
A Summary of Drifting Game Variants

We study three different variants of drifting games throughout the paper, which corresponds to the
Hedge setting, the multi-armed bandit problem and online convex optimization respectively. The
protocols of these variants are summarized below.

DGv1
Given: a loss function L(s) = 1{s  �R}.
For t = 1, . . . , T :

1. The player chooses a distribution p

t

over N chips.
2. The adversary decides the movement of each chip z

t,i

2 [�1, 1] subject to p

t

· z
t

� 0

and |z
t,i

� z
t,j

|  1 for all i and j.

The player suffers loss
P

N

i=1

L(
P

T

t=1

z
t,i

).

DGv2
Given: a loss function L(s) = 1{s  �R}.
For t = 1, . . . , T :

1. The player chooses a distribution p

t

over N chips.
2. The adversary randomly decides the movement of each chip z

t,i

� �1 subject to
E
t

[z
t,i

]  1,E
t

[z2
t,i

]  1/p
t,i

and E
t

[p

t

· z
t

] � 0.

The player suffers loss
P

N

i=1

L(
P

T

t=1

z
t,i

).

DGv3
Given: a compact convex set S, a loss function L(s) = 1{s  �R}.
For t = 1, . . . , T :

1. The player chooses a density function p
t

(x) on S.
2. The adversary decides a function z

t

(x) : S ! [�1, 1] subject to E
x⇠pt [zt(x)] � 0.

The player suffers loss
R

x2S

L(
P

T

t=1

z
t

(x))dx.

B Proof of Theorem 1

Proof. We first show that both conversions are valid. In Algorithm 1, it is clear that `
t,i

� 0. Also,
`
t,i

 1 is guaranteed due to the extra restriction of DGv1. For Algorithm 2, z
t,i

lies in B = [�1, 1]
since `

t,i

2 [0, 1], and direct computation shows p
t

·z
t

= 0 � �(= 0) and |z
t,i

�z
t,j

| = |`
t,i

�`
t,j

| 
1 for all i and j.

(1) For any choices of z
t

, we have
N

X

i=1

L(s
T,i

) =

N

X

i=1

L

N

X

t=1

z
t,i

!


N

X

i=1

L

N

X

t=1

(z
t,i

� p

t

· z
t

)

!

,

where the inequality holds since p

t

· z
t

is required to be nonnegative and L is a nonincreasing
function. By Algorithm 1, z

t,i

� p

t

· z
t

is equal to `
t,i

� p

t

· `
t

, leading to
N

X

i=1

L(s
T,i

) 
N

X

i=1

L

N

X

t=1

(`
t,i

� p

t

· `
t

)

!

=

N

X

i=1

1

(

R 
N

X

t=1

(p

t

· `
t

� `
t,i

)

)

.

10

Since R

(i+1)/N

T

(H) < R  R

i/N

T

(H), we must have
P

N

t=1

(p

t

· `
t

� `
t,j

) < R except for the best
i actions, which means

P

N

i=1

L(s
T,i

)  i. This holds for any choices of z
t

, so L
T

(D
R

)  i/N .

(2) By Algorithm 2 and the condition L
T

(D
R

) < ✏ , we have

1

N

N

X

i=1

1

(

R 
N

X

t=1

(p

t

· `
t

� `
t,i

)

)

=

1

N

N

X

i=1

L(s
T,i

)  L
T

(D
R

) < ✏,

which means there are at most dN✏e � 1 actions satisfying R  P

N

t=1

(p

t

· `
t

� `
t,i

), and thus
P

N

t=1

(p

t

· `
t

� `
t,i✏) < R. Since this holds for any choices of `

t

, we have R

✏

T

(H) < R.

C Summary of Hedge Algorithms and Proofs of Lemma 1, Lemma 2 and
Corollary 2

Table 1: Different algorithms derived from Algorithm 3, and comparisons with NormalHedge

EXP 2-norm NormalHedge.DT NormalHedge
�

T

(s) e�⌘(s+R) a[s]2� a
⇣

e[s]
2
�/3T � 1

⌘

N/A

p
t,i

/ e�⌘st�1,i
[s

t�1,i

� 1]

2

�
�[s

t�1,i

+ 1]

2

�
e[st�1,i�1]

2
�/3t

�e[st�1,i+1]

2
�/3t

�[s
t�1,i

]�e
[st�1,i]

2
�/c (c is

s.t.
P

i

e[st�1,i]
2
�/c

= Ne)

R

✏

T

(H) O
⇣

q

T ln

1

✏

⌘

O
⇣

p

T/✏
⌘

O

✓

q

T ln

lnT

✏

◆

O
⇣

q

T ln

1

✏

+ ln

2 N
⌘

Adaptive? No Yes Yes Yes

Proof of Lemma 1. It suffices to show [s � 1]

2

� + [s + 1]

2

�  2[s]2� + 2. When s � 0, LHS =

[s� 1]

2

�  1 < 2 = RHS. When s < 0, LHS  (s� 1)

2

+ (s+ 1)

2

= 2s2 + 2 = RHS.

