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Abstract

Importance sampling is an essential component of off-policy model-free rein-
forcement learning algorithms. However, its most effective variant, weighted im-
portance sampling, does not carry over easily to function approximation and, be-
cause of this, it is not utilized in existing off-policy learning algorithms. In this
paper, we take two steps toward bridging this gap. First, we show that weighted
importance sampling can be viewed as a special case of weighting the error of
individual training samples, and that this weighting has theoretical and empiri-
cal benefits similar to those of weighted importance sampling. Second, we show
that these benefits extend to a new weighted-importance-sampling version of off-
policy LSTD(�). We show empirically that our new WIS-LSTD(�) algorithm can
result in much more rapid and reliable convergence than conventional off-policy
LSTD(�) (Yu 2010, Bertsekas & Yu 2009).

1 Importance sampling and weighted importance sampling

Importance sampling (Kahn & Marshall 1953, Rubinstein 1981, Koller & Friedman 2009) is a well-
known Monte Carlo technique for estimating an expectation under one distribution given samples
from a different distribution. Consider that data samples Y

k

2 R are generated i.i.d. from a sample
distribution l, but we are interested in estimating the expected value of these samples, v

g

.
= EEE

g

[Y
k

],
under a different distribution g. In importance sampling this is achieved simply by averaging the
samples weighted by the ratio of their likelihoods ⇢

k

.
=

g(Y
k

)
l(Y

k

) , called the importance-sampling
ratio. That is, v

g

is estimated as:

ṽ
g

.
=

P
n

k=1 ⇢
k

Y
k

n
. (1)

This is an unbiased estimate because each of the samples it averages is unbiased:

EEE
l

[⇢
k

Y
k

] =

Z

y

l(y)
g(y)

l(y)
y dy =

Z

y

g(y)y dy = EEE
g

[Y
k

] = v
g

.

Unfortunately, this importance sampling estimate is often of unnecessarily high variance. To see
how this can happen, consider a case in which the samples Y

k

are all nearly the same (under both
distributions) but the importance-sampling ratios ⇢

k

vary greatly from sample to sample. This should
be an easy case because the samples are so similar for the two distributions, but importance sampling
will average the ⇢

k

Y
k

, which will be of high variance, and thus its estimates will also be of high
variance. In fact, without further bounds on the importance-sampling ratios, ṽ

g

may have infinite
variance (Andradóttir et al. 1995, Robert & Casella 2004).

An important variation on importance sampling that often has much lower variance is weighted im-
portance sampling (Rubinstein 1981, Koller & Friedman 2009). The weighted importance sampling
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(WIS) estimate v
g

as a weighted average of the samples with importance-sampling ratios as weights:

v̂
g

.
=

P
n

k=1 ⇢
k

Y
kP

n

k=1 ⇢
k

.

This estimate is biased, but consistent (asymptotically correct) and typically of much lower variance
than the ordinary importance-sampling (OIS) estimate, as acknowledged by many authors (Hester-
berg 1988, Casella & Robert 1998, Precup, Sutton & Singh 2000, Shelton 2001, Liu 2001, Koller
& Friedman 2009). For example, in the problematic case sketched above (near constant Y

k

, widely
varying ⇢

k

) the variance of the WIS estimate will be related to the variance of Y
k

. Note also that
when the samples are bounded, the WIS estimate has bounded variance, because the estimate itself
is bounded by the highest absolute value of Y

k

, no matter how large the ratios ⇢
k

are (Precup, Sutton
& Dasgupta 2001).

Although WIS is the more successful importance sampling technique, it has not yet been extended
to parametric function approximation. This is problematic for applications to off-policy reinforce-
ment learning, in which function approximation is viewed as essential for large-scale applications
to sequential decision problems with large state and action spaces. Here an important subproblem is
the approximation of the value function—the expected sum of future discounted rewards as a func-
tion of state—for a designated target policy that may differ from that used to select actions. The
existing methods for off-policy value-function approximation either use OIS (Maei & Sutton 2010,
Yu 2010, Sutton et al. 2014, Geist & Scherrer 2014, Dann et al. 2014) or use WIS but are limited
to the tabular or non-parametric case (Precup et al. 2000, Shelton 2001). How to extend WIS to
parametric function approximation is important, but far from clear (as noted by Precup et al. 2001).

