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Abstract

Existing research [4] suggests that embedding graphs on a unit sphere can be ben-
eficial in learning labels on the vertices of a graph. However the choice of optimal
embedding remains an open issue. Orthonormal representation of graphs, a class
of embeddings over the unit sphere, was introduced by Lovász [2]. In this paper,
we show that there exists orthonormal representations which are statistically con-
sistent over a large class of graphs, including power law and random graphs. This
result is achieved by extending the notion of consistency designed in the inductive
setting to graph transduction. As part of the analysis, we explicitly derive rela-
tionships between the Rademacher complexity measure and structural properties
of graphs, such as the chromatic number. We further show the fraction of vertices
of a graph G, on n nodes, that need to be labelled for the learning algorithm to be

consistent, also known as labelled sample complexity, is Ω
(
ϑ(G)
n

) 1
4

where ϑ(G)

is the famous Lovász ϑ function of the graph. This, for the first time, relates la-
belled sample complexity to graph connectivity properties, such as the density of
graphs. In the multiview setting, whenever individual views are expressed by a
graph, it is a well known heuristic that a convex combination of Laplacians [7]
tend to improve accuracy. The analysis presented here easily extends to Multi-
ple graph transduction, and helps develop a sound statistical understanding of the
heuristic, previously unavailable.

1 Introduction

In this paper we study the problem of graph transduction on a simple, undirected graph G = (V,E),
with vertex set V = [n] and edge setE ⊆ V ×V . We consider individual vertices to be labelled with
binary values, ±1. Without loss of generality we assume that the first fn vertices are labelled, i.e.,
the set of labelled vertices is given by S = [fn], where f ∈ (0, 1). Let S̄ = V \S be the unlabelled
vertex set, and let yS and yS̄ be the labels corresponding to subgraphs S and S̄ respectively.

Given G and yS , the goal of graph transduction is to learn predictions ŷ ∈ Rn, such that er0-1
S̄

[ŷ] =∑
j∈S̄ 1

[
yj 6= ȳj

]
, ȳ = sgn(ŷ) is small. To aid further discussion we introduce some notations.

Notation Let Sn−1 = {u ∈ Rn|‖u‖2 = 1} denote a (n − 1) dimensional sphere. Let Dn, Sn
and S+

n denote a set of n × n diagonal, square symmetric and square symmetric positive semi-
definite matrices respectively. Let Rn+ be a non-negative orthant. Let 1n ∈ Rn denote a vector
of all 1’s. Let [n] := {1, . . . , n}. For any M ∈ Sn, let λ1(M) ≥ . . . ≥ λn(M) denote the
eigenvalues and Mi denote the ith row of M, ∀i ∈ [n]. We denote the adjacency matrix of a
graph G by A. Let di denote the degree of vertex i ∈ [n], di := A>i 1n. Let D ∈ Dn, where
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Dii = di,∀i ∈ [n]. We refer I−D−
1
2AD−

1
2 as the Laplacian, where I denotes the identity matrix.

Let Ḡ denote the complement graph of G, with the adjacency matrix Ā = 1n1n
> − I − A. For

K ∈ S+
n and y ∈ {±1}n, the dual formulation of Support vector machine (SVM) is given by

ω(K,y) = maxα∈Rn
+
g(α,K,y)

(
=

n∑
i=1

αi − 1
2

n∑
i,j=1

αiαjyiyjKij

)
. Let Y = Ȳ = {±1}, Ŷ ⊆ R

be the label, prediction and soft-prediction spaces over V . Given a graph G and labels y ∈ Yn
on V , let cut(A,y) :=

∑
yi 6=yj Aij . We use ` : Y × Ŷ → R+ to denote any loss function.

In particular, for a ∈ Y , b ∈ Ŷ , let `0-1(a, b) = 1[ab < 0], `hinge(a, b) = (1 − ab)+
1 and

`ramp(a, b) = min(1, (1 − ab)+) denote the 0-1, hinge and ramp loss respectively. The notations
O, o, Ω, Θ will denote standard measures defined in asymptotic analysis [14].

