
Augur: Data-Parallel Probabilistic Modeling -
Supplementary Material

Jean-Baptiste Tristan1, Daniel Huang2, Joseph Tassarotti3,
Adam Pocock1, Stephen J. Green1, Guy L. Steele, Jr1

1Oracle Labs {jean.baptiste.tristan, adam.pocock,
stephen.x.green, guy.steele}@oracle.com
2Harvard University dehuang@fas.harvard.edu

3Carnegie Mellon University jtassaro@cs.cmu.edu

1 Using an Augur Model

Figure 1 gives a Scala code sample which shows how to perform inference on an Augur model.
First we allocate the parameter arrays which will contain the inferred values. Then we construct the
support which encapsulates these parameters. Finally we call LDA.model.map to generate the
MAP estimate of the parameters given the observed words. The inference algorithm is chosen at
runtime, and supplied as a parameter to the LDA.model.map call. In this case we chose to use
Gibbs sampling, and thus supplied Infer.GIBBS.

At test time we construct a new signature containing the inferred parameters and the test documents.
Then the LDA.model.map method is called again, with the inferred phi values set as observed.
To test the model, a new signature is constructed containing the test documents, and the previously
inferred phi values. Then LDA.model.map is called again, but with both the phis and the words
observed (by supplying Set("phi")). The inferred thetas for the test documents are stored in
sTest.theta.

1 val phi = new Array[Double](k * v)
2 val thetaTrain = new Array[Double](numDocTrain * k)
3 val zTrain = new Array(numTokensTrain)
4 val sTrain = new LDA.sig(phi, thetaTrain, zTrain, wTrain)
5 LDA.model.map(Set(), (k, v, numDocTrain, docsLengthTrain), sTrain, numSamples, Infer.

GIBBS)
6
7 val thetaTest = new Array[Double](numDocTest * k)
8 val zTest = new Array(numTokensTest)
9 val sTest = new LDA.sig(phi, thetaTest, zTest, wTest)

10 LDA.model.map(Set("phi"), (k, v, numDocTest, docsLengthTest), sTest, numSamples,
Infer.GIBBS)

Figure 1: Example use of the LDA model from the main paper. Function LDA.model.map returns
a maximum a posteriori estimation. It takes as arguments the set of variables to observe (on top of the
ones declared as observed in the model specification), the hyperparameters, the initial parameters,
the output parameters, the number of iterations and the inference to use. The parameters are stored
in LDA.sig.

2 Examples of Model Specification

We present a few examples of model specifications in Augur, covering three important topics in
machine learning: regression (2.1), clustering (2.3, 2.4, 2.6), and classification (2.2, 2.5). Our goal
is to show how several popular models can be programmed in Augur. For each of these examples,

1

1 object UnivariatePolynomialRegression {
2 class sig(var w: Array[Double], var b: Double, var x: Array[Double], var y: Array[

Double])
3 val model = bayes {
4 (N: Int, M: Int) => {
5 val w = Gaussian(0,1).sample(M)
6 val x = Uniform(0,2).sample(N)
7 val b = Gaussian(0,1).sample
8 val y = for(i <- 1 to N) {
9 val monomials = for (j <- 1 to M) yield { w(j) * pow(x(i),j) }

10 Gaussian(monomials.sum + b, 1).sample()
11 }
12 observe(x, y)
13 }
14 }
15 }

Figure 2: Specification of a univariate polynomial regression

we first describe the support of the model, and then sketch the generative process, relating the most
complex parts of the program to their usual mathematical notation.

2.1 Univariate polynomial regression

Our first example model is for univariate polynomial regression (Figure 2). The model’s support is
composed of the array w for the weights of each mononomial, x for the domain data points and y for
their image. The parameters of the model are: N, the dataset size and M, the order of the polynomial.
For simplicity, this example assumes that the domain of x ranges from 0 to 2.

The generative process is: We first independently draw each of the M weights, wi ∼ N(0, 1), then
draw (x, y) as follows:

xj ∼ Uniform(0, 2) (1)

yj ∼ N(

M∑
i

wix
i
j , 1). (2)

For simplicity, the model is presented with many “hardwired” parameters, but it is possible to pa-
rameterize the model to control the noise level, or the domain of x.