Proof of Lemma 2. Let F (s) = exp

⇣

[s�1]

2
�

dt

⌘

+exp

⇣

[s+1]

2
�

dt

⌘

�2 exp

⇣

[s]

2
�

d(t�1)

⌘

. It suffices to show

F (s)  2(b
t

� b
t�1

) = exp

✓

4

dt

◆

� 1,

which is clearly true for the following 3 cases:

F (s) =

8

>

>

<

>

>

:

0 if s > 1;
exp

⇣

(s�1)

2

dt

⌘

� 1 < exp

�

1

dt

�� 1 if 0 < s  1;

exp

⇣

(s�1)

2

dt

⌘

+ 1� 2 exp

⇣

s

2

d(t�1)

⌘

< exp

�

4

dt

�� 1 if �1 < s  0.

For the last case s  �1, if we can show that F (s) is increasing in this region, then the lemma
follows. Below, we show this by proving F 0

(s) is nonnegative when s  �1.

Let h(s, c) =
@ exp

(

s

2
/c

)

@s

=

2s

c

exp

⇣

s

2

c

⌘

. F 0
(s) can now be written as

F 0
(s) = h(s� 1, c) + h(s+ 1, c)� 2h(s, c) + 2(h(s, c)� h(s, c0)),

where c = dt and c0 = d(t� 1). Next we apply (one-dimensional) Taylor expansion to h(s� 1, c)
and h(s+ 1, c) around s, and h(s, c0) around c, leading to

F 0
(s) =

1
X

k=1

(�1)

k

k!

@kh(s, c)

@sk
+

1
X

k=1

1

k!

@kh(s, c)

@sk
� 2

1
X

k=1

(c0 � c)k

k!

@kh(s, c)

@ck

= 2

1
X

k=1

✓

1

(2k)!

@2kh(s, c)

@s2k
� (�d)k

k!

@kh(s, c)

@ck

◆

.

11

Direct computation (see Lemma 3 below) shows that @

k
h(s,c)

@c

k and @

2k
h(s,c)

@s

2k share exact same forms
only with different constants:

@kh(s, c)

@ck
= exp

✓

s2

c

◆

k

X

j=0

(�1)

k↵
k,j

· s2j+1

ck+j+1

,

@2kh(s, c)

@s2k
= exp

✓

s2

c

◆

k

X

j=0

�
k,j

· s2j+1

ck+j+1

,

(4)

where ↵
k,j

and �
k,j

are recursively defined as:

↵
k+1,j

= ↵
k,j�1

+ (k + j + 1)↵
k,j

,

�
k+1,j

= 4�
k,j�1

+ (8j + 6)�
k,j

+ (2j + 3)(2j + 2)�
k,j+1

,
(5)

with initial values ↵
0,0

= �
0,0

= 2 (when j 62 {0, . . . , k}, ↵
k,j

and �
k,j

are all defined to be 0).
Therefore, F 0

(s) can be further simplified as

F 0
(s) = 2 exp

✓

s2

c

◆ 1
X

k=1

k

X

j=0

s2j+1

ck+j+1

✓

�
k,j

(2k)!
� dk↵

k,j

k!

◆

.

Since s is negative, it suffices to show that �k,j

(2k)!

 d

k
↵k,j

k!

holds for all k and j, which turns out
to be true as long as d � 3, as shown by induction in the technical lemma 4 below. To sum up,
�

t

(s� 1) + �

t

(s+ 1)  2�

t�1

(s) for all s 2 R and t = 2, . . . , T .

Finally, we need to show that Eq. (2) still holds. The inequality we just proved above implies
P

i

�

t

(s
t,i

)  P
i

�

t�1

(s
t�1,i

) for t = 2, . . . , T , as shown in Theorem 2. Thus the only thing we
need to show here is the case when t = 1. Note that �

1

(s � 1) + �

1

(s + 1)  2�

0

(s) does not
hold for all s apparently. However, in order to prove

P

i

�

1

(s
1,i

)  P

i

�

0

(s
0,i

), we in fact only
need a much weaker statement: �

1

(�1) + �

1

(1)  2�

0

(0) since s
0,i

⌘ 0. This is equivalent to
exp (1/d)� 1  exp (4/d)� 1, which is true trivially.

Lemma 3. Let h(s, c) = 2s

c

exp

⇣

s

2

c

⌘

. The partial derivatives of h(s, c) satisfy Eq. (4) and (5).