Motivation Regularization framework is a widely used tool for learning labels on the vertices of
a graph [23, 4]

min
ŷ∈Yn

1

|S|
∑
i∈S

`(yi, ŷi) + λŷ>K−1ŷ (1)

where K is a kernel matrix and λ > 0 is an appropriately chosen regularization parameter. It was
shown in [4] that the optimal ŷ∗ satisfies the following generalization bound

ES
[
er0-1
S̄ [ŷ∗]

]
≤ c1 inf

ŷ∈Yn

{
erV [ŷ] + λŷ>K−1ŷ

}
+ c2

( trp(K)

λ|S|

)p
where er(·)

H [ŷ] := 1
|H|
∑
i∈H `

(·)(yi, ŷi), H ⊆ V 2; trp(K) =
(

1
n

∑n
i=1 K

p
ii

)1/p
, p > 0 and

c1, c2 are dependent on `. [4] argued that for good generalization, trp(K) should be a constant,
which motivated them to normalize the diagonal entries of K. It is important to note that the set of
normalized kernels is quite big and the above presented analysis gives little insight in choosing the
optimal kernel from such a set. The important problem of consistency

(
erS̄ → 0 as n → ∞, to be

formally defined in Section 3
)

of graph transduction algorithms was introduced in [5]. [5] showed
that the formulation (1), when used with a laplacian dependent kernel, achieves a generalization
error of ES [erS̄ [ŷ∗]] = O

(√
q
nf

)
, where q is the number of pure components3. Though [5]’s

algorithm is consistent for a small number of pure components, they achieve the above convergence
rate by choosing λ dependent on true labels of the unlabeled nodes, which is not practical [6].

In this paper, we formalize the notion of consistency of graph transduction algorithms and derive
novel graph-dependent statistical estimates for the following formulation.

ΛC(K,yS) = min
ȳj∈Ȳ,j∈S̄

min
α∈Rn

+

1

2
α>Kα+ C

∑
i∈S

`
(
ŷi, yi

)
+ C

∑
j∈S̄

`
(
ŷj , ȳj

)
(2)

where ŷk =
∑
i∈S Kikyiαi +

∑
j∈S̄ Kjkȳjαj , ∀k ∈ V . If all the labels are observed then [22]

showed that the above formulation is equivalent to (1). We note that the normalization step con-
sidered by [4] is equivalent to finding an embedding of a graph on a sphere. Thus, we study or-
thonormal representations of graphs [2], which define a rich class of graph embeddings on an unit
sphere. We show that the formulation (2) working with orthonormal representations of graphs is
statistically consistent over a large class of graphs, including random and power law graphs. In the
sequel, we apply Rademacher complexity to orthonormal representations of graphs and derive novel
graph-dependent transductive error bound. We also extend our analysis to study multiple graph
transduction. More specifically, we make the following contributions.

Contributions The main contribution of this paper is that we show there exists orthonormal rep-
resentations of graphs that are statistically consistent on a large class of graph families Gc. For a
special orthonormal representation—LS labelling, we show consistency on Erdös Rényi random
graphs. Given a graph G ∈ Gc, with a constant fraction of nodes labelled f = O(1), we derive

1(a)+ = max(a, 0).
2We drop the argument ŷ, when implicit from the context.
3Pure component is a connected subgraph, where all the nodes in the subgraph have the same label.
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an error convergence rate of er0-1
S̄

= O
(
ϑ(G)
n

) 1
4

, with high probability; where ϑ(G) is the Lovász

ϑ function of the graph G. Existing work [5] showed an expected convergence rate of O
(√

q
n

)
,

however q is dependent on the true labels of the unlabelled nodes. Hence their bound cannot be
computed explicitly [6]. We also apply Rademacher complexity measure to the function class as-
sociated with orthonormal representations and derive a tight bound relating to χ(G), the chromatic
number of the graph G. We show that the Laplacian inverse [4] has O(1) complexity on graphs with
high connectivity, whereas LS labelling exhibits a complexity of Θ(n

1
4 ). Experiments demonstrate

superior performance of LS labelling on several real world datasets. We derive novel transductive
error bound, relating to graph structural measures. Using our analysis, we show that observing labels

of Ω
(
ϑ(G)
n

) 1
4

fraction of the nodes is sufficient to achieve consistency. We also propose an effi-
cient Multiple Kernel Learning (MKL) based algorithm, with generalization guarantees for multiple
graph transduction. Experiments demonstrate improved performance in combining multiple graphs.