2 Importance sampling for linear function approximation

In this section, we take the first step toward bridging the gap between WIS and off-policy learning
with function approximation. In a general supervised learning setting with linear function approxi-
mation, we develop and analyze two importance-sampling methods. Then we show that these two
methods have theoretical properties similar to those of OIS and WIS. In the fully-representable case,
one of the methods becomes equivalent to the OIS estimate and the other to the WIS estimate.

The key idea is that OIS and WIS can be seen as least-squares solutions to two different empirical
objectives. The OIS estimate is the least-squares solution to an empirical mean-squared objective
where the samples are importance weighted:

ṽ
g

= argmin

v

1

n

nX

k=1

(⇢
k

Y
k

� v)
2

=)
nX

k=1

(⇢
k

Y
k

� ṽ
g

) = 0 =) ṽ
g

=

P
n

k=1 ⇢
k

Y
k

n
. (2)

Similarly, the WIS estimate is the least-squares solution to an empirical mean-squared objective
where the individual errors are importance weighted:

v̂
g

= argmin

v

1

n

nX

k=1

⇢
k

(Y
k

� v)
2

=)
nX

k=1

⇢
k

(Y
k
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g

) = 0 =) v̂
g

=

P
n

k=1 ⇢
k

Y
kP

n

k=1 ⇢
k

. (3)

We solve similar empirical objectives in a general supervised learning setting with linear function
approximation to derive the two new methods.

Consider two correlated random variables X
k

and Y
k

, where X
k

takes values from a finite set X ,
and where Y

k

2 R. We want to estimate the conditional expectation of Y
k

for each x 2 X under
a target distribution g

Y |X . However, the samples (X
k

, Y
k

) are generated i.i.d. according to a joint
sample distribution l

XY

(·) with conditional probabilities l
Y |X that may differ from the conditional

target distribution. Each input is mapped to a feature vector �
k

.
= �(X

k

) 2 Rm, and the goal is to
estimate the expectation EEE

gY |X [Y
k

| X
k

= x] as a linear function of the features

✓>�(x) ⇡ v
g

(x)
.
= EEE

g

Y |X [Y
k

|X
k

= x] .

Estimating this expectation is again difficult because the target joint distribution of the input-output
pairs g

XY

can be different than the sample joint distribution l
XY

. Generally, the discrepancy in
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the joint distribution may arise from two sources: difference in marginal distribution of inputs,
g
X

6= l
X

, and difference in the conditional distribution of outputs, g
Y |X 6= l

Y |X . Problems where
only the former discrepancy arise are known as covariate shift problems (Shimodaira 2000). In
these problems the conditional expectation of the outputs is assumed unchanged between the target
and the sample distributions. In off-policy learning problems, the discrepancy between conditional
probabilities is more important. Most off-policy learning methods correct only the discrepancy
between the target and the sample conditional distributions of outputs (Hachiya et al. 2009, Maei &
Sutton 2010, Yu 2010, Maei 2011, Geist & Scherrer 2014, Dann et al. 2014). In this paper, we also
focus only on correcting the discrepancy between the conditional distributions.

The problem of estimating v
g

(x) as a linear function of features using samples generated from l can
be formulated as the minimization of the mean squared error (MSE) where the solution is as follows:

✓⇤=̇ argmin

✓
EEE
l

X

⇣
EEE
g

Y |X [Y
k

|X
k

]� ✓>�
k

⌘2�
= EEE

l

X

⇥
�

k

�>
k

⇤�1 EEE
l

X

⇥
EEE
g

Y |X [Y
k

|X
k

]�
k

⇤
. (4)

Similar to the empirical mean-squared objectives defined in (2) and (3), two different empirical
objectives can be defined to approximate this solution. In one case the importance weighting is
applied to the output samples, Y

k

, and in the other case the importance weighting is applied to the
error, Y

k

� ✓>�
k

,

˜J
n

(✓)
.
=

1

n

nX

k=1

⇣
⇢
k

Y
k

� ✓>�
k

⌘2
;

ˆJ
n

(✓)
.
=

1

n

nX

k=1

⇢
k

⇣
Y
k

� ✓>�
k

⌘2
,

where importance-sampling ratios are defined by ⇢
k

.
= g

Y |X(Y
k

|X
k

)/l
Y |X(Y

k

|X
k

).