Proof. The base case holds trivially. Assume Eq. (4) holds for a fixed k. Then we have

@k+1h(s, c)

@ck+1

= exp

✓

s2

c

◆

k

X

j=0

(�1)

k↵
k,j

·
✓

�s2

c2
s2j+1

ck+j+1

� (k + j + 1)

s2j+1

ck+j+2

◆

= exp

✓

s2

c

◆

k

X

j=0

(�1)

k+1↵
k,j

·
✓

s2(j+1)+1

c(k+1)+(j+1)+1

+ (k + j + 1)

s2j+1

c(k+1)+j+1

◆

= exp

✓

s2

c

◆

k+1

X

j=0

(�1)

k+1

(↵
k,j�1

+ (k + j + 1)↵
k,j

) · s2j+1

c(k+1)+j+1

= exp

✓

s2

c

◆

k+1

X

j=0

(�1)

k+1↵
k+1,j

· s2j+1

c(k+1)+j+1

,

and

@2(k+1)h(s, c)

@s2(k+1)

= @

2

4

exp

✓

s2

c

◆

k

X

j=0

�
k,j

·
✓

2s2j+2

ck+j+2

+ (2j + 1)

s2j

ck+j+1

◆

3

5

,

@s

= exp

✓

s2

c

◆

k

X

j=0

�
k,j

·
✓

4s2j+3

ck+j+3

+ (8j + 6)

s2j+1

ck+j+2

+ (2j + 1)2j
s2j�1

ck+j+1

◆

= exp

✓

s2

c

◆

k+1

X

j=0

(4�
k,j�1

+ (8j + 6)�
k,j

+ (2j + 3)(2j + 2)�
k,j+1

) · s2j+1

ck+j+2

12

= exp

✓

s2

c

◆

k+1

X

j=0

�
k+1,j

· s2j+1

ck+j+2

,

concluding the proof.

Lemma 4. Let ↵
k,j

and �
k,j

be defined as in Eq. (5). Then �k,j

(2k)!

 d

k
↵k,j

k!

holds for all k � 0 and
j 2 {0, . . . , k} when d � 3.

Proof. We prove the lemma by induction on k. The base case k = 0 is trivial. Assume �k,j

(2k)!


d

k
↵k,j

k!

holds for a fixed k and all j 2 {0, . . . , k}, then we have 8j,

�
k+1,j

(2k + 2)!

=

4�
k,j�1

+ (8j + 6)�
k,j

+ (2j + 3)(2j + 2)�
k,j+1

(2k + 2)!

 dk (4↵
k,j�1

+ (8j + 6)↵
k,j

+ (2j + 3)(2j + 2)↵
k,j+1

)

(2k + 2)(2k + 1)k!
.

We need to show that the above expression is at most dk+1↵
k+1,j

/(k + 1)!, which, after arrange-
ments, is equivalent to 2↵

k,j�1

+ (4j + 3)↵
k,j

+ (2j + 3)(j + 1)↵
k,j+1

 d(2k + 1)↵
k+1,j

. We
will prove this by another induction on k. Then the lemma follows.

The base case (k = 0) is simplified to 6  2d, which is true by our assumption d � 3. Assume the
inequality holds for a fixed k, then by the definition of ↵

k,j

, one has

2↵
k+1,j�1

+ (4j + 3)↵
k+1,j

+ (2j + 3)(j + 1)↵
k+1,j+1

= (2↵
k,j�2

+ (4j + 3)↵
k,j�1

+ (2j + 3)(j + 1)↵
k,j

)+

(2(k + j)↵
k,j�1

+ (4j + 3)(k + j + 1)↵
k,j

+ (2j + 3)(j + 1)(k + j + 2)↵
k,j+1

)

= (2↵
k,j�2

+ (4j � 1)↵
k,j�1

+ (2j + 1)j↵
k,j

)+

(k + j + 2) (2↵
k,j�1

+ (4j + 3)↵
k,j

+ (2j + 3)(j + 1)↵
k,j+1

)

 d(2k + 1)(↵
k+1,j�1

+ (k + j + 2)↵
k+1,j

) (by induction)
= d(2k + 1)↵

k+2,j

 d(2k + 3)↵
k+2,j

,

completing the induction.

Proof of Corollary 2. Recall that �
T

(s) � 1

n

s  �
q

dT ln

�

1

a

+ 1

�

o

. So by setting �

0

(0) =

a(1� b
0

) < ✏ and applying Theorem 2, we arrive at

R

✏

T

(H) 
s

dT ln

✓

1� b
0

✏
+ 1

◆

.