2.2 Multivariate logistic regression

The second model is a multivariate logistic regression model (Figure 3). This is similar in form to
the multivariate linear regression presented in the main paper, except it passes the weighted sum of
the features through a sigmoid function, and then drawing the label from a Bernoulli distribution
parameterised by the output of the sigmoid function.

2.3 Categorical mixture

The third example is a categorical mixture model (Figure 4). The model’s support is composed of
an array z for the cluster selection, x for the data points that we draw, theta for the priors of the
categorical that represents the data, and phi for the prior of the indicator variable. The parameters
of the model are: N data size, K number of clusters, and V for the vocabulary size.

The generative process is: For each of the N data points we want to draw, we select a cluster z
according to their distribution phi and then draw from the categorical with distribution given by
theta(z).

2.4 Gaussian Mixture Model

The fourth example is a univariate Gaussian mixture model (Figure 5). The model’s support is
composed of an array z for the cluster selection, x for the data points that we draw, mu for the priors

2

1 object LogisticRegression {
2 class sig(var w: Array[Double], var b: Double, var x: Array[Double], var s: Array[

Double], var y: Array[Int])
3 val model = bayes {
4 (K: Int, N: Int, l: Double, u: Double) => {
5 val w = Gaussian(0, 10).sample(K)
6 val b = Gaussian(0, 10).sample()
7 val x = for(i <- 1 to N) yield Uniform(l, u).sample(K)
8 val y = for (i <- 1 to N) {
9 val phi = for(j <- 1 to K) yield w(j) * x(i)(j)

10 val s = sigmoid(phi.sum + bias)
11 Bernoulli(s).sample()
12 }
13 observe(x, y)
14 }
15 }
16 }

Figure 3: Specification of a multivariate logisitic regression

1 object CategoricalMixture {
2 class sig(var z: Array[Int], var x: Array[Int], var theta: Array[Double], var phi:

Array[Double])
3 val model = bayes {
4 (N: Int, K: Int, V: Int) => {
5 val alpha = vector(V,0.5)
6 val beta = vector(K,0.5)
7 val theta = Dirichlet(V,alpha).sample(K)
8 val phi = Dirichlet(K,beta).sample()
9 val x = for(i <- 1 to N) {

10 val z = Categorical(K, phi).sample()
11 Categorical(N,theta(z)).sample()
12 }
13 observe(x)
14 }
15 }
16 }

Figure 4: Specification of a categorical mixture model

3

1 object GaussianMixture {
2 class sig(var z: Array[Int], var x: Array[Double], var mu: Array[Double], var sigma

: Array[Double], var phi: Array[Double])
3 val model = bayes {
4 (N: Int, K: Int, V: Int) => {
5 val alpha = vector(V,0.1)
6 val phi = Dirichlet(V,alpha).sample()
7 val mu = Gaussian(0,10).sample(K)
8 val sigma = InverseGamma(1,1).sample(K)
9 val x = for(i <- 1 to N) {

10 val z = Categorical(K, phi).sample()
11 Gaussian(mu(z), sigma(z)).sample()
12 }
13 observe(x)
14 }
15 }
16 }

Figure 5: Specification of a Gaussian mixture model

1 object NaiveBayesClassifier {
2 class sig(var c: Array[Int], var f: Array[Int], var pC: Double, var pFgivenC: Array

[Double])
3 val model = bayes {
4 (N: Int, K: Int) => {
5 val pC = Beta(0.5,0.5).sample()
6 val c = Bernoulli(pC).sample(N)
7 val pFgivenC = Beta(0.5,0.5).sample(K*2)
8 val f = for(i <- 1 to N) {
9 for(j <- 1 to K) {

10 Bernoulli(pFgivenC(j * 2 + c(i))).sample()
11 }
12 }
13 observe(f, c)
14 }
15 }
16 }

Figure 6: Specification of a naive Bayes classifier

over the cluster means, sigma for the priors of the cluster variances, and phi for the prior of the
indicator variable. The parameters of the model are: N data size, K number of clusters.

