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1 Proof for Theorem 1

Theorem 1. Let I be the identity matrix and ρ(W) be the spectral radius of the matrix W, respec-
tively. If 0 < z < 1/ρ(W), then ζz(G) = 1/ det(I− zW).

Proof. By definition, ν� and W are related as

ν� =
∑

γ�∈κ�

νγ�
= tr(W�), (1)

where tr(W�) denotes the trace of the matrix power W�. Suppose that the eigen-decomposition of
W is W = QΛQ−1, where the diagonal matrix Λ = diag(λ1, . . . , λn). Then we have

ζz(G) = exp(tr(

∞∑

�=1

z�

�
W�)) = exp(tr(

∞∑

�=1

z�

�
QΛ�Q−1))

= exp(tr(
∞∑

�=1

Λ�)) (2)

= exp(
n∑

i=1

∞∑

�=1

1

�
(zλi)

�), (3)

where λi is the i-th eigenvalue of W. Recall that for 0 < x < 1, ln(1 − x) =
∑∞

�=1 −x�

� . Since
|zλi| < 1, we have

ζz(G) = exp(−
n∑

i=1

ln(I− zλi)) = 1/(

n∏

i=1

(I− zλi))

=1/ det(I− zΛ) (4)

=1/ det(I− zW), (5)

which completes the proof.

2 Proof for Theorem 2

Theorem 2. Given εG and εG/xj
as in Theorem 1, the point extremeness measure εxj

of point xj

satisfies εxj
= (I − zW)−1

(jj), i.e., the point extremeness measure of point xj is equal to the j-th
diagonal entry of the matrix (I− zW)−1.
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Proof. By Theorem 1, the structural complexity of the remaining graph, εG/xj
, has the determinant

form εG/xj
= 1/ det(I − zWjj), where Wjj denotes the reduced matrix after removing the j-th

column and j-th row of W. Then we have

εxj
=

det(I− zWjj)

det(I− zW)
. (6)

By definition of the adjugate matrix adj(I− zW), we have

adj(I− zW)(jj) = (−1)(j+j) det(I− zWjj). (7)

From the property of matrix inverse, we can write

(I− zW)−1 =
1

det(I− zW)
adj(I− zW). (8)

Combining Eq. (6)(7)(8), we complete the proof.

3 Proof for Theorem 3

Theorem 3. Let the singular value decomposition of H be H = UΣV�, where Σ =

diag(λ1, . . . , λl). If H�H is not singular, then ε−1
xj

= 1 + z
∑l

k=1
λ2
k

1−zλ2
k
(Ujk)

2, where U =

HVΣ−1 and Ujk denotes the (i, j)-th entry of U.

Proof. The point extremeness measure is in the form

εxj
= (I− zHH�)−1

(jj). (9)

In Eq. (9), the left side can be expanded by the Woodbury identity [2]

(I− zHH�)−1 = I+ zH(I− zH�H)−1H�. (10)

Substituting H = UΣV� in Eq. (10) gives

(I− zHH�)−1 =I+ zUΣV�(I− zVΣ2V�)−1VΣU�

=I+ zUΣV�V(I− zΣ2)−1V�VΣU�

=I+ zUΣ(I− zΣ2)−1ΣU�. (11)

Note that Σ is a diagonal matrix. Expanding the right side of the identity above gives us

ε−1
xj

= (I− zHH�)−1
(jj) (12)

= 1 + z(UΣ2(I− zΣ2)−1U�)(jj) (13)

= 1 + z
l∑

k=1

λ2
k

1− zλ2
k

(Ujk)
2, (14)

which completes the proof.

4 Experiments

The performance of learning data representation on the Caltech dataset [1] is shown in Fig. 1. We
illustrate the recognition rates when the number of labeled samples for training the classifier varies
as L = {5, 10, 15, 20, 25, 30} images per class.
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Figure 1: The performance of learning data representation on Caltech101.We vary the number of
labeled training samples per class as L = {5, 10, 15, 20, 25, 30} to yield the recognition rates. The
best representation scheme of each compared method when L = 30 is used for this figure.
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