2 Preliminaries

Orthonormal Representation: [2] introduced the idea of orthonormal representations for the prob-
lem of embedding a graph on a unit sphere. More formally, an orthonormal representation of a
simple, undirected graph G = (V,E) with V = [n], is a matrix U = [u1, . . . ,un] ∈ Rd×n such
that uTi uj = 0 whenever (i, j) /∈ E and ui ∈ Sd−1 ∀i ∈ [n].

Let Lab(G) denote the set of all possible orthonormal representations of the graph G given by
Lab(G) :=

{
U|U is an Orthonormal Representation

}
. [1] recently introduced the notion of graph

embedding to Machine Learning community and showed connections to graph kernel matrices. Con-
sider the set of graph kernels K(G) := {K ∈ S+

n |Kii = 1,∀i ∈ [n];Kij = 0,∀(i, j) /∈ E}.
[1] showed that for every valid kernel K ∈ K(G), there exists an orthonormal representation
U ∈ Lab(G); and it is easy to see the other way, K = U>U ∈ K(G). Thus, the two sets,
Lab(G) and K(G) are equivalent. Orthonormal representation is also associated with an interesting
quantity, the Lovász number [2], defined as: ϑ(G) = 2

(
minK∈K(G) ω(K,1n)

)
[1]. ϑ function is a

fundamental tool for combinatorial optimization and approximation algorithms for graphs.

Lovász Sandwich Theorem: [2] Given an undirected graph G = (V,E), I
(
Ḡ
)
≤ ϑ

(
Ḡ
)
≤ χ(G);

where I
(
Ḡ
)

is the independent number of the complement graph Ḡ.

3 Statistical Consistency of Graph Transduction Algorithms

In this section, we formalize the notion of consistency of graph transduction algorithms. Given
a graph Gn = (Vn, En) of n nodes, with labels of subgraph Sn ⊆ Vn observable, let er∗

S̄n
:=

inf ỹ∈Ȳn erS̄n
[ỹ] denote the minimal unlabelled node set error. Consistency is a measure of the

quality of the learning algorithm A, comparing erS̄n
[ŷ] to er∗

S̄n
, where ŷ are the predictions made

by A. A related notion of loss consistency has been extensively studied in literature [3, 12], which
only show that the difference erS̄n

[ŷ] − erSn
[ŷ] → 0 as n → ∞ [6]. This does not confirm the

optimality of A, that is erS̄n
[ŷ]→ er∗

S̄n
. Hence, a notion stronger than loss consistency is needed.

Let Gn belong to a graph family G, ∀n. Let Πf be the uniform distribution over the random draw of
the labelled subgraph Sn ⊆ Vn, such that |Sn| = fn, f ∈ (0, 1). As discussed earlier, we want the
`-regret,RSn

[A] = erS̄n
[ŷ]−er∗

S̄n
to be small. Since, the labelled nodes are drawn randomly, there

is a small probability that one gets an unrepresentative subgraph Sn. However, for large n, we want
`-regret to be close to zero with high probability4. In other words, for every finite and fixed n, we
want to have an estimate on the `-regret, which decreases as n increases. We define the following
notion of consistency of graph transduction algorithms to capture this requirement
Definition 1. Let G be a graph family and f ∈ (0, 1) be fixed. Let V = {(vi, yi, Ei)}∞i=1 be an
infinite sequence of labelled node set, where yi ∈ Y and Ei is the edge information of node vi
with the previously observed nodes v1, . . . , vi−1, ∀i ≥ 2. Let Vn be the first n nodes in V , and let

4If G is not deterministic (e.g., Erdös Réyni), then there is small probability that one gets an unrepresentative
graph, in which case we want the `-regret to be close to zero with high probability over Gn ∼ G.
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Gn ∈ G be the graph defined by (Vn, E1, . . . , En). Let Sn ⊆ Vn, and let yn, ySn
be the labels of