It suffices to upper bound 1 � b
0

, which, by definition, is 1

2

P

T

t=1

�

exp

�

4

dt

�� 1

�

. Since ex � 1 
e

c�1

c

x for any x 2 [0, c], we have

T

X

t=1

✓

exp

✓

4

dt

◆

� 1

◆

 (e4/d � 1)

T

X

t=1

1

t
 (e4/d � 1)(lnT + 1).

Plugging d = 3 gives the corollary.

13

D A General MAB Algorithm and Regret Bounds

Input: A convex, nonincreasing, nonnegative function �

T

(s) 2 C2, with nonincreasing second
derivative.

for t = T down to 1 do
Find a convex function �

t�1

(s) s.t. the conditions of Theorem 4 hold.
Set: s

0

= 0.
for t = 1 to T do

Set: p
t,i

/ �

t

(s
t�1,i

� 1)� �

t

(s
t�1,i

+ 1).
Draw i

t

⇠ p

t

and receive loss `
t,it .

Set: z
t,i

= 1{i = i
t

} · `
t,it/pt,it � `

t,it , 8i.
Set: s

t

= s

t�1

+ z

t

.
Algorithm 4: A General MAB Algorithm

Theorem 4. Suppose �

t

(s) is convex, twice continuously differentiable (i.e. �

t

(s) 2 C2), have
nonincreasing second derivative, and satisfies:

�

1

2

+N↵
t

�

�

t

(s� 1) +

�

1

2

�N↵
t

�

�

t

(s+ 1)  �

t�1

(s), 8s 2 R (6)

where ↵
t

=

1

2

max

s

�

00
t (s�1)

�t(s�1)��t(s+1)

. If the player’s strategy is such that p
t,i

/ �

t

(s
t�1,i

� 1) �
�

t

(s
t�1,i

+ 1), then Eq. (2) holds in expectation.

Proof of Theorem 4. As discussed before, the main difficulty here is the unboundedness of z
t,i

.
However, the expectation of z

t,i

is still in [�1, 1] as in DGv1. To exploit this fact, we apply Taylor’s
theorem to �

t

(s
t�1,i

+ z
t,i

) to the second order term:

�

t

(s
t,i

) = �

t

(s
t�1,i

+ z
t,i

)

= �

t

(s
t�1,i

) + �

0
t

(s
t�1,i

)z
t,i

+

1

2

�

00
t

(⇠
t,i

)z2
t,i

 �

t

(s
t�1,i

) + �

0
t

(s
t�1,i

)z
t,i

+

1

2

�

00
t

(s
t�1,i

� 1)z2
t,i

,

where ⇠
t,i

is between s
t�1,i

+z
t,i

and s
t�1,i

, and the inequality holds because �00
t

(s) is nonincreasing
and z

t,i

� �1 by assumption. Now taking expectation on both sides with respect to the randomness
of z

t,i

, using the convexity of �
t

(s), and plugging the assumption E
t

[z2
t,i

]  1/p
t,i

give:

E
t

[�

t

(s
t,i

)]  �

t

(s
t�1,i

) + �

0
t

(s
t�1,i

)E
t

[z
t,i

] +

1

2

�

00
t

(s
t�1,i

� 1)E
t

[z2
t,i

]

 �

t

(s
t�1,i

+ E
t

[z
t,i

]) +

1

2

�

00
t

(s
t�1,i

� 1)/p
t,i

.

Let w
t,i

=

1

2

(�

t

(s
t�1,i

� 1)� �

t

(s
t�1,i

+ 1)). Further plugging p

t,i

/ w
t,i

and summing over
all i, we arrive at

N

X

i=1

E
t

[�

t

(s
t,i

)] 
N

X

i=1

�

t

(s
t�1,i

+ E
t

[z
t,i

]) +

�

00
t

(s
t�1,i

� 1)

2w
t,i

·
N

X

i=1

w
t,i

!


N

X

i=1

�

t

(s
t�1,i

+ E
t

[z
t,i

]) + 2↵
t

N

X

i=1

w
t,i

!

(by the defintion of ↵
t

)

=

N

X

i=1

(�

t

(s
t�1,i

+ E
t

[z
t,i

]) + 2N↵
t

w
t,i

) .

Since E
t

[p

t

· z
t

] � 0 implies
P

N

i=1

w
t,i

E
t

[z
t,i

] � 0, we thus have

N

X

i=1

E
t

[�

t

(s
t,i

)] 
N

X

i=1

(�

t

(s
t�1,i

+ E
t

[z
t,i

]) + w
t,i

E
t

[z
t,i

] + 2N↵
t

w
t,i

)


N

X

i=1

✓

max

z2[�1,+1]

(�

t

(s
t�1,i

+ z) + w
t,i

z) + 2N↵
t

w
t,i

◆

14

=

N

X

i=1

✓

max

z2{�1,+1}
(�

t

(s
t�1,i

+ z) + w
t,i

z) + 2N↵
t

w
t,i

◆

(by the convexity of �
t

(s))

=

N

X

i=1

��

1

2

+N↵
t

�

�

t

(s
t�1,i

� 1) +

�

1

2

�N↵
t

�

�

t

(s
t�1,i

+ 1)

�


N

X

i=1

�

t�1

(s
t�1,i

). (by assumption)

The theorem follows by taking expectation on both sides with respect to the past (i.e. the randomness
of z

1

, . . . , z
t�1

).