We can minimize these objectives by equating the derivatives of the above empirical objectives to
zero. Provided the relevant matrix inverses exist, the resulting solutions are, respectively

˜✓
n

.
=

 
nX

k=1

�
k

�>
k

!�1
nX

k=1

⇢
k

Y
k

�
k

, and (5)

ˆ✓
n

.
=

 
nX

k=1

⇢
k

�
k

�>
k

!�1
nX

k=1

⇢
k

Y
k

�
k

. (6)

We call ˜✓ the OIS-LS estimator and ˆ✓ the WIS-LS estimator.

A least-squares method similar to WIS-LS above was introduced for covariate shift problems by
Hachiya, Sugiyama and Ueda (2012). Although superficially similar, that method uses importance-
sampling ratios to correct for the discrepancy in the marginal distributions of inputs, whereas
WIS-LS corrects for the discrepancy in the conditional expectations of the outputs. For the fully-
representable case, unlike WIS-LS, the method of Hachiya et al. becomes an ordinary Monte Carlo
estimator with no importance sampling.

3 Analysis of the least-squares importance-sampling methods

The two least-squares importance-sampling methods have properties similar to those of the OIS and
the WIS methods. In Theorems 1 and 2, we prove that when v

g

can be represented as a linear
function of the features, then OIS-LS is an unbiased estimator of ✓⇤, whereas WIS-LS is a biased
estimator, similar to the WIS estimator. If the solution is not linearly representable, least-squares
methods are not generally unbiased. In Theorem 3 and 4, we show that both least-squares estimators
are consistent for ✓⇤. Finally, we demonstrate that the least-squares methods are generalizations of
OIS and WIS by showing, in Theorem 5 and 6, that in the fully representable case (when the features
form an orthonormal basis) OIS-LS is equivalent to OIS and WIS-LS is equivalent to WIS.

Theorem 1. If v
g

is a linear function of the features, that is, v
g

(x) = ✓>
⇤ �(x), then OIS-LS is an

unbiased estimator, that is, EEE
l

XY

[

˜✓
n

] = ✓⇤.

Theorem 2. Even if v
g

is a linear function of the features, that is, v
g

(x) = ✓>
⇤ �(x), WIS-LS is in

general a biased estimator, that is, EEE
l

XY

[

ˆ✓
n

] 6= ✓⇤.
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Theorem 3. The OIS-LS estimator ˜✓
n

is a consistent estimator of the MSE solution ✓⇤ given in (4).

Theorem 4. The WIS-LS estimator ˆ✓
n

is a consistent estimator of the MSE solution ✓⇤ given in (4).

Theorem 5. If the features form an orthonormal basis, then the OIS-LS estimate ˜✓
>
n

�(x) of input
x is equivalent to the OIS estimate of the outputs corresponding to x.

Theorem 6. If the features form an orthonormal basis, then the WIS-LS estimate ˆ✓
>
n

�(x) of input
x is equivalent to the WIS estimate of the outputs corresponding to x.

Proofs of Theorem 1-6 are given in the Appendix.

The WIS-LS estimate is perhaps the most interesting of the two least-squares estimates, because it
generalizes WIS to parametric function approximation for the first time and extends its advantages.

4 A new off-policy LSTD(�) with WIS

In sequential decision problems, off-policy learning methods based on important sampling can suffer
from the same high-variance issues as discussed above for the supervised case. To address this, we
extend the idea of WIS-LS to off-policy reinforcement learning and construct a new off-policy WIS-
LSTD(�) algorithm.

We first explain the problem setting. Consider a learning agent that interacts with an environment
where at each step t the state of the environment is S

t

and the agent observes a feature vector
�

t

.
= �(S

t

) 2 Rm. The agent takes an action A
t

based on a behavior policy b(·|S
t

), that is typically
a function of the state features. The environment provides the agent a scalar (reward) signal R

t+1

and transitions to state S
t+1. This process continues, generating a trajectory of states, actions and

rewards. The goal is to estimate the values of the states under the target policy ⇡, defined as the
expected returns given by the sum of future discounted rewards:

v
⇡

(s)
.
= EEE

" 1X

t=0

R
t+1

tY

k=1

�(S
k

) | S0 = s, A
t

⇠ ⇡(·|S
t

), 8t

#
,

where �(S
k

) 2 [0, 1] is a state-dependent degree of discounting on arrival in S
k

(as in Sutton et al.
2014). We assume the rewards and discounting are chosen such that v

⇡

(s) is well-defined and finite.

