+ 1

2⌘
||B(t) �B(t�1)||2

F

.

A conservative choice is ⌘ = 1/||X||2
2

, and we can improve the empirical performance by the backtracking
line search as is shown in Section 3. When p = 2, we can obtain the closed form solution to (A.12) by the
group soft thresholding procedure

B(t)
j⇤ =

eBj⇤ ·max{1� ⌘�/(⇢||eBj⇤||2), 0}.
More details about other choices of p can be found in [11, 12].

B Technical Proofs Related to Statistical Properties

Note that the following two relations are frequently used in our analysis,

Y �XB0

= XB0

+ Z�XB0

= Z and Y �XbB = XB0

+ Z�XbB = Z�X b�.

We then present the proof of the main theorem.

B.1 Proof of Lemma 3.1

Proof. By triangle inequality, we have

||bB||
1,p = ||B0

+

b�||
1,p = ||B0

S +B0

N +

b�S +

b�N ||
1,p

� ||B0

S +

b�N ||
1,p � ||B0

N +

b�S ||1,p � ||B0

S ||1,p + || b�N ||
1,p � ||B0

N ||
1,p � || b�S ||1,p. (B.1)

Since B0 2 S , we have ||B0

N ||
1,p = 0, and ||B0||

1,p = ||B0

S ||1,p + ||B0

N ||
1,p = ||B0

S ||1,p. By rearranging
(B.1), we obtain

||B0||
1,p � ||B0

+

b�||
1,p  || b�S ||1,p � || b�N ||

1,p. (B.2)

Since bB is the minimizer to (2.1), by (B.2), we further have

||X b�� Z||
2,1 � ||Z||

2,1  �(||B0||
1,p � ||B0

+

b�)||
1,p  �(|| b�S ||1,p � || b�N ||

1,p). (B.3)
Due to the convexity of || · ||

2,1, we know

||X b�� Z||
2,1 � ||Z||

2,1 � hG0, b�i � �|hG0, b�i|. (B.4)
By the Cauchy-Schwarz inequality, we obtain

|hG0, b�i|  ||G0||1,q|| b�||
1,p  �

c
(|| b�S ||1,p + || b�N ||

1,p), (B.5)

where the last inequality comes from the assumption � � c||G0||1,q . By combining (B.3), (B.4), and (B.5),
we obtain

��
c
(|| b�S ||1,p + || b�N ||

1,p)  �(|| b�S ||1,p � || b�N ||
1,p). (B.6)

By rearranging (B.6), we obtain || b�N ||
1,p  (c+ 1)|| b�S ||1,p/(c� 1), which completes proof.
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B.2 Proof of Theorem 3.2

Proof. We first assume � � c||G0||1,q . Then we have

||X b�� Z||
2,1 � ||Z||

2,1 =

m
X

k=1

(||X b�⇤k � Z⇤k||2 � ||Z⇤k||2)

=

m
X

k=1

||X b�⇤k||2
2

� 2(X b�⇤k)
TZ⇤k

||X b�⇤k � Z⇤k||2 + ||Z⇤k||2
�

m
X

k=1

||X b�⇤k||2
2

||X b�⇤k||2 + 2||Z⇤k||2
� 2

m
X

k=1

| b�T
⇤kX

TZ⇤k|
||Z⇤k||2 . (B.7)

Since G0

⇤k = XTZ⇤k/||Z⇤k||2, we have

m
X

k=1

| b�T
⇤kX

TZ⇤k|
||Z⇤k||2 =

m
X

k=1

| b�T
⇤kG

0

⇤k| 
m
X

k=1

d
X

j=1

| b�jkG
0

jk|  ||G0||1,q|| b�||
1,p, (B.8)

where the last inequality follows from the Cauchy-Schwarz inequality. Recall that in the proof of Lemma 3.1,
we already have (B.3) as follows,

||X b�� Z||
2,1 � ||Z||

2,1  �(|| b�S ||1,p � || b�N ||
1,p). (B.9)