Theorem 5. For Algorithm 4, if R and ✏ are such that �
0

(0) < ✏ and �

T

(s) � 1{s  �R} for
all s 2 R, then E[

P

T

t=1

`
t,it �

P

T

t=1

`
t,i✏] < R for any non-oblivious adversary. Moreover, using

�

T

(s) = exp(�⌘(s + R)) (and let Eq. (6) hold with equality) gives exactly the EXP3 algorithm
with regret O(

p

TN ln(1/✏)).

Proof of Theorem 5. We first show that Algorithm 4 converts the multi-armed bandit problem to a
valid instance of DGv2. It suffices to prove that z

t,i

= 1{i = i
t

} · `
t,it/pt,it � `

t,it satisfies all
conditions defined in DGv2, as shown below (z

t,i

� �1 is trivial):

E
t

[z
t,i

] = `
t,i

� p

t

· `
t

 1,

E
t

[z2
t,i

] = p
t,i

✓

`
t,i

p
t,i

� `
t,i

◆

2

+

X

j 6=i

p
t,j

`2
t,j

 p
t,i

✓

1

p
t,i

� 1

◆

2

+

X

j 6=i

p
t,j

=

1

p
t,i

� 1  1

p
t,i

,

E
t

[p

t

· z
t

] = E
t

2

4`
t,it �

N

X

j=1

p
t,j

`
t,it

3

5

= 0.

Therefore, we can apply Theorem 4 directly, arriving at:

1

N

N

X

i=1

E[�
T

(s
T,i

)]  · · ·  1

N

N

X

i=1

E[�
0

(s
0,i

)] = �

0

(0)  ✏.

On the other hand, by applying Jensen’ inequality, we have

E[�
T

(s
T,i

)] � �

T

(E[s
T,i

]) � 1{E[s
T,i

]  �R}.

Note that E[s
T,i

] is equal to E
h

P

T

t=1

(`
t,i

� `
t,it)

i

. We thus know

1

N

N

X

i=1

1

(

E
"

T

X

t=1

(`
t,i

� `
t,it)

#

 �R

)

< ✏,

which implies E
h

P

T

t=1

`
t,it �

P

T

t=1

`
t,i✏

i

< R for any non-oblivious adversary for the exact same
argument used in the proof of Theorem 2.

Finally, we show how to recover EXP3 using Algorithm 4 with input �
T

(s) = exp(�⌘(s+R)). To
compute �

t

(s) for t < T , we simply use Eq. (6) with equality. One can verify using induction that

�

t

(s) = exp (�⌘(s+R))

✓

e⌘ + e�⌘

+Ne⌘⌘2

2

◆

T�t

,

↵
t

=

1

2

max

s

⌘2�
t

(s� 1)

�

t

(s� 1)� �

t

(s+ 1)

=

e⌘⌘2

2(e⌘ � e�⌘

)

,

�

000
t

(s) = �⌘3�
t

(s)  0.

15

The player’s strategy is thus p
t,i

/ exp(�⌘
P

t�1

⌧=1

ˆ`
⌧,i

) (recall ˆ`
t,i

= 1{i = i
t

} · `
t,it/pt,it is the

estimated loss), which is exactly the same as EXP3 (in fact a simplified version of the original EXP3,
see for example [30]). Moreover, the regret can be computed by setting �

0

(0) = ✏, leading to

R =

1

⌘
ln

✓

1

✏

◆

+

T

⌘
ln

✓

e⌘ + e�⌘

2

+

1

2

Ne⌘⌘2
◆

 1

⌘
ln

✓

1

✏

◆

+

T

⌘
ln

✓

e⌘
2
/2

+

1

2

Ne⌘⌘2
◆

(by Hoeffding’s Lemma)

 1

⌘
ln

✓

1

✏

◆

+

T

⌘

✓

⌘2

2

+

1

2

Ne⌘�
⌘2

2 ⌘2
◆

(ln(1 + x)  x)

If ⌘  1 so that e⌘�⌘

2
/2  p

e, then we have R  1

⌘

ln(

1

✏

) + T⌘
⇣

1

2

+

N

p
e

2

⌘

, which is
p

2T (1 +N
p
e) ln(1/✏) after optimally choosing ⌘ (⌘  1 will be satisfied when T is large

enough).