Our primary objective is to estimate v
⇡

as a linear function of the features: v
⇡

(s) ⇡ ✓>�(s), where
✓ 2 Rm is a parameter vector to be estimated. As before, we need to correct for the difference
in sample distribution resulting from the behavior policy and the target distribution as induced by
the target policy. Consider a partial trajectory from time step k to time t, consisting of a sequence
S
k

, A
k

, R
k

, S
k+1, . . . , St

. The probability of this trajectory occurring given it starts at S
k

under the
target policy will generally differ from its probability under the behavior policy. The importance-
sampling ratio ⇢t

k

is defined to be the ratio of these probabilities. This importance-sampling ratio
can be written in terms of the product of action-selection probabilities without needing a model of
the environment (Sutton & Barto 1998):

⇢t
k

.
=

Q
t�1
i=k

⇡(A
i

|S
i

)

Q
t�1
i=k

b(A
i

|S
i

)

=

t�1Y

i=k

⇡(A
i

|S
i

)

b(A
i

|S
i

)

=

t�1Y

i=k

⇢
i

,

where we use the shorthand ⇢
i

.
= ⇢i+1

i

= ⇡(A
i

|S
i

)/b(A
i

|S
i

).

We incorporate a common technique to reinforcement learning (RL) where updates are estimated
by bootstrapping, fully or partially, on previously constructed state-value estimates. Bootstrapping
potentially reduces the variance of the updates compared to using full returns and makes RL algo-
rithms applicable to non-episodic tasks. In this paper we assume that the bootstrapping parameter
�(s) 2 [0, 1] may depend on the state s (as in Sutton & Barto 1998, Maei & Sutton 2010). In the
following, we use the notational shorthands �

k

.
= �(S

k

) and �
k

.
= �(S

k

).

Following Sutton et al. (2014), we construct an empirical loss as a sum of pairs of squared corrected
and uncorrected errors, each corresponding to a different number of steps of lookahead, and each
weighted as a function of the intervening discounting and bootstrapping. Let Gt

k

.
= R

k+1+ . . .+R
t

be the undiscounted return truncated after looking ahead t � k steps. Imagine constructing the
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empirical loss for time 0. After leaving S0 and observing R1 and S1, the first uncorrected error is
G1

0�✓>�0, with weight equal to the probability of terminating 1� �1. If we do not terminate, then
we continue to S1 and form the first corrected error G1

0 + v>�1 � ✓>�0 using the bootstrapping
estimate v>�1. The weight on this error is �1(1��1), and the parameter vector v may differ from ✓.
Continuing to the next time step, we obtain the second uncorrected error G2

0�✓>�0 and the second
corrected error G2

0+v>�2�✓>�0, with respective weights �1�1(1��2) and �1�1�2(1��2). This
goes on until we reach the horizon of our data, say at time t, when we bootstrap fully with v>�

t

,
generating a final corrected return error of Gt

0 + v>�
t

� ✓>�0 with weight �1�1 · · · �t�1�t�1�t.
The general form for the uncorrected error is ✏t

k

(✓)
.
= Gt

k

� ✓>�
k

, and the general form for the
corrected error is ¯�t

k

(✓,v)
.
= Gt

k

+ v>�
t

� ✓>�
k

. All these errors could be squared, weighted by
their weights, and summed to form the overall empirical loss. In the off-policy case, we need to also
weight the squares of the errors ✏t

k

and ¯�t
k

by the importance-sampling ratio ⇢t
k

. Hence, the overall
empirical loss at time k for data up to time t can be written as

`tk(✓,v)
.
= ⇢k

t�1X

i=k+1

Ci�1
k


(1� �i)

⇣
✏ik(✓)

⌘2
+ �i(1� �i)

⇣
�̄ik(✓,v)

⌘2�

+ ⇢kC
t�1
k

h
(1� �t)

�
✏tk(✓)

�2
+ �t

�
�̄tk(✓,v)

�2i
, where Ct

k
.
=

tY

j=k+1

�j�j⇢j .

This loss differs from that used by other LSTD(�) methods in that importance weighting is applied
to the individual errors within `t

k

(✓,v).

Now, we are ready to state the least-squares problem. As noted by Geist & Scherrer (2014), LSTD(�)
methods can be derived by solving least-squares problems where estimates at each step are matched
with multi-step returns starting from those steps given that bootstrapping is done using the solution
itself. Our proposed new method, called WIS-LSTD(�), computes at each time t the solution to the
least-squares problem:

✓
t

.
= argmin

✓

t�1X

k=0

`t
k

(✓,✓
t

).

At the solution, the derivative of the objective is zero: @

@✓

P
t�1
k=0 `t

k

(✓,✓
t

)

��
✓=✓

t

=

�
P

t�1
k=0 2�

⇢

k,t

(✓
t

,✓
t

)�
k

= 0, where the errors �⇢
k,t

are defined by

�⇢
k,t

(✓,v)
.
= ⇢

k

t�1X

i=k+1

Ci�1
k

⇥
(1� �

i

)✏i
k

(✓) + �
i

(1� �
i

)

¯�i
k

(✓,v)
⇤

+ ⇢
k

Ct�1
k

⇥
(1� �

t

)✏t
k

(✓) + �
t

¯�t
k

(✓,v)
⇤
.

Next, we separate the terms of �⇢
k,t

(✓
t

,✓
t

)�
k

that involve ✓
t

from those that do not:

�⇢
k,t

(✓
t

,✓
t

)�
k

= b
k,t

�A
k,t

✓
t

, where b
k,t

2 Rm, A
k,t

2 Rm⇥m and they are defined as

b
k,t

.
= ⇢

k

t�1X

i=k+1

Ci�1
k

(1� �
i

�
i

)Gi

k

�
k

+ ⇢
k

Ct�1
k

Gt

k

�
k

,

A
k,t

.
= ⇢

k

t�1X

i=k+1

Ci�1
k

�
k

((1� �
i

�
i

)�
k

� �
i

(1� �
i

)�
i

)

>
+ ⇢

k

Ct�1
k

�
k

(�
k

� �
t

�
t

)

>.

Therefore, the solution can be found as follows:
t�1X

k=0

(b
k,t

�A
k,t

✓
t

) = 0 =) ✓
t

= A�1
t

b
t

, where A
t

.
=

t�1X

k=0

A
k,t

, b
t

.
=

t�1X

k=0

b
k,t

. (7)

In the following we show that WIS-LS is a special case of the above algorithm defined by (7). As
Theorem 6 shows that WIS-LS generalizes WIS, it follows that the above algorithm generalizes WIS
as well.
Theorem 7. At termination, the algorithm defined by (7) is equivalent to the WIS-LS method in the
sense that if �0 = · · · = �

t

= �0 = · · · = �
t�1 = 1 and �

t

= 0, then ✓
t

defined in (7) equals ˆ✓
t

as
defined in (6), with Y

k

.
= Gt

k

. (Proved in the Appendix).
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Our last challenge is to find an equivalent efficient online algorithm for this method. The solution in
(7) cannot be computed incrementally in this form. When a new sample arrives at time t+1, A

k,t+1

and b
k,t+1 have to be computed for each k = 0, . . . , t, and hence the computational complexity of

this solution grows with time. It would be preferable if the solution at time t+1 could be computed
incrementally based on the estimates from time t, requiring only constant computational complexity
per time step. It is not immediately obvious such an efficient update exists. For instance, for � = 1

this method achieves full Monte Carlo (weighted) importance-sampling estimation, which means
whenever the target policy deviates from the behavior policy all previously made updates have to
be unmade so that no updates are made towards a trajectory which is impossible under the target
policy. Sutton et al. (2014) show it is possible to derive efficient updates in some cases with the use
of provisional parameters which keep track of the provisional updates that might need to be unmade
when a deviation occurs. In the following, we show that using such provisional parameters it is also
possible to achieve an equivalent efficient update for (7).

We first write both b
k,t

and A
k,t

recursively in t (derivations in Appendix A.8):
b
k,t+1 = b

k,t

+ ⇢
k

Ct

k

R
t+1�k

+ (⇢
t

� 1)�
t

�
t

⇢
k

Ct�1
k

Gt

k

�
k

,

A
k,t+1 = A

k,t

+ ⇢
k

Ct

k

�
k

(�
t

� �
t+1�t+1)

>
+ (⇢

t

� 1)�
t

�
t

⇢
k

Ct�1
k

�
k

(�
k

� �
t

)

>.

