
Appendix

A.1 Proof of Theorem 1

Theorem 1. If v
g

is a linear function of the features, that is, v
g

(x) = ✓>
⇤ �(x), then OIS-LS is an

unbiased estimator, that is, EEE
l

[
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n

] = ✓⇤.

Proof. The proof is given by the following derivation:
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A.2 Proof of Theorem 2

Theorem 2. Even if v
g

is a linear function of the features, that is, v
g

(x) = ✓>
⇤ �(x), the WIS-LS

estimator defined in (6) is a biased estimator, that is, EEE
l

[
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n

] 6= ✓⇤.

Proof. : We prove it by providing a counterexample to the claim that EEE
l
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] = ✓⇤. Consider
X = {x} and �(x) = 1. It is easy to see that in this case v
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= ✓⇤ = EEE
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]. Then the WIS-LS
estimator ˆ✓

n

reduces to the WIS estimator:
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which is a biased estimator, that is, EEE
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. Hence, in general, EEE
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A.3 Proof of Theorem 3

Theorem 3. The OIS-LS estimator ˜✓
n

is a consistent estimator of the MSE solution ✓⇤ given in (4).

Proof. Due to the strong law of large numbers
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Then it follows that ˜✓
n

w.p.1�! ✓⇤.

A.4 Proof of Theorem 4

Theorem 4. The WIS-LS estimator ˆ✓
n

is a consistent estimator of the MSE solution ✓⇤ given in (4).

Proof. It is very similar to the above proof. The only difference is that here we have to show
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numbers noting that EEE
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A.5 Proof of Theorem 5

Theorem 5. If the features form an orthonormal basis, then the OIS-LS estimate ˜✓
>
n

�(x) of input
x is equivalent to the OIS estimate of the outputs corresponding to x.

Proof. Let � denote to be the feature matrix the rows of which contain the feature vectors of dif-
ferent unique inputs: � =

�
�(x1), . . . ,�(x|X |)

�>, where x1, . . . , x|X | are different unique inputs.
Then the vector containing the estimated conditional expectation of outputs for each unique input
according to the OIS-LS estimator can be written as

�˜✓
n

= �

 
X

x2X
n
x

�(x)�(x)>
!�1 X

x2X

 
n

xX

i=1

⇢
x,i

Y
x,i

!
�(x) = �

�
�>N�

��1
�>y,

where n
x

is the number of times input x is observed among n samples, Y
x,i

is the output correspond-
ing to the ith occurrence of input x and ⇢

x,i

is the corresponding importance-sampling ratio. Here,
N is a diagonal matrix where the ith diagonal element contains n
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Note that, due to orthonormality of the features, � is necessarily a square matrix and full rank.
Therefore, it follows that the vector of the estimates can be written as
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The element of this vector corresponding to any input x is the ordinary importance-sampling esti-
mator of its corresponding outputs: n�1
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A.6 Proof of Theorem 6

Theorem 6. If the features form an orthonormal basis, then the WIS-LS estimate ˆ✓
>
n

�(x) of input
x is equivalent to the WIS estimate of the outputs corresponding to x.

Proof. The proof is similar to the proof of Theorem 5. First, we write the vector of the estimates
according to the WIS-LS estimate as
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where R is a diagonal matrix with each diagonal element containing the total
summation of the importance-sampling ratios corresponding to each input: R =
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The element of this vector corresponding to any input x is the WIS estimate of its corresponding
outputs: (
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A.7 Proof of Theorem 7

Theorem 7. At termination, the algorithm defined by (7) is equivalent to the WIS-LS method in the
sense that if �0 = · · · = �
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= �0 = · · · = �
t�1 = 1 and �
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= 0, then ✓
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A.8 Derivations of the recursive updates of b
k,t

and A
k,t

in t

The derivations are given below:
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