The generative process is: For each of the N data points we want to draw, we select a cluster z
according to their distribution pi and then draw from the Gaussian with mean mu(z) and standard
deviation sigma(z).

2.5 Naive bayes classifier

The fifth example is a binary naive Bayes classifier (Figure 6). The support is composed of an array
c for the class and an array f for the features, pC the prior on the positive class, and pFgivenC an
array for the probability of each binary feature given the class. The hyperparameters of the model
are: N the number of data points, K the number of features and. The features form a 2-dimensional
matrix but again the user has to “flatten” the matrix into an array.

The generative process is: First we draw the probability of an event being in one class or the other
as pC. We use pC has the parameter to decide for each event in which class it falls (c). Then, for
each feature, we draw the probability of the feature occurring, pFgivenC, depending on whether
the event is in the class or not. Finally, we draw the features f for each event.

2.6 Hidden Markov Model

The sixth example is a hidden Markov model (Figure 7) where the observation are the result of coin
flips. The support is composed of the result of the coin flips flips, the priors for each of the coins

4

1 object HiddenMarkovModel {
2 class sig(var flips: Array[Int], var bias: Array[Double], var transitionMat: Array[

Double], var MCStates: Array[Int])
3 val model = bayes {
4 (N: Int, numStates: Int) => {
5 val v = vector(numStates,0.1)
6 val transitionMat = Dirichlet(numStates,v).sample(numStates)
7 val bias = Beta(1.0,1.0).sample(numStates)
8 val MCStates: IndexedSeq[Int] = for (i <- 1 to N) yield Categorical(numStates,

transitionMat(MCStates(max(0, i-1)))).sample()
9 val flips = for (i <- 1 to N) Bernoulli(bias(MCStates(i))).sample()

10 observe(flips)
11 }
12 }
13 }

Figure 7: Specification of a Hidden Markov Model

bias, the transition matrix to decide how to change coin transitionMat, and the states of the
Markov chain that indicates which coin is being used for the flip MCStates. The two parameters
of the model are the size of the data N, and the number of coins being used numStates.

The generative process is: draw a transition matrix for the Markov chain, a bias for each of the coins,
decide what coin is to be used in each state using the transition matrix, and then flip the correct coin
for each state.

3 Rewrite Rules for the compiler

We now provide the full set of rewrite rules used by the compiler. These fall into two categories:
rules which simplify the representation, and rules which rearrange the terms.

3.1 Simplification rules

1 · c = c (3)
c

1
= c (4)

n∏
i=m

1 = 1 (5)

1true(P) = P (6)
1false(P) = 1 (7)

a · c
b · c

=
a

b
(8)∫

P (X)dx = 1 (9)

Associativity and commutativity are provided by the normalization steps.

5

Algorithm 1 Drawing M samples from a Dirichlet

Input: array α of size n
for M documents in parallel do

for i = 0 to n− 1 do
v[i] ∼ Gamma(a[i])

end for
s =

n−1∑
0
a[i] in parallel

for i = 0 to n− 1 in parallel do
v[i] = v[i]

s
end for

end for
Output: array v

Algorithm 2 Sampling from K Dirichlets

Input: matrix a of size k by n
for i = 0 to n− 1 in parallel do

for j = 0 to k − 1 do
v[i, j] ∼ Gamma(a[i, j])

end for
v ×

→
1

end for
Output: matrix v

Figure 8: Algorithms for sampling from Dirichlet distributions.