Vn, Sn respectively. A learning algorithm A when given Gn and ySn
returns soft-predictions ŷ is

said to be `-consistent w.r.t G if, when the labelled subgraph Sn are random drawn from Πf , the
`-regret converges in probability to zero, i.e., ∀ε > 0

PrSn∼Πf [RSn
[A] ≥ ε]→ 0 as n→∞

In Section 6 we show that the kernel learning style algorithm (2) working with orthonormal rep-
resentations is consistent on a large class of graph families. To the best of our knowledge, we are
not aware of any literature which provide an explicit empirical error convergence rate and prove
consistency of the graph transduction algorithm considered. Before we prove our main result, we
gather useful tools—a) complexity measure, which reacts to the structural properties of the graph
(Section 4); b) generalization analysis to bound erS̄ (Section 5). In the interest of space, we defer
most of the proofs to the supplementary material5.

4 Graph Complexity Measures

In this section we apply Rademacher complexity to orthonormal representations of graphs, and relate
to the chromatic number. In particular, we study LS labelling, whose class complexity can be shown
to be greater than that of the Laplacian inverse on a large class of graphs.

Let (2) be solved for K ∈ K(G), and let U ∈ Lab(G) be the orthonormal representation cor-
responding to K (Section 2). Then by Representer’s theorem, the classifier learnt by (2) is of the
form h = Uβ, β ∈ Rn. We define Rademacher complexity of the function class associated with
orthonormal representations
Definition 2 (Rademacher Complexity). Given a graphG = (V,E), with V = [n]; let U ∈ Lab(G)
and H̄U =

{
h|h = Uβ, β ∈ Rn

}
be the function class associated with U. For p ∈ (0, 1/2], let

σ = (σ1, . . . , σn) be a vector of i.i.d. random variables such that σi ∼ {+1,−1, 0} w.p. p, p and
1 − 2p respectively. The Rademacher complexity of the graph G defined by U, H̄U is given by

R(H̄U, p) = 1
nEσ

[
suph∈H̄U

n∑
i=1

σi 〈h,ui〉
]

The above definition is motivated from [9, 3]. This is an empirical complexity measure, suited for
the transductive settings. We derive the following novel tight Rademacher bound
Theorem 4.1. Let G = (V,E) be a simple, undirected graph with V = [n], U ∈ Lab(G) and
p ∈

[
1/n, 1/2

]
. Let HU =

{
h
∣∣ h = Uβ, β ∈ Rn, ‖β‖2 ≤ tC

√
n
}
, C > 0, t ∈ [0, 1] and let

K = U>U ∈ K(G) be the graph-kernel corresponding to U. The Rademacher complexity of graph
G defined by U is given by R(HU, p) = c0tC

√
pλ1(K), where 1/2

√
2 ≤ c0 ≤

√
2 is a constant.

The above result provides a lower bound for the Rademacher complexity for any unit sphere graph
embedding. While upper-bounds maybe available [9, 3] but, to the best of our knowledge, this is the
first attempt at establishing lower bounds. The use of orthonormal representations allow us to relate
class complexity measure to graph-structural properties.
Corollary 4.2. For C, t, p = O(1), R(HU, p) = O(

√
χ(G)). (Suppl.)

Such connections between learning theory complexity measures and graph properties was previously
unavailable [9, 3]. Corollary 4.2 suggests that there exists graph regularizers with class complexity
as large as O(

√
χ(G)), which motivate us to find substantially better regularizers. In particular, we

investigate LS labelling [16]; given a graph G, LS labelling KLS ∈ K(G) is defined as

KLS =
A

ρ
+ I, ρ ≥ |λn(A)| (3)

LS labellinghas high Rademacher complexity on a large class of graphs, in particular
Corollary 4.3. For a random graph G(n, q), q ∈ [0, 1), where each edge is present independently
w.p. q; for C, t, q = O(1) the Rademacher complexity of the function class associated with LS
labelling (3) is Θ(n

1
4 ), with high probability. (Suppl.)

5mllab.csa.iisc.ernet.in/rakeshs/nips14/suppl.pdf
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For the limiting case of complete graphs, we can show that Laplacian inverse [4], the most widely
used graph regularizer has O(1) complexity (Claim 2, Suppl.), thus indicating that it may be subop-
timal for graphs with high connectivity. Experimental results illustrate our observation.