Therefore by combining (B.9), (B.7), and (B.8), we obtain

m
X

k=1

||X b�⇤k||2
2

||X b�⇤k||2 + 2||Z⇤k||2
 �

�|| b�S ||1,p � || b�N ||
1,p

�

+ 2||G0||1,q|| b�||
1,p

 � (1 + 2/c) || b�S ||1,p + � (2/c� 1) || b�N ||
1,p  2�

c� 1

|| b�S ||1,p, (B.10)

where the second inequality comes from the assumption � � c||G0||1,q , and the last inequality comes from
(3.3) in Lemma 3.1. Meanwhile, by triangle inequality, we also have

m
X

k=1

||X b�⇤k||2
2

||X b�⇤k||2 + 2||Z⇤k||2
�

Pm
k=1

||X b�⇤k||2
2

||X b�||
2,1 + 2||Z||

2,1
� ||X b�||2

F

||X b�||
F

+ 2||Z||
2,1

, (B.11)

where the last inequality comes from the fact ||X b�||
2,1  ||X b�||

F

. Combining (B.10) and (B.11), we obtain

||X b�||2
F

||X b�||
F

+ 2||Z||
2,1

 2�
c� 1

|| b�S ||1,p  2�
p
s|| b�||

F

c� 1

, (B.12)

where the last inequality comes from the fact that S contains only s rows with nonzero entries. By Assumption
3.1, we can rewrite (B.12) as

||X b�||2
F

 2�
p
s

(c� 1)

p
n

||X b�||2
F

+

4�
p
sp

n(c� 1)

||Z||
2,1||X b�||

F

.

Given 2�
p
s  (c� 1)

p
n/2, we have

||X b�||
F

 8�
p
sp

n(c� 1)

||Z||
2,1  8�

p
s�

maxp
n(c� 1)

||W||
2,1. (B.13)

By Assumption 3.1 again, we obtain

|| b�||
F

 8�
p
s�

max

n2

(c� 1)

||W||
2,1. (B.14)

Now we introduce the following lemmas to deliver the concrete rates of convergence in parameter estimation.

Lemma B.1. Suppose that we have all entries of a random vector v = (v
1

, ..., vn)
T 2 Rn

independently

generated from the standard Gaussian distribution with mean 0 and variance 1. For any c
0

2 (0, 1), we have

P
⇣

�

�

�

||v||2
2

� n
�

�

�

� c
0

n
⌘

 2 exp

✓

�nc2
0

8

◆

.

The proof of Lemma B.1 is provided in [9], therefore omitted.
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Lemma B.2. Suppose that we have all entries of W independently generated from the standard Gaussian

distribution with mean 0 and variance 1, then we have

P
✓

max

1jd

1p
n
||XT

⇤jW||q  2

⇣

m1�1/p
+

p

log d
⌘

◆

� 1� 2

d2
,

where 1/p+ 1/q = 1.

The proof of Lemma B.2 is provided in Appendix B.3. Now we proceed to derive the refined error bound for
the joint sparsity setting.

Since we have all entries of W independently generated from some standard Gaussian distribution with mean
0 and variance 1, then by Lemma B.1, for any c

0

2 (0, 1), we have

P
⇣

p

(1� c
0

)n  ||W⇤k||2 
p

(1 + c
0

)n
⌘

� 1� 2 exp

✓

�nc2
0

8

◆

.

By taking the union bound over all k = 1, ...,m, we have

P
⇣

p

(1� c
0

)n  min

1km
||W⇤k||2  max

1km
||W⇤k||2 

p

(1 + c
0

)n
⌘

� 1� 2m exp

✓

�nc2
0

8

◆

. (B.15)

Now conditioning on the event
p

(1� c
0

)n  min

1km ||W⇤k||2, we have

R⇤
(G0

) = max

1jd

 

n
X

k=1

(WT
⇤kX⇤j)

q

||W⇤k||2

!

1/q


max

1jd
||WTX⇤j ||q

min

1km
||W⇤k||2  ||WTX||1,q

p

(1� c
0

)n
. (B.16)

By Lemma B.2, we have

P
 

||XTW||1,q
p

(1� c
0

)n
 2m1�1/p

p

(1� c
0

)

+

2

p
log d

p

(1� c
0

)

!

� 1� 2

d2
. (B.17)

Since we requires

2�
p
s  �(c� 1)�(n) for some � < 1, (B.18)

thus if we take

� =

2c(m1�1/p
+

p
log d)p

1� c
0

,

we need n to be large enough

p
n � 4c

p
s(m1�1/p

+

p
log d)

�(c� 1)

p
1� c

0


,

such that (B.18) can be secured. Then by combining (B.15), (B.16), (B.17), and (B.14), we have

P
 

1p
m

||bB�B0||
F

 8c
p

(1 + c
0

)�
max

2

(c� 1)(1� �)
p

(1� c
0

)

"

r

sm1�2/p

n
+

r

s log d
nm

#!