E A General OCO Algorithm and Regret Bounds

Input: A convex, nonincreasing, nonnegative function �

T

(s)
for t = T down to 1 do

Find a convex function �

t�1

(s) s.t. 8s, �
t

(s� 1) + �

t

(s+ 1)  2�

t�1

(s).
Set: s

0

(x) ⌘ 0.
for t = 1 to T do

Predict x
t

= E
x⇠pt [x] where p

t

is such that p
t

(x) / �

t

(s
t�1

(x)� 1)� �

t

(s
t�1

(x) + 1).
Receive loss function f

t

from the adversary.
Set: z

t

(x) = f
t

(x)� f
t

(x

t

).
Set: s

t

(x) = s
t�1

(x) + z
t

(x).
Algorithm 5: A General OCO Algorithm

Definition of ✏-regret in the OCO setting: Let S
✏

⇢ S be such that the ratio of its volume and the
one of S is ✏ and also

P

T

t=1

f
t

(x

0
) PT

t=1

f
t

(x) for all x0 2 S
✏

and x 2 S\S
✏

(it is clear that such
set exists). Then ✏-regret is defined as R✏

T

(x

1:T

, f
1:T

) =

P

T

t=1

f
t

(x

t

)� inf

x2S\S✏

P

T

t=1

f
t

(x).
Theorem 6. For Algorithm 5, if R is such that �

T

(s) � 1{s  �R} and �

0

(0) < ✏, then we have
R

✏

T

(x

1:T

, f
1:T

) < R and R

T

(x

1:T

, f
1:T

) < R+ T ✏1/d. Specifically, if R = O(

p

T ln(1/✏)), then
setting ✏ = T�d gives R

T

(x

1:T

, f
1:T

) = O(

p
dT lnT).

Proof of Theorem 6. Let w
t

(x) =

1

2

(�

t

(s
t�1

(x)� 1)� �

t

(s
t�1

(x) + 1)). Similarly to the Hedge
setting, the “sum” of potentials never increases:
Z

x2S

�

t

(s
t

(x))dx 
Z

x2S

(�

t

(s
t�1

(x) + z
t

(x)) + w
t

(x)z
t

(x)) dx 
Z

x2S

�

t�1

(s
t�1

(x))dx.

Here, the first inequality is due to E
x⇠pt [zt(x)] � 0, and the second inequality holds for the exact

same reason as in the case for Hedge. Therefore, we have
Z

x2S

1{s
T

(x)  �R}dx 
Z

x2S

�

T

(s
T

(x))dx  · · · 
Z

x2S

�

0

(0)dx < ✏V,

where V is the volume of S. Recall the construction of S
✏

. There must exist a point x0 2 S
✏

such
that s

T

(x

0
) > �R, otherwise

R

x

1{s
T

(x)  �R}dx would be at least ✏V . Unfolding s
T

(x

0
), we

arrive at
P

t

f
t

(x

t

) �P
t

f
t

(x

0
) < R. Using the fact

P

t

f
t

(x

0
)  inf

x2S\S✏

P

t

f
t

(x) gives the
bound for ✏-regret.

Next consider a shrunk version of S: S0
✏

= {(1 � ✏
1
d
)x

⇤
+ ✏

1
d
x : x 2 S} where x

⇤ 2
argmin

x

P

t

f
t

(x). Then
R

x2S

1{s
T

(x)  �R}dx is at least
Z

x2S

0
✏

1{s
T

(x)  �R}dx = ✏

Z

x2S

1

n

s
T

⇣

(1� ✏
1
d
)x

⇤
+ ✏

1
d
x

⌘

 �R
o

dx,

16

which, by the convexity and the boundedness of f
t

(x), is at least

✏

Z

x2S

1

(

T

X

t=1

⇣

(1� ✏
1
d
)f

t

(x

⇤
) + ✏

1
d f

t

(x)� f
t

(x

t

)

⌘

 �R

)

dx

� ✏

Z

x2S

1

(

T

X

t=1

(f
t

(x

⇤
)� f

t

(x

t

))  �R� T ✏
1
d

)

dx

= ✏V · 1
(

T

X

t=1

(f
t

(x

⇤
)� f

t

(x

t

))  �R� T ✏
1
d

)

.

Following the previous discussion, the expression in the last line above is strictly less than ✏V ·,
which means that the value of the indicator function has to be 0, namely, R

T

(x

1:T

, f
1:T

) < R +

T ✏1/d.