3.2 Rearrangement rules

P (X|Y)→ P (X,Y)∫
P (X,Y)dy

(10)

(

n∏
i=m

Pi) · (
n∏

j=m

Qj)→
n∏

i=m

Pi ·Qi (11)

n∏
i=m

Pi ·Qi → (

n∏
i=m

Pi) · (
n∏

j=m

Qj) (12)

(

n∏
i=m

Pi)→ (

n∏
i=m

)1cond(Pi) · 1¬cond(Pi) (13)

(

n∏
i=m

Pi)→ Pi for arbitary i ∈ {m, . . . , n} (14)

Pi for arbitary i ∈ {m, . . . , n} → (

n∏
i=m

Pi) (15)∫
P ·Q(X)dx→ P ·

∫
Q(x)dx (16)

The condition is determined heuristically, e.g., partitioning across indicator variables. These rules
are applied in a pre-defined pipeline, so they execute in a determinisitc order and the resulting rewrite
system always terminates. We leave a more complex rewrite system to future work, though we have
not found it necessary for any of the models described in this paper. If it fails to find a conjugacy
relation, then it falls back to sampling that variable using a Metropolis-Hastings step.

4 Data-Parallel Sampling from Dirichlet Distributions

Algorithm 1 presents a simple way to draw from a number of Dirichlet distributions in parallel on a
GPU. It works well if the number M is very large. On the contrary, it is a bottleneck if M is small
or much lesser than the dimension of the Dirichlet distributions.

Algorithm 2 is the more complex algorithm described in the paper. This algorithm is more efficient
when the number of Dirichlets is small compared to the dimension of each individual Dirichlet.

6

1 model {
2 for(i in 1:N) {
3 y[i] ˜ dnorm(y.hat[i] , 1/tau)
4 y.hat[i] <- b0 + inprod(b[1:nPred] , x[i,1:nPred])
5 }
6 tau ˜ dgamma(1 , 1)
7 b0 ˜ dnorm(0 , 0.01)
8 for (j in 1:nPred) {
9 b[j] ˜ dnorm(0 , 0.01)

10 }
11 }

Figure 9: Multivariate Regression in Jags

1 data {
2 int<lower=0> nPred;
3 int<lower=0> nData;
4 real y[nData];
5 matrix[nData,nPred] x;
6 vector[nData] b0vec;
7 }
8 parameters {
9 real b0;

10 vector[nPred] b;
11 real<lower=0> tau;
12 }
13 transformed parameters {
14 vector[nData] mu;
15 vector[nData] offset;
16 offset <- b0vec * b0;
17 mu <- x * b + offset;
18 }
19 model {
20 b0 ˜ normal(0,10);
21 tau ˜ gamma(1,1);
22 for (d in 1:nPred)
23 b[d] ˜ normal(0,10);
24 y ˜ normal(mu,1/sqrt(tau));
25 }

Figure 10: Multivariate Regression in Stan

5 Experimental study

This section contains additional experimental results for the multivariate linear regression, Gaussian
Mixture Model and latent Dirichlet allocation models. It also provides a detailed experimental
protocol for each of the models.

5.1 Multivariate Regression

In our regression experiment, we compare Augur against two other models, one implemented in
Jags (9) and one in Stan (10). These models are both based upon the BMLR code developed by
Kruschke [1]. Each system uses the same priors and hyperparameters.

The regression experimental protocol was as follows: each dataset had 10 90%/10% train/test splits
generated, and each dataset was tested using 10 different random initialisations across each of the
train/test splits. Then the number of samples was varied between 100, 200, 500, 1000, 2000, 50001.
This gives a total of 600 runs of each system on each dataset. The presented figures average across
both the random seeds and the train/test splits to produce one point per number of samples. We then
plot average RMSE on the test sets against average runtime.

1Stan and JAGS had a burn in of an additional 50% samples to allow for the adaptive tuning of the samplers,
without these extra samples for adaptation the performance of both of them was poor. Augur’s Metropolis-
Hastings algorithm does not use such tuning.

7

0 5 10 15 20 25 30 35 40

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

100

200

500

1000
2000
5000

150
300

750
1500

3000
7500

100

200

500

1000

2000

5000

Runtime (seconds)

R
M

SE

RMSE v. Training Time (Concrete)

Augur
Jags
Stan

(a) Multivariate linear regression on the Concrete Com-
pressive Strength data set.

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8

10

12

14

16

18

20

22

100 5000

150 7500

100 5000

Runtime (seconds)

R
M

SE

RMSE v. Training Time (Yacht)

Augur
Jags
Stan

(b) Multivariate linear regression on the Yacht Hydro-
dynamics data set.

Figure 11: Multivariate linear regression experiments (I).

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80 100

200

500
1000
2000

5000
150 3000

7500

100
200

500
1000

2000
5000

Runtime (seconds)

R
M

SE

RMSE v. Training Time (winequality-red)

Augur
Jags
Stan

(a) Multivariate linear regression on the winequality-red
data set.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160 100

200

5000

150

7500

100 5000

Runtime (seconds)

R
M

SE

RMSE v. Training Time (winequality-white)

Augur
Jags
Stan

(b) Multivariate linear regression on the winequality-
white data set.

Figure 12: Multivariate linear regression experiments (II).

In Figures 11a, 12a, 12b and 11b we present results on the Concrete compressive, winequality-red,
winequality-white and Yacht Hydrodynamics datasets from the UCI repository [2]. JAGS is using a
Gibbs sampler for the weights and the bias, and uses a slice sampler for the variance of the noise.
Augur uses random walk Metropolis-Hastings, and Stan is using the No-U-Turn variant of Hamil-
tonian Monte Carlo. We can see that Augur has a startup cost of about 10 seconds, and Stan has a
startup cost of about 20 seconds. After that point Augur can draw samples more quickly than both
Stan and JAGS, though due to JAGS’s low startup time (� 1 second) it is only on large datasets with
many samples that Augur provides a speedup. Each of the algorithms converges quickly in terms of
runtime, though the MH procedure used by Augur takes many more samples before reaching a sat-
isfactory RMSE. We suspect that the Stan samples provide a better characterisation of the posterior
than the samples from JAGS or Augur, as HMC and its variants are better at exploring a distribution.
It would be interesting to use a GPU-based automatic differentiation system and integrate this into
Augur, as Augur already provides fast parallel likelihood evaluations, and so it should be possible
to generate a high quality HMC sampler on the GPU.

The RMSEs of JAGS and Augur converge to approximately similar values, though Augur takes
longer to converge (in terms of the number of samples, and total runtime) as Metropolis-Hastings
is a less efficient inference algorithm for regression than a tuned Gibbs sampler. As mentioned in

8

1 model {
2 for (i in 1:N){
3 z[i] ˜ dcat(theta)
4 y[i] ˜ dnorm(mu[z[i]],sigma[z[i]])
5 }
6 theta[1:K] ˜ ddirch(alpha)
7 for (k in 1:K) {
8 alpha[k] <- 1
9 mu[k] ˜ dnorm(0,0.01)

10 sigma[k] ˜ dgamma(1,1)
11 }
12 }

Figure 13: GMM in Jags

section 5 of the paper JAGS has a special case for working with linear regression models which
alters the sampling procedure, and this feature is not currently available in Augur.

We find that the regression results show that Augur is competitive with other systems, though the
linear regression datasets we tested are not large enough to properly exploit all the computation
available in the GPU.

5.2 Gaussian Mixture Model

The Gaussian Mixture Model results described in Section 5 of the paper show how each of the
three systems scale as the dataset size is increased. We sampled 100, 000 datapoints from two
different mixture distributions: one with 4 gaussians centered at {-5,-1,1,5} with standard deviation
{1,0.1,2,1}, and one with 3 gaussians centered at {-5, 0, 5} with standard deviations {0.1,0.1,0.1}.
Each dataset had a flat mixing distribution, that is draws from each gaussian were equiprobable.
From each dataset we subsampled smaller datasets using 100, 1000 and 10, 000 datapoints.

We used the GMM presented in the paper for Augur, for Stan we used the GMM listed in the
modeling handbook, and for JAGS we wrote a standard GMM (shown in figure 13), based upon
Augur’s. Each model used the same prior distributions and hyperparameters.

Figure 14 presents the runtimes of the two datasets, Figure 14a has 4 centres, and Figure 14b has 3
centres. For computational reasons we stopped Stan’s final run after 3 hours on the second dataset
(Stan took approx. 6 hours to complete on the first dataset). Here we can see that Augur’s runtime
scales much more slowly as the dataset size is increased. JAGS remains reasonably competitive
until 100, 000 data points, at which point Augur is faster by a factor of 7. Stan is also relatively
competitive but scales extremely poorly as the number of datapoints is increased.

5.3 LDA

In an attempt to confirm the result presented in the paper, we present another result (figure 15a)
measuring the predictive probability averaging across multiple runs using different train/test splits.
In this experiment, we averaged across 10 runs with different train/test splits and present the timings
with error bars. We also ran an experiment across 10 different random initializations and seeds,
and all algorithms again showed robustness to the variation. We reduced the maximum number of
samples to 512 as generating results for the Collapsed Gibbs sampler was proving prohibitive in
terms of runtime for repeated experiments.

A third experiment (Figure 15b) gives on the natural logarithm of run time in milliseconds to draw
512 samples as the number of topics varies. Augur’s Gibbs sampler is linear in the number of topics
during the step of sampling each of the zij . The collapsed Gibbs sampler’s runtime increases greatly
as the number of topics is increased. Again, Augur’s generated code is on par with the hand-written
CUDA implementation.

We experimented with the SparseLDA [3] implementation which is Factorie’s default LDA model,
but this implementation proved to be unreliable. The predictive probability measure actually de-
creased as more samples were drawn using the SparseLDA implementation. We are working with
the developers of Factorie to investigate this problem. The SparseLDA implementation is interesting

9

102 103 104 105
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Data Size (points)

R
un

tim
e

(m
in

ut
es

)

Sampling Time v. Data Size (4 centres)

Augur
Jags
Stan

(a) Runtime to draw a thousand samples from a GMM
for varying data set sizes, with 4 centres. Stan’s last
data point is cropped, it took 380 minutes.

102 103 104 105
0

2

4

6

8

10

12

14

16

18

20

Dataset Size (#points)

R
un

tim
e

(m
in

ut
es

)

Sampling Time v. Data Size (3 centres)

Augur
Jags
Stan

(b) Runtime to draw a thousand samples from a GMM
for varying data set sizes, with 3 centres. Stan’s 100,000
data point was not generated.

Figure 14: Gaussian Mixture Model runtimes.

1 10 102 103 104
−1.7

−1.65

−1.6

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2 ·10
5

12222324

25

26

27
28 29

12 22 23
24

25
26

27 28 29

1
2 22

23

24

25
26 27 28 29

Runtime (seconds)

L
og

10
Pr

ed
ic

tiv
e

Pr
ob

ab
ili

ty

Predictive Probability v. Training Time

Augur
Cuda
Factorie

(a) Average over 10 runs of the predictive probabil-
ity vs time.

0 50 100 150 200 250 300 350 400 450 500
1

10

102

103

104

105

Number of Topics

R
un

tim
e

(s
ec

on
ds

)

Effect of Topic Number on Performance

Augur
Cuda
Factorie(Collapsed)

(b) Comparison of the scalability of Augur, hand-written
CUDA, and Factorie’s collapsed Gibbs w.r.t the number
of topics.

Figure 15: Further experiments with LDA.

as it uses a set of LDA specific assumptions to generate a highly optimised Gibbs sampler. We found
Augur to be competitive in terms of runtime when drawing more than 256 samples. With smaller
sample sizes there is insufficient computation to amortize the compilation costs.

References
[1] J. Kruschke. Doing Bayesian Data Analysis: A Tutorial Introduction with R. Academic Press,

2010.
[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[3] L. Yao, D. Mimno, and A. McCallum. Efficient methods for topic model inference on streaming

document collections. In Proc. of the 15th ACM SIGKDD International Conf. on Knowledge
Discovery and Data Mining, KDD ’09, pages 937–946. ACM, 2009.

10

	Using an Augur Model
	Examples of Model Specification
	Univariate polynomial regression
	Multivariate logistic regression
	Categorical mixture
	Gaussian Mixture Model
	Naive bayes classifier
	Hidden Markov Model

	Rewrite Rules for the compiler
	Simplification rules
	Rearrangement rules

	Data-Parallel Sampling from Dirichlet Distributions
	Experimental study
	Multivariate Regression
	Gaussian Mixture Model
	LDA

