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1 Numerical experiments

Let us emphasize two practical suggestions that arise from our work:

• Tensor unfolding is superior to tensor power iteration under our spiked model. For instance,
for k = 3, we expect tensor power iteration to require β & n1/4 and unfolding to require
β & n1/2.
• For smaller values of β, iterative methods (tensor power iteration or approximate message

passing) only produce a good estimate if the initialization has a scalar product with the
ground truth v0 that is bounded away from zero.

• As a consequence of the above, side information about the unknown vector v0 can greatly
improve performances.
A special case, we will study the behavior of warm start algorithms that first perform a
singular value decomposition of Mat(X), and then apply an iterative method (tensor power
iteration or approximate message passing).

In this section we will illustrate these suggestions through numerical simulations.

Section 1.1 describes a refinement of tensor unfolding that provides a tighter relaxation. Section 1.2
compares different algorithms.

1.1 PSD-constrained principal component

Note that, for v ∈ Rn, the outer product v⊗v (regarded as an n×nmatrix) is positive semi-definite
(PSD). Considering the case k = 3, we have

Mat(X) = βvec(v0 ⊗ v0)v0
T +Mat(Z) . (1)

This remark suggests to perform a cone-constrained principal component analysis of Mat(X), where
the left singular vector (viewed as a matrix) belongs to the PDS cone. In order to write this formally,
it is convenient to introduce the operator reshapen×n : Rn2 → Rn×n that matricizes vectors as
reshapen×n(w)i,j = wn(i−1)+j . The PSD-cone-constrained principal component of Mat(X), is
defined by

(ŵ, v̂)
.
= argmax

{
〈w,Mat(X)v〉 : reshapen×n(w) � 0 , ‖w‖2 ≤ 1 , ‖v‖2 ≤ 1

}
. (2)

This optimization problem is NP hard, since it includes copositive programming as a special case.
However [1] provides rigorous and empirical evidence that problems of this type can be solved
efficiently by a projected power iteration, under statistical model on X.

Denoting P� : Rn2 → Rn2

the orthogonal projector onto the PSD cone, we iterate the following for
t ≥ 0, using random initialization of u0 ∈ Rn,{

wt = P�(Mat(X)vt),

vt+1 = Mat(X)Twt/‖Mat(X)Twt‖2 .
(3)
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Figure 1: Comparison of various algorithms for tensor PCA, for order 3 tensors (k = 3). Vari-
ous curves correspond to different algorithms: unfold (simple unfolding); rec. unfold (recursive
unfolding); PSD s.v. (PSD-constrained PCA); T-random (tensor power iteration with random ini-
tialization); T-rec.unf., T-PSD s.v.; T-unfold (tensor power iteration with each of the initializations
above). Light dotted lines are confidence bands.

1.2 Comparison of different algorithms

In Fig. 1 we compare different algorithms on data generated following Spiked Tensor Model with
k = 3, and n ∈ {25, 50, 100, 200, 400, 800} and for a range of values of β ∈ [2, 10]. The plots
represent measured values of the absolute correlation |〈v̂,v0〉| versus β, averaged over 50 samples
(except for n = 800, where we used 8 samples).
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Figure 2: Scaling with n of the threshold signal-to-noise ratio for different classes of algorithms.
Left: tensor power iteration with random initialization. Right: tensor unfolding.

The main findings are consistent with the theory developed above:

• Tensor power iteration (with random initialization) performs poorly with respect to other
approaches that use some form of tensor unfolding. The gap widens as the dimension n
increases.

• PSD-constrained principal component analysis (described in the last section) is slightly
superior to plain unfolding.

• All algorithms based on initial unfolding have essentially the same threshold. Above that
threshold, those that process the singular component (either by recursive unfolding or by
tensor power iteration) have superior performances over simpler one-step algorithms.

In addition, we noted that the two iterative algorithms (Tensor Power Iteration and AMP) show very
close behaviors in our experiments.

In Figure 2 we compare the scaling with n of the threshold signal-to-noise ratio for different type of
algorithms. Our heuristic arguments suggest that tensor power iteration with random initialization
will work for β & n1/2, while unfolding only requires β & n1/4 (our theorems guarantee this for,
respectively, β & n and β & n1/2). We plot the average correlation |〈v̂,v0〉| versus (respectively)
β/n1/2 and β/n1/4. The curve superposition confirms that our prediction captures the correct be-
havior already for n of the order of 50.
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