Using the above recursions, we can write the updates of both b
t

and A
t

incrementally. The vector
b
t

can be updated incrementally as

b
t+1 =

tX

k=0

b
k,t+1 =

t�1X

k=0

b
k,t+1 + b

t,t+1 =

t�1X

k=1

b
k,t

+ ⇢
t

R
t+1�t

+ R
t+1

t�1X

k=1

⇢
k
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k

�
k

+ (⇢
t

� 1)�
t

�
t

t�1X

k=1

⇢
k

Ct�1
k

Gt

k

�
k

= b
t

+ R
t+1et + (⇢

t

� 1)u
t

, (8)

where the eligibility trace e
t

2 Rm and the provisional vector u
t

2 Rm are defined as follows:

et = ⇢t�t +
t�1X

k=1

⇢kC
t
k�k = ⇢t�t + ⇢t�t�t

 
⇢t�1�t�1 +

t�2X
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⇢kC
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k �k

!
= ⇢t(�t + �t�tet�1), (9)
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k=1

⇢kC
t�1
k Gt

k�k = �t�t
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k �k
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!
= �t�t (⇢t�1ut�1 +Rtet�1) . (10)

The matrix A
t

can be updated incrementally as

A
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tX

k=0

A
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A
k,t+1 +A
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A
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t
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t+1�t+1)

>

+
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⇢
k
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�
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>
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t

�
t

t�1X

k=1

⇢
k
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k

�
k

(�
k

� �
t

)

>

= A
t

+ e
t

(�
t

� �
t+1�t+1)

>
+ (⇢

t

� 1)V
t

, (11)
where the provisional matrix V
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2 Rm⇥m is defined as
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⇢
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�
k
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t�1 � �

t

)

>
+ ⇢

t�1�t�1(�t�1 � �
t

)

>

!

= �
t

�
t

�
⇢
t�1Vt�1 + e

t�1(�t�1 � �
t

)

>� . (12)

Then the parameter vector can be updated as: ✓
t+1 = (A

t+1)
�1 b

t+1. (13)
Equations (8–13) comprise our WIS-LSTD(�). Its per-step computational complexity is O(m3

),
where m is the number of features. The computational cost of this method does not increase with
time. At present we are unsure whether or not there is an O(m2

) implementation.
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Theorem 8. The off-policy LSTD(�) method defined in (8–13) is equivalent to the off-policy
LSTD(�) method defined in (7) in the sense that they compute the same ✓

t

at each time t.

Proof. The result follows immediately from the above derivation.

It is easy to see that in the on-policy case this method becomes equivalent to on-policy LSTD(�)
(Boyan 1999) by noting that the third term of both b

t

and A
t

updates in (8) and (11) becomes zero,
because in the on-policy case all the importance-sampling ratios are 1.

Recently Dann et al. (2014) proposed another least-squares based off-policy method called recur-
sive LSTD-TO(�). Unlike our algorithm, that algorithm does not specialize to WIS in the fully repre-
sentable case, and it does not seem as closely related to WIS. The Adaptive Per-Decision Importance
Weighting (APDIW) method by Hachiya et al. (2009) is superficially similar to WIS-LSTD(�), there
are several important differences. APDIW is a one-step method that always fully bootstraps whereas
WIS-LSTD(�) covers the full spectrum of multi-step backups including both one-step backup and
Monte Carlo update. In the fully representable case, APDIW does not become equivalent to the WIS
estimate, whereas WIS-LSTD(1) does. Moreover, APDIW does not find a consistent estimation of
the off-policy target whereas WIS algorithms do.

5 Experimental results

We compared the performance of the proposed WIS-LSTD(�) method with the conventional off-
policy LSTD(�) by Yu (2010) on two random-walk tasks for off-policy policy evaluation. These
random-walk tasks consist of a Markov chain with 11 non-terminal and two terminal states. They
can be imagined to be laid out horizontally, where the two terminal states are at the left and the right
ends of the chain. From each non-terminal state, there are two actions available: left, which leads to
the state to the left and right, which leads to the state to the right. The reward is 0 for all transitions
except for the rightmost transition to the terminal state, where it is +1. The initial state was set to
the state in the middle of the chain. The behavior policy chooses an action uniformly randomly,
whereas the target policy chooses the right action with probability 0.99. The termination function �
was set to 1 for the non-terminal states and 0 for the terminal states.