F NH-Boost.DT, NH-Boost and Proof of Theorem 3

Input : Training examples (x
i

, y
i

) 2 Rd ⇥ {�1,+1}, i = 1, . . . , N.
Input : A weak learning algorithm.
Input : Number of rounds T .
Output: A Hypothesis H(x) : Rd ! {�1,+1}.
Set: s

0

= 0.
for t = 1 to T do

Set: p
t,i

/ exp

�

[s
t�1,i

� 1]

2

�/3t
�� exp

�

[s
t�1,i

+ 1]

2

�/3t
�

, 8i.
Invoke the weak learning algorithm to get h

t

with edge �
t

=

1

2

P

i

p
t,i

y
i

h
t

(x

i

).
Set: s

t,i

= s
t�1,i

+

1

2

y
i

h
t

(x

i

)� �
t

, 8i.
Set: H(x) = sign(

P

T

t=1

h
t

(x)).

Algorithm 6: NH-Boost.DT

Input : Training examples (x
i

, y
i

) 2 Rd ⇥ {�1,+1}, i = 1, . . . , N.
Input : A weak learning algorithm.
Input : Number of rounds T .
Output: A Hypothesis H(x) : Rd ! {�1,+1}.
Set: s

0

= 0.
for t = 1 to T do

if t = 1 then
Set: p

1

to be a uniform distribution.
else

Find: c such that
P

N

i=1

exp

�

[s
t�1,i

]

2

�/c
�

= Ne.
Set: p

t,i

/ �[s
t�1,i

]� exp

�

[s
t�1,i

]

2

�/c
�

, 8i.
Invoke the weak learning algorithm to get h

t

with edge �
t

=

1

2

P

i

p
t,i

y
i

h
t

(x

i

).
Set: s

t,i

= s
t�1,i

+

1

2

y
i

h
t

(x

i

)� �
t

, 8i.
Set: H(x) = sign(

P

T

t=1

h
t

(x)).

Algorithm 7: NH-Boost

In the boosting setting for binary classification, we are given a set of training examples
(x

i

, y
i

)

i=1,...,N

where x

i

2 Rd is an example and y
i

2 {�1,+1} is its label. A boosting algo-
rithm proceeds for T rounds. On each round, a distribution p

t

over the examples is computed and
fed into a weak learning algorithm which returns a “weak” hypothesis h

t

: Rd ! {�1,+1} with a
guaranteed small edge, that is, �

t

=

1

2

P

i

p
t,i

y
i

h
t

(x

i

) � � > 0. At the end, a linear combination
of all h

t

is computed as the final “strong” hypothesis which is expected to have low training error
and potentially low generalization error.

The conversion of a Hedge algorithm into a boosting algorithm is to treat each example as an “ac-
tion” and set `

t,i

= 1{h
t

(x

i

) = y
i

} so that the booster tends to increase weights for those “hard”

17

examples. The final hypothesis is a simple majority vote of all h
t

, that is, H(x) = sign(
P

t

h
t

(x))

where sign(x) is the sign function that outputs 1 if x is positive, and �1 otherwise. The margin
of example x

i

is defined as 1

T

P

T

t=1

y
i

h
t

(x

i

), that is, the difference between the fractions of cor-
rect hypotheses and incorrect hypotheses on this example. The boosting algorithms derived from
NormalHedge.DT and NormalHedge in this way are given in Algorithm 6 and 7.

Proof the Theorem 3. Let (˜x
i

, ỹ
i

)

i=1,...,N

be a permutation of the training examples such that their
margins are sorted from smallest to largest:

P

t

ỹ
1

h
t

(

˜

x

1

)  · · ·  P

t

ỹ
N

h
t

(

˜

x

N

), which also
implies

P

t

1{h
t

(

˜

x

1

) = ỹ
1

}  · · ·  P

t

1{h
t

(

˜

x

N

) = ỹ
N

}. Recall that NormalHedge.DT is
essentially playing a Hedge game using NormalHedge.DT with loss `

t,i

= 1{h
t

(x

i

) = y
i

}. There-
fore, the ✏-regret bound for the Hedge setting together with the assumption on the weak learning
algorithm implies: 8j 2 {1, . . . , N},

1

2

+ �  1

T

T

X

t=1

N

X

i=1

p

t,i

1{h
t

(x

i

) = y
i

}  1

T

T

X

t=1

1{h
t

(

˜

x

j

) = ỹ
j

}+ R

j/N

T

T
, (7)

where R

j/N

T

=

˜O(

p

3T ln(N/j)) is the j/N -regret bound for NormalHedge.DT. So if j is such
that � > R

j/N

T

/T , we have 1

T

P

T

t=1

1{h
t

(

˜

x

j

) = ỹ
j

} > 1

2

, which is saying that example (

˜

x

j

, ỹ
j

)

will eventually be classified correctly by H(x) due to the fact that H(x) is taking a majority vote of
all h

t

. This is in fact true for all examples (

˜

x

i

, ỹ
i

) such that i � j and thus the training error rate
will be at most (j � 1)/N , which is of order ˜O(exp(� 1

3

T�2

)).