We derive a class complexity measure for unit sphere graph embeddings, which indicates the rich-
ness of the function class, and helps the learning algorithm to choose an effective embedding.

5 Generalization Error Bound

In the previous section, we applied Rademacher complexity to orthonormal representations. In
this section we derive novel graph-dependent generalization error bounds, which will be used in
Section 6. Following a similar proof technique as in [3], we propose the following error bound—
Theorem 5.1. Given a graph G = (V,E), V = [n] with y ∈ Yn being the unknown binary labels
over V ; let U ∈ Lab(G), and K ∈ K(G) be the corresponding kernel. Let H̃U = {h|h = Uβ, β ∈
Rn, ‖β‖∞ ≤ C}, C > 0. Let ` be any loss function, bounded in [0, B] and L-Lipschitz in its
second argument. For f ∈ (0, 1/2]6, let labels of subgraph S ⊆ V be observable, |S| = nf . Let
S̄ = V \S. For any δ > 0 and h ∈ H̃U, with probability ≥ 1− δ over S ∼ Πf

erS̄ [ŷ] ≤ erS [ŷ] + LC

√
2λ1(K)

f(1− f)
+

c1B

1− f

√
1

nf
log

1

δ
(4)

where ŷ = U>h and c1 > 0 is a constant. (Suppl.)

Discussion Note that from [2], λ1(K) ≤ χ(G) and χ(G) is in-turn bounded by the maximum
degree of the graph [21]. Thus, if L,B, f = O(1), then for sparse, degree bounded graphs; for
the choice of parameter C = Θ(1/

√
n), the slack term and the complexity term goes to zero as n

increases. Thus, making the bound useful. Examples include tree, cycle, path, star and d-regular
(with d = O(1)). Such connections relating generalization error to graph properties was not avail-
able before. We exploit this novel connection to analyze graph transduction algorithms in Section 6.
Also, in Section 7, we extend the above result to the problem of multiple graph transduction.

5.1 Max-margin Orthonormal Representation

To analyze er0-1
S relating to graph structural measure, the ϑ function, we study the maximum margin

induced by any orthonormal representation, in an oracle setting.

We study a fully ‘labelled graph’G = (V,E,y), where y ∈ Yn are the binary labels on the vertices
V . Given any U ∈ Lab(G), the maximum margin classifier is computed by solving ω(K,y) =
g(α∗,K,y) where K = U>U ∈ K(G). It is interesting to note that knowing all the labels, the
max-margin orthonormal representation can be computed by solving an SDP. More formally
Definition 3. Given a labelled graph G = (V,E,y), where V = [n] and y ∈ Yn are the binary
labels on V , let H̄ =

⋃
U∈Lab(G) H̄U, where H̄U = {h|h = Uβ, β ∈ Rn}. Let K ∈ K(G) be

the kernel corresponding to U ∈ Lab(G). The max-margin orthonormal representation associated
with the kernel function is given by Kmm = argminK∈K(G) ω(K,y).

By definition, Kmm induces the largest margin amongst other orthonormal representations, and
hence is optimal. The optimal margin has interesting connections to the Lovász ϑ function —
Theorem 5.2. Given a labelled graph G = (V,E,y), with V = [n] and y ∈ Yn being the binary
labels on vertices. Let Kmm be as in Definition 3, then ω(Kmm,y) = ϑ(G)/2. (Suppl.)

Thus, knowing all the labels, computing Kmm is equivalent to solving the ϑ function. However,
in the transductive setting, Kmm cannot be computed. Alternatively, we explore LS labelling (3),
which gives a constant factor approximation to the optimal margin on a large class of graphs.
Definition 4. A class of labelled graphs G = {G = (V,E,y)} is said to be a Labelled SVM-ϑ graph
family, if there exist a constant γ > 1 such that ∀G ∈ G, ω(KLS ,y) ≤ γω(Kmm,y).

6We can generalize our result for f ∈ (0, 1), but for the simplicity of the proof we assume f ∈ (0, 1/2].
This is also true in practice, where the number of labelled examples is usually very small.
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Algorithm 1
Input: U, yS and C > 0.
Get α∗, ȳ∗

S̄
by solving ΛC(K,yS) (2) for `hinge and K = U>U.