We used two tasks based on this Markov chain in our experiments. These tasks differ by how the
non-terminal states were mapped to features. The terminal states were always mapped to a vector
with all zero elements. For each non-terminal state, the features were normalized so that the L2 norm
of each feature vector was one. For the first task, the feature representation was tabular, that is, the
feature vectors were standard basis vectors. In this representation, each feature corresponded to only
one state. For the second task, the feature vectors were binary representations of state indices. There
were 11 non-terminal states, hence each feature vector had blog2(11)c+ 1 = 4 components. These
vectors for the states from left to right were (0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 0, 1, 1)>, . . . , (1, 0, 1, 1)>,
which were then normalized to get unit vectors. These features heavily underrepresented the states,
due to the fact that 11 states were represented by only 4 features.

We tested both algorithms for different values of constant �, from 0 to 0.9 in steps of 0.1 and from
0.9 to 1.0 in steps of 0.025. The matrix to be inverted in both methods was initialized to ✏I, where the
regularization parameter ✏ was varied by powers of 10 with powers chosen from -3 to +3 in steps of
0.2. Performance was measured as the empirical mean squared error (MSE) between the estimated
value of the initial state and its true value under the target policy projected to the space spanned by
the given features. This error was measured at the end of each of 200 episodes for 100 independent
runs.

Figure 1 shows the results for the two tasks in terms of empirical convergence rate, optimum perfor-
mance and parameter sensitivity. Each curve shows MSE together with standard errors. The first row
shows results for the tabular task and the second row shows results for the function approximation
task. The first column shows learning curves using (�, ✏) = (0, 1) for the first task and (0.95, 10) for
the second. It shows that in both cases WIS-LSTD(�) learned faster and gave lower error throughout
the period of learning. The second column shows performance with respect to different � optimized
over ✏. The x-axis is plotted in a reverse log scale, where higher values are more spread out than the
lower values. In both tasks, WIS-LSTD(�) outperformed the conventional LSTD(�) for all values of
�. For the best parameter setting (best � and ✏), WIS-LSTD(�) outperformed LSTD(�) by an order
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Figure 1: Empirical comparison of our WIS-LSTD(�) with conventional off-policy LSTD(�) on two
random-walk tasks. The empirical Mean Squared Error shown is for the initial state at the end of
each episode, averaged over 100 independent runs (and also over 200 episodes in column 2 and 3).

of magnitude. The third column shows performance with respect to the regularization parameter ✏
for three representative values of �. For a wide range of ✏, WIS-LSTD(�) outperformed conven-
tional LSTD(�) by an order of magnitude. Both methods performed similarly for large ✏, as such
large values essentially prevent learning for a long period of time. In the function approximation
task when smaller values of ✏ were chosen, � close to 1 led to more stable estimates, whereas smaller
� introduced high variance for both methods. In both tasks, the better-performing regions of ✏ (the
U-shaped depressions) were wider for WIS-LSTD(�).

6 Conclusion

Although importance sampling is essential to off-policy learning and has become a key part of mod-
ern reinforcement learning algorithms, its most effective form—WIS—has been neglected because
of the difficulty of combining it with parametric function approximation. In this paper, we have
begun to overcome these difficulties. First, we have shown that the WIS estimate can be viewed as
the solution to an empirical objective where the squared errors of individual samples are weighted
by the importance-sampling ratios. Second, we have introduced a new method for general super-
vised learning called WIS-LS by extending the error-weighted empirical objective to linear function
approximation and shown that the new method has similar properties as those of the WIS estimate.
Finally, we have introduced a new off-policy LSTD algorithm WIS-LSTD(�) that extends the ben-
efits of WIS to reinforcement learning. Our empirical results show that the new WIS-LSTD(�) can
outperform Yu’s off-policy LSTD(�) in both tabular and function approximation tasks and shows
robustness in terms of its parameters. An interesting direction for future work is to extend these
ideas to off-policy linear-complexity methods.
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