For the margin bound, by plugging 1{h
t

(

˜

x

j

) = ỹ
j

} = (ỹ
j

h
t

(

˜

x

j

) + 1)/2, we rewrite Eq. (7) as:

2

� � R

j/N

T

T

!

 1

T

T

X

t=1

ỹ
j

h
t

(

˜

x

j

).

Therefore, if j is such that ✓ < 2(� �R

j/N

T

/T), then the fraction of examples with margin at most
✓ is again at most (j � 1)/N , which is of order ˜O(exp(� 1

3

T (✓ � 2�)2)).

G Experiments in a Boosting Setting

We conducted experiments to compare the performance of three boosting algorithms for binary
classification: AdaBoost [14], NH-Boost (Algorithm 7) and NH-Boost.DT (Algorithm 6), using a
set of benchmark data available from the UCI repository3 and LIBSVM datasets4. Some datasets
are preprocessed according to [27]. The number of features, training examples and test examples
can be found in Table 2.

All features are binary. The weak learning algorithm is a simple (exhaustive) decision stump (see
for instance [29]). On each round, the weak learning algorithm enumerates all features, and for each
feature computes the weighted error of the corresponding stump on the weighted training examples.
Therefore, if the number of examples with zero weight is relatively large, then the weak learning
algorithm would be faster in computing the weighted error and thus faster in finding the best feature.

All boosting algorithms are run for two hundred rounds. The results are summarized in Table 3, with
bold entries being the best ones among the three (AB, NB and NBDT stand for AdaBoost, NH-Boost
and NH-Boost.DT respectively). As we can see, in terms of training error and test error, all three
algorithms have similar performance. However, our NH-Boost.DT algorithm is always the fastest
one. The average fraction of examples with zero weights for NH-Boost.DT is significantly higher
than the one for NH-Boost (note that AdaBoost does not assign zero weight at all). We plot the
change of this fraction over rounds in Figure 1 (using three datasets). As both algorithms proceed,
they tend to ignore more and more examples on each round, but NH-Boost.DT consistently ignores
more examples than NH-Boost.

Since s
t,i

is positively correlated to the margin of example i (1
t

P

t

⌧=1

y
i

h
⌧

(x

i

)) and large s
t,i

leads
to zero weight, the above phenomenon in fact implies that the examples’ margins should be larger for

3
http://archive.ics.uci.edu/ml/

4
http://www.csie.ntu.edu.tw/

˜

cjlin/libsvmtools/datasets/

18

NH-Boost.DT than for NH-Boost. This is confirmed by Figure 2, where we plot the final cumulative
margins on three datasets (i.e. each point represents the fraction of examples with at most some fixed
margin). One can see that the lines for NH-Boost.DT are below the ones for NH-Boost (and even
AdaBoost) for most time, meaning that NH-Boost.DT achieves larger margins in general. This could
explain NH-Boost.DT’s better test error on some datasets.

Table 2: Description of datasets

Data #feature #training #test
a9a 123 32,561 16,281

census 131 1,000 1,000
ocr49 403 1,000 1,000
splice 240 500 500
w8a 300 49,749 14,951

Table 3: Experiment results

Time (s) Zeros (%) Training Error (%) Test Error (%)
Data AB NB NBDT NB NBDT AB NB NBDT AB NB NBDT
a9a 57.5 72.5 46.2 1.1 22.1 15.4 15.8 15.5 15.0 15.6 15.2

census 1.7 2.2 1.4 2.2 19.2 15.6 17.0 15.4 18.7 18.6 18.3
ocr49 5.1 4.7 3.0 17.1 42.0 1.7 1.7 2.4 5.5 5.9 5.8
splice 1.6 1.5 0.9 22.2 45.1 0.0 0.0 0.4 9.4 8.6 8.2
w8a 237.6 244.7 170.7 3.0 29.3 2.6 2.2 2.4 2.7 2.3 2.6

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

#Rounds

F
ra

ct
io

n
 o

f
Z

e
ro

 W
e
ig

h
ts

NB
NBDT

(a) census

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

#Rounds

F
ra

ct
io

n
 o

f
Z

e
ro

 W
e
ig

h
ts

NB
NBDT

(b) splice

20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

#Rounds

F
ra

ct
io

n
 o

f
Z

e
ro

 W
e
ig

h
ts

NB
NBDT

(c) w8a

Figure 1: Comparison of fraction of zero weights

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(a) census

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(b) splice

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

F
ra

ct
io

n

AB
NB
NBDT

(c) w8a

Figure 2: Comparison of cumulative margins

19