� 1� 2

d2
� 2m exp

✓

�nc2
0

8

◆

.

This completes the proof.

B.3 Proof of Lemma B.2

Proof. We adopt the similar proof strategy in [17], and begin our proof by establishing the tail bound of
||WTX⇤j ||q/pn.

Deviation above the mean: Given any pair of W, fW 2 Rn⇥m, we have
�

�

�

�

1p
n
||WTX⇤j ||q � 1p

n
||fWTX⇤j ||q

�

�

�

�

 1p
n
||(W � fW)

TX⇤j ||q

=

1p
n

max

||✓||p1

h✓, (W � fW)

TX⇤ji. (B.19)
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By the Cauchy-Schwartz inequality, we have

1p
n

max

||✓||p1

h✓XT
⇤j ,W � fWi  ||W � fW||

Fp
n

max

||✓||p1

||✓XT
⇤j ||F. (B.20)

Since ✓XT
⇤j is a rank one matrix, its singular value decomposition is

✓XT
⇤j = ||✓||

2

||X⇤j || · ✓
||✓||

2

· XT
⇤j

||X⇤j ||2 .

Consequently, we have

1

n
max

||✓||p1

||✓XT
⇤j ||F =

||X⇤j ||2
n

max

||✓||p1

||✓||
2

(i)

 m1/2�1/p||X⇤j ||2p
n

(ii)

 1. (B.21)

where (i) comes from ||✓||
2

 m1/2�1/p||✓||p, and (ii) comes from the column normalization condition.
Combining (B.19), (B.20), and (B.21), we obtain

�

�

�

�

1p
n
||WTX⇤j ||q � 1p

n
||fWTX⇤j ||q

�

�

�

�

 ||W � fW||
F

. (B.22)

which implies that ||WTX⇤j ||q/pn is a Lipschitz continuous function of W with a Lipschitz constant as 1.
By the Gaussian concentration of measure for Lipschitz functions [10], we have

P
✓

1p
n
||WTX⇤j ||q � E 1p

n
||WTX⇤j ||q + ⇠

◆

 2 exp

✓

�⇠2

2

◆

. (B.23)

Upper bound of the mean: Given any � 2 Rm, we define a zero mean Gaussian random variable J� =

�TWTX⇤j/
p
n, and note that we have 1p

n
||WTX⇤j ||q = max||�||p=1

J� . Thus given any two vectors
||�||p  1 and ||�0||p  1, we have

E(J� � J�0
)

2

=

1

n
||X⇤j ||2

2

||� � �0||2
2

 ||� � �0||2
2

,

where the last inequality comes from the column normalization condition and m1�1/p � 1.

Then we define another Gaussian random variable K� = �T!, where ! = (!
1

, ...,!m)

T ⇠ N(0, Im) is
standard Gaussian. By construction, for any pair �,�0 2 Rm, we have

E[(K� �K�0
)

2

] = k� � �0k2
2

� E(J� � J�0
)

2.

Thus by the Sudakov-Fernique comparison principle [10], we have

E 1p
n
||WTX⇤j ||q = E max

||�||p=1

J�  E max

||�||p=1

K�.

By definition of K� , we have

E max

||�||p=1

K� = E||!||q  m1/q
(E|!

1

|q)1/q, (B.24)

where the last inequality comes from Jensen’s inequality and the fact that |!
1

|1/q is a concave function of !
1

for q 2 [1, 2]. Eventually, by Hölder inequality, we obtain

(E|!
1

|q)1/q 
q

E!2

1

= 1. (B.25)

Combing (B.24) and (B.25), we obtain

E max

||�||p=1

K�  m1�1/p  2m1�1/p. (B.26)

Then combing (B.23) and (B.26), we have

P
✓

1p
n
||WTX⇤j ||q � 2m1�1/p

+ ⇠

◆

 2 exp

✓

�⇠2

2

◆

.

Taking the union bound over j = 1, ..., d and let ⇠ = 2

p
log d, we have

P
✓

1p
n
||XTW||1,q � 2m1�1/p

+ 2

p

log d

◆

 2

d
.

This finishes the proof.
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