Return: ŷ = U>hS , where hS = UYα∗; Y ∈ Dn , Y = yi, if i ∈ S, otherwise ȳ∗i .

Such class of graphs are interesting, because one can get a constant factor approximation to the
optimal margin, without the knowledge of the true labels e.g., Mixture of random graphs: G =
(V,E,y), with y>1n = 0, cut(A,y) ≤ c

√
n, for c > 1 being a constant and the subgraphs

corresponding to the two classes form G(n/2, 1/2) random graphs (Claim 3, Suppl.).

We relate the maximum geometric margin induced by orthonormal representations to the ϑ function
of the graph. This allows us to derive novel graph dependent learning theory estimates.

6 Consistency of Orthonormal Representation of Graphs

Aggregating results from Section 4 and 5, we show that Algorithm 1 working with orthonormal
representations of graphs is consistent on a large class of graph families. For every finite and fixed
n, we derive an estimate on er0-1

S̄n
.

Theorem 6.1. For the setting as in Definition 1, let f ∈ (0, 1/2] be fixed. Let ŷ be the predictions

learnt by Algorithm 1 with inputs Un ∈ Lab(Gn), ySn and C∗ =

(
ϑ2(Gn)(1−f)

23n2fϑ(Ḡn)

) 1
4

. Then ∃Un ∈

Lab(Gn), ∀Gn such that with probability atleast 1− 1
n over Sn ∼ Πf

er0-1
S̄n

[ŷ] = O

((
ϑ(Gn)

f3(1− f)n

) 1
4

+
1

1− f

√
log n

nf

)

Proof. Let Kn ∈ K(Gn) be the max-margin kernel associated with Gn (Definition 3), and let
Un ∈ Lab(G) be the corresponding orthonormal representation. Since `ramp is an upper bound on
`0-1, we concentrate on bounding erramp

S̄n
[ŷ]. Note that for any C > 0

C|Sn| · errampSn
[ŷ] ≤ C|Sn| · erhingeSn

[ŷ] ≤ ΛC(Kn,ySn)

≤ ΛC(Kn,yn) ≤ ω(Kn,yn) =
ϑ(Gn)

2

The last inequality follows from Theorem 5.2. Note that for ramp loss L = B = 1; using Theo-
rem 5.1 for δ = 1

n , it follows that with probability atleast 1− 1
n over the random draw of Sn ∼ Πf ,

erramp
S̄n

[ŷ] ≤ ϑ(Gn)

2Cnf
+ C

√
2λ1(Kn)

f(1− f)
+

c1
1− f

√
log n

nf
(5)

where c1 = O(1). Using λ1(Kn) ≤ ϑ(Ḡn) [2] and optimizing RHS for C, we get C∗ =(
ϑ2(Gn)(1−f)
23n2fϑ(Ḡn)

) 1
4

. Plugging back C∗ and using ϑ(Gn)ϑ
(
Ḡn
)

= n [2] proves the claim.

[5] showed that ES
[
erS̄n

]
= O

(√
q
n

)
. However, as noted in Section 1, the quantity q is dependent

on yS̄n
, and hence their bounds cannot be computed explicitly [6].

We assume that the graph does not contain duplicate nodes with opposite labels, er∗
S̄n

= 0. Thus,
consistency follows from the fact that ϑ(G) ≤ n and for large families of graphs it is O(nc) where
0 ≤ c < 1. This theorem points to the fact that if f = O(1), then by Definition 1, Algorithm 1 is
`0-1- consistency over such class of graph families. Examples include

Power-law graphs: Graphs where the degree sequence follows a power law distribution. We show
that ϑ(Ḡ) = O(

√
n) for naturally occurring power law graphs (Claim 4, Suppl.). Thus, working

with the complement graph
(
Ḡ
)
, makes Algorithm 1 consistent.
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Random graphs: For G(n, q) graphs, q = O(1); with high probability ϑ(G(n, q)) = Θ(
√
n) [13].

Note that choosing Kn for various graph families is difficult. Alternatively, for Labelled SVM-ϑ
graph family (Definition 4), if Lovász ϑ function is sub-linear, then for the choice of LS labelling,
Algorithm 1 is `0-1consistent. Examples include Mixture of random graphs (Section 5.1). Further-
more, we analyze the fraction of labelled nodes to be observed, such that Algorithm 1 is consistent.
Corollary 6.2 (Labelled Sample Complexity). Given a graph family Gc, such that ϑ(Gn) =

O(nc), ∀Gn ∈ Gc where 0 ≤ c < 1. For C = C∗ as in Theorem 6.1; 1
2

(
ϑ(Gn)
n

)1/3−ε
, ε > 0

fraction of labelled nodes is sufficient for Algorithm 1 to be `0-1-consistent w.r.t. Gc.

The proof directly follows from Theorem 6.1. As a consequence of the above result, we can ar-
gue that for sparse graphs (ϑ(G) is large) one would need a larger fraction of nodes labelled, but
for denser graphs (ϑ(G) is small) even a smaller fraction of nodes being labelled suffices. Such
connections relating sample complexity and graph properties was not available before.

To end this section, we discuss on the possible extensions to the inductive setting (Claim 5, Suppl.)—
we can show that that the uniform convergence of erS̄ to erS in the transductive setting (for f = 1/2)
is a necessary and sufficient condition for the uniform convergence of erS to the generalization error.
Thus, the results presented here can be extended to the supervised setting. Furthermore, combining
Theorem 5.1 with the results of [9], we can also extend our results to the semi-supervised setting.

7 Multiple Graph Transduction

Many real world problems can be posed as learning on multiple graphs [19, ?]. Existing algorithms
for single graph transduction [10, 15] cannot be trivially extended to the new setting. It is a well
known heuristic that taking a convex combination of Laplacian improves classification performance
[7], however the underlying principle is not well understood. We propose an efficient MKL style
algorithm with generalization guarantees. Formally, the problem of multiple graph transduction is—
Problem 1. Given G = {G(1), . . . , G(m)} a set of simple, undirected graphs G(k) =

(
V,E(k)

)
,

defined on a common vertex set V = [n]. Without loss of generality we assume that the first fn
vertices are labelled, i.e., the set of labelled vertices is given by S = [fn], where f ∈ (0, 1). Let
S̄ = V \S be the unlabelled node set. Let yS , yS̄ be the labels of S, S̄ respectively. Given G and
labels yS , the goal is to accurately predict the labels of yS̄ .

Let K = {K(1), . . . ,K(m)} be the set of kernels corresponding to graphs G; K(k) ∈ K(G(k)),∀k ∈
[m]. We propose the following MKL style formulation for multiple graph transduction

ΨC(K,yS) = min
η∈Rm

+ ,‖η‖1=1
min

ȳj∈Ȳ,∀j∈S̄
max

α∈Rn
+,‖α‖∞≤C

g

(
α,

m∑
k=1

ηkK
(k), [yS , ȳS̄ ]

)
(6)

Extending our analysis from Section 5, we propose the following error bound
Theorem 7.1. For the setting as in Problem 1, let f ∈ (0, 1/2]7 and K =
{K(1), . . . ,K(m)}, K(k) ∈ K(G(k)), ∀k ∈ [m]. Let α∗, η∗, ȳ∗

S̄
be the solution to ΨC(K,yS)

(6). Let ŷ =
m∑
i=1

η∗kK
(k)Ȳα∗, where Ȳ ∈ Dn, Ȳii = yi if i ∈ S, otherwise ȳ∗i . Then, for any

δ > 0, with probability ≥ 1− δ over the choice of S ⊆ V such that |S| = nf

er0-1
S̄ [ŷ] ≤ Ψ̄(K,y)

Cnf
+ C

√
2ϑ(Ḡ∪)

f(1− f)
+

c1
1− f

√
1

nf
log

1

δ

where c1 = O(1), Ψ̄(K,y) = mink∈[m] ω(K(k),y) and G∪ is the union of graphs G8. (Suppl.)

