A Technical Proofs Related to Computational Algorithm

A.1 Proof of Theorem 2.2
Proof. We consider the following decomposition
1Y = XB@ |2, + AlIB[[1p — [[Y = XB||21 = A[[B|l1,, = |[Y = XB"|
— 1Y = XBl|, = Al[Bll1p + [[Y = XB||, + A
By (2.6), we have

21+ ABY |1,
Bll1p — [Y = XB|l21 — Al[Bl[1,- (A1)

1Y = XBW]5, < % +[[Y = XBY[[, and [[Y = XBll21 > [[Y — XB]l. (A2)
Combining (A.1) and(A.2), we have
1Y = XB®J2,1 + AB 1, = [|Y — XBl|2.1 = AlIBJ1.,
< % +[[Y = XBY||, + AIBY||1,, — [[Y = XBI|,, — A[[Bl[1,5

Y = XB|| + AlBll1p = [[Y = XBl[u = Al[Bl[1,,- (A3)

Since B is the minimizer of (2.8), we have
1Y = XBJ[. + Al[Bll1p < [Y = XBJ[ + Al|B||1,p- (A4)
By Theorem 5.1 in [4], we have

~ ~ 2v/|B® — B2
1Y — XBO[|, + B[, — [[Y — XBl|,, — A|B|J1, < 2B~ ~Blli

=T e A

Note that (A.5) implies that given a pre-specified accuracy e, after

t=|[B© - Bllry/27//iie — 1 = O(1/ /fie) (A6)

iterations, we have || Y — XB®||, + \|| B"|
and (A.5), we have

1p—|[Y =XB]|. — A||B||1,» < €. By combining (A.3), (A.4)

5 5 29|[BY — B3
Y - XB® ABD | — |IY = XBll21 — A||B|1p, < 2 4 22— Pl A7
I [[2,1 + AlIB™ |1 — || ll20 = Al[Bll1p < == + PCESIE (A7)
Since i = €/2m, to make L.H.S. of (A.7) no smaller than €, we need
2my||BY ~ BI _ ¢
e(t +1)2 -2
By solving the inequality above, we obtain
2 B® - B
> 2/ e
€
which completes the proof. O

A.2 ADMM Solver for CMR

We give a brief derivation of the alternating direction method of multipliers (ADMM) for solving CMR. We
first reparametrize (2.1) as follows,

(B,R) =argmin ||R||21 + A||B||1,, subjectto: Y — XB = R.
B, R

Then for ¢t = 1,2, ..., ADMM adopts the iterative scheme

A I _
B :argmm;HBHLp + 5\|U(t Y/p+Y -RUTY - XB;, (A.8)
B
1 I
R =argmin _|[Rll21 + 3|[U“/p+Y - R - XBY|[, (A9)
R
U =u"V4p(Y-RY -xBY). (A.10)
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where p is a penalty parameter and U is the Lagrange multiplier matrix. The algorithm stops when
max {|[BY = B V|le, IR — RV|le, [UY - U} <,

where ¢ is the stopping precision. By adopting the group soft thresholding procedure, (A.9) has a closed form
solution as follows,

R = R{") - max{1 - 1/(p||Rux|l2), 0},

where R = U(tfl)/p +Y — XB®. There are multiple choices to solve (A.8). Let Y = U(tfl)/p +Y —
R* D, then (A.8) can be rewritten as

B — argmin L|¥ — XB|12 + 2|B|
B 2 14

L. (A.11)

(A.11) is equivalent to (1.1) in the sense of optimization, therefore it can also be solved by existing OMR
solvers. While a more efficient alternative is to approximately solve (A.8) using a linearization step at B =
Bt as follows,

BW :argminéHB||1,p+iHB*ﬁH%, (A.12)
B P 27

where B = B! — n(XTXB'! — Y7X) and  is a positive constant such that

SI¥ = XBOJE < |I¥ ~ XBOV|2 4 (XTXB' - ¥TX, B - BOY) 4 |BO - B,
n

A conservative choice is 7 = 1/||X]|3, and we can improve the empirical performance by the backtracking

line search as is shown in Section 3. When p = 2, we can obtain the closed form solution to (A.12) by the
group soft thresholding procedure

B = B,. - max{1 — n)/(pl[By.||2), 0}.

More details about other choices of p can be found in [11, 12].

B Technical Proofs Related to Statistical Properties

Note that the following two relations are frequently used in our analysis,
Y-XB =XB’+Z-XB’=Z and Y- XB=XB’+Z-XB=2%-XA.

We then present the proof of the main theorem.

B.1 Proof of Lemma 3.1

Proof. By triangle inequality, we have
1Bl = [IB® + Allp = [|BS + B + As + Ax|l1p
> [|Bs + Axllip — IIBY + Asllip > [Bsllip + [1AxI1p = IBY|l1p = |As]l1p. B.D

Since B® € S, we have ||BY/|[1,, = 0, and ||B°[[1,, = ||Bg][1,» + [|BR |1, = [[BS||1,p- By rearranging
(B.1), we obtain

1Bl = IB® + Al < [[As|lip = [|Ax]|1p- (B.2)
Since B is the minimizer to (2.1), by (B.2), we further have
IXA = Z[21 = [|Z][2a < A([B°[l1p = IB” + A)|1p < A(||As]l15 — [|AN]]1.5)- (B.3)

Due to the convexity of || - |

2,1, we know
XA = Z[[2.1 — ||Z]|20 > (G°, A) > —|(G°, A)]. (B.4)

By the Cauchy-Schwarz inequality, we obtain

1A

-~ A~ ~
(G, A) <IG"|os,ql|Al1p < UlAs]lrp + llAxTp), (B.5)

where the last inequality comes from the assumption A > ¢||G°||c,. By combining (B.3), (B.4), and (B.5),
we obtain

A~ ~ ~ ~
—2As]lip + 1AxT1p) < A([As][1p — [|AN]]1Lp)- (B.6)

By rearranging (B.6), we obtain HAN| lip < (¢4 1)||As]||1,p/(c — 1), which completes proof. O
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B.2 Proof of Theorem 3.2

Proof. We first assume A > ¢||G°||co,q. Then we have

| = (IXAuk = Zuk|l2 = ||Zuk][2)
k=1
i A* 2 - A* T s A* z X *
_ N XS — 2(XAw) Za XAl _22 ALX"Z o e
= XAk = Zg|]2 + \|Z*k|\2 XAl +2|Zeklle = [1Zekll2
Since G2}, = X7 Z..1/||Zx||2, we have
m m d
AT XT7, _ .
Z AKX Lt S RLG% <SS (ARG < 1G lallBlly B

[|1Z k|2

k=1 k=1j=1

where the last inequality follows from the Cauchy-Schwarz inequality. Recall that in the proof of Lemma 3.1,
we already have (B.3) as follows,

IXA = Z|l21 = [|Zl]21 < M(/|As]lp = [|Ax]]1p). (B.9)
Therefore by combining (B.9), (B.7), and (B.8), we obtain
T XA
> b <A(1Aslp = 1AN11,p) + 21G°scgl Al

=X Akl2 + 2/|Zek]l2

<A(1+2/c) ||As|

~ 2 ~
Lo AR/ = D[ Bxllp < 5 1As]l1p (B.10

where the second inequality comes from the assumption A > ¢||G°||co,q4, and the last inequality comes from
(3.3) in Lemma 3.1. Meanwhile, by triangle inequality, we also have

m

S XA S XA [XAR
2 IX A2 +2/|Zuk |2 o (XAl 421|220

(B.11)

where the last inequality comes from the fact || X Al|2,00 < [[XA||r. Combining (B.10) and (B.11), we obtain

XA > sl _ 2VEAll
XAl + 22z - STt

(B.12)

where the last inequality comes from the fact that S contains only s rows with nonzero entries. By Assumption
3.1, we can rewrite (B.12) as

XA < 2 XA + =V 2] [XA

Given 2\y/s < (¢ — 1)/nk/2, we have

~ 8)\f SA\famdx

By Assumption 3.1 again, we obtain

W]|2,00- (B.13)

8)\ Omax
|A|lr < %HWHL& (B.14)

Now we introduce the following lemmas to deliver the concrete rates of convergence in parameter estimation.

Lemma B.1. Suppose that we have all entries of a random vector v = (v1, ..., vn)T € R" independently
generated from the standard Gaussian distribution with mean 0 and variance 1. For any co € (0, 1), we have

2
P (‘H’UH% — n‘ > con) < 2exp (—%) .

The proof of Lemma B.1 is provided in [9], therefore omitted.
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Lemma B.2. Suppose that we have all entries of W  independently generated from the standard Gaussian
distribution with mean 0 and variance 1, then we have

1 T 1-1/p ) 2
_ . < > -
P<m8§(d\/ﬁ”X”WHq Q(m + /logd 1 2

1<

where 1/p+1/q = 1.

The proof of Lemma B.2 is provided in Appendix B.3. Now we proceed to derive the refined error bound for
the joint sparsity setting.

Since we have all entries of W independently generated from some standard Gaussian distribution with mean
0 and variance 1, then by Lemma B.1, for any ¢ € (0, 1), we have

2
P (V= ol < [[Weille < /(T ein) = 1 2exp (—%) .
By taking the union bound over all £ = 1, ..., m, we have

11»( 1—con < min ||[Wallz < max |[Wall2 < (l—l—co)n)
1<k<m 1<k<m

2
> 1— 2mexp (—%) . (B.19)

Now conditioning on the event 1/ (1 — co)n < mini<g<m ||Wak||2, we have

N 1/q max |[W'X,;
( (W*TkX*j)q> 1§j§d” il < WX loo (B.16)

R*(G°) = max

1<5<d 2 [[Wok||2 min [[W.illz = /(T —co)n

k=1 1<k<m

By Lemma B.2, we have

[ XTW|looq _ 2m'~1/P 2y/Togd 2
P < + >1—- = B.17
(wl—co)n SV Vi—w) 4D

dz’
Since we requires
2M\/5s < 6(c — 1)¢p(n)x for some § < 1, (B.18)

thus if we take

N 2¢(m* /P 4 /log d)
- \/1 — Co ’

we need n to be large enough
4 =1 4 /logd
> c/s(m + Iog d) 7
d(c—1)V1—cok
such that (B.18) can be secured. Then by combining (B.15), (B.16), (B.17), and (B.14), we have

3 1 max 172/
P<1|BBO|F< 8cy/(1+4 ¢co)o [\/sm P+\/slogd:|>

Vvm T K2 (c—1)(1—8)\/(1—co) n nm

9 2
21—§—2mexp (—%).

This completes the proof. O

B.3 Proof of Lemma B.2

Proo]Tc. We adopt the similar proof strategy in [17], and begin our proof by establishing the tail bound of
W X.jlla/v/n

Deviation above the mean: Given any pair of W, W € R™*™, we have
1

NG

1
= —— Imax
NG

1 1< ~
ﬁlleX*jllq - ﬁlleX*jllq < = (W = W)"Xl

6,(W-W)TX.,). (B.19)
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By the Cauchy-Schwartz inequality, we have
W - Wie

1 T %7 T
— 0X.;, W-W) < 0X.l|r- B.20
i 1% 0% v Rt iR B2
Since GX*TJ- is a rank one matrix, its singular value decomposition is
0 X1
0X75 = [1611211Xcs | - 1 e
! el (Xl
Consequently, we have
1 X () m/2=1/P||X |5 (D)
L (10X e = Zetll gy, € T T UXeslle (2 (B21)
n [16]|p<1 nollellp<1 Vvn

where (i) comes from ||@]|2 < m!'/27'/?||@]|,, and (i) comes from the column normalization condition.
Combining (B.19), (B.20), and (B.21), we obtain

1
NG

which implies that |[WTX,;||,/+/7 is a Lipschitz continuous function of W' with a Lipschitz constant as 1.
By the Gaussian concentration of measure for Lipschitz functions [10], we have

1 — —
| T Xl = = T Xes o] <11 = W ®.22)

1 1 &2
P (T IW Xolly 2 B W Kol + €) <20 (-5 ). (B.23)

Upper bound of the mean: Given any 3 € R™, we define a zero mean Gaussian random variable Jg =
BTWTX.;/\/n, and note that we have ﬁHWTX*qu = max||g||,—1 Jg. Thus given any two vectors
18]l < 1and [|3']|, < 1, we have

21 2 2 2
E(Jp = Ja)” = —I1Xusl2I8 = B2 < (18 = B2,
where the last inequality comes from the column normalization condition and mtTr > 1.

Then we define another Gaussian random variable Kg = 37w, where w = (w1, ...,wm)? ~ N(0,1,,) is
standard Gaussian. By construction, for any pair 3, 3 € R™, we have

E[(Kp — Kg)'] = 1B = B'l15 > E(Jp — Ja)*.

Thus by the Sudakov-Fernique comparison principle [10], we have

ELHWTX*]-Hq:EHmaX Jg <E max Kg.
n

Vn Bllp=1 " T IBllp=1

By definition of K3, we have

E max Kp=Elwll, <m"(Elw?)/ (B.24)
x

where the last inequality comes from Jensen’s inequality and the fact that \w1|1/‘1 is a concave function of w;
for ¢ € [1, 2]. Eventually, by Holder inequality, we obtain

(Elw:1|)Y? < /Ew? = 1. (B.25)
Combing (B.24) and (B.25), we obtain
E max Kg<m'™'? <om!'7'/7, (B.26)
l1Bllp=1

Then combing (B.23) and (B.26), we have

1 _ &2
P (WXl 2 2m ) < 2esp (-5 ).
Taking the union bound over j = 1, ..., d and let £ = 2+/log d, we have

P (%IIXTWHoo,q > 2m!' P 4 2\/logd) <
n

This finishes the proof. O

Ul N
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