The above result gives us the ability for the first time to analyze generalization performance of multi-
ple graph transduction algorithms. The expression Ψ̄(K,y) suggests that combining multiple graphs
should improve performance over considering individual graphs separately. Similar to Section 6,

7As in Theorem 5.1, we can generalize our results for f ∈ (0, 1).
8G∪ = (V,E∪), where (i, j) ∈ E∪ if edge (i, j) is present in atleast one of the graphsG(k) ∈ G, k ∈ [m].
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we can show that if one of the graph families G(l), l ∈ [m] of G obey ϑ(G
(l)
n ) = O(nc), 0 ≤ c < 1;

G
(l)
n ∈ G(l), then there exists orthonormal representations K, such that the MKL style algorithm

optimizing for (6) is `0-1-consistent over G (Claim 6, Suppl.). We can also show that combining
graphs improves labelled sample complexity (Claim 7, Suppl.). This is a first attempt in developing
a statistical understanding for the problem of multiple graph transduction.

8 Experimental results

Table 1: Superior performance of LS labelling.

Dataset LS-lab Un-Lap N-Lap KS-Lap
AuralSonar∗ 76.5 68.1 66.7 69.2
Yeast-SW-5-7∗ 60.4 54.1 52.9 53.3
Yeast-SW-5-12∗ 78.6 61.2 60.5 64.3
Yeast-SW-7-12∗ 76.5 64.0 59.5 63.1
Diabetes† 73.1 68.3 68.6 68.5
Fourclass† 73.3 69.3 71.2 71.8

We conduct two sets of experiments9.

Superior performance of LS labelling: We
use two datasets—similarity matrices∗ from
[11] and RBF kernel10 as similarity matrices for
the UCI datasets†[8]. We built an unweighted
graph by thresholding the similarity matrices
about the mean. Let L = D −A. For the reg-
ularized formulation (1), with 10% of labelled
nodes observable, we test four types of kernel
matrices—LS labelling(LS-lab), (λ1I + L)−1 (Un-Lap), (λ2I + D−1/2LD−1/2)−1 (N-Lap) and
K-Scaling (KS-Lap) [4]. We choose the parameters λ, λ1 and λ2 by cross validation. Table 1
summarizes the results. Each entry is accuracy in % w.r.t. 0-1 loss, and the results were averaged
over 100 iterations. Since we are thresholding by mean, the graphs have high connectivity. Thus,
from Corollary 4.3, the function class associated with LS labellingis rich and expressive, and hence
it outperforms previously proposed regularizers.

Table 2: Multiple Graphs Transduction.
Each entry is accuracy in %.

Graph 1vs2 1vs3 1vs4 2vs3 2vs4 3vs4
Aud 62.8 64.8 68.3 59.3 50.8 61.5
Vis 68.9 65.6 68.9 69.1 70.3 75.1
Txt 68.7 59.2 64.8 64.6 60.9 65.4
Unn 69.7 60.3 52.7 62.7 67.4 62.5
Maj 72.7 75.2 80.5 65.4 62.6 77.4
Int 80.6 83.6 86.0 90.9 75.3 91.8
MV 98.9 93.4 95.6 97.7 87.7 98.8

Graph transduction across Multiple-views:
Learning on mutli-view data has been of recent
interest [18]. Following a similar line of attack, we
pose the problem of classification on multi-view
data as multiple graph transduction. We investigate
the recently launched Google dataset [17], which
contains multiple views of video game YouTube
videos, consisting of 13 feature types of auditory
(Aud), visual (Vis) and textual (Txt) description.
Each video is labelled one of 30 classes. For each
of the views we construct similarity matrices using
cosine distance and threshold about the mean to obtain
unweighted graphs. We considered 20% of the data to be labelled. We show results on pair-wise
classification for the first four classes. As a natural way of combining graphs, we compared our
algorithm (6) (MV) with union (Unn), intersection (Int) and majority (Maj)11 of graphs. We used
LS labelling as the graph-kernel and (2) was used to solve single graph transduction. Table 2
summarizes the results, averaged over 20 iterations. We also state top accuracy in each of the views
for comparison. As expected from our analysis in Theorem 7.1, we observe that combining multiple
graphs significantly improves classification accuracy.

9 Conclusion

For the problem of graph transduction, we show that there exists orthonormal representations that
are consistent over a large class of graphs. We also note that the Laplacian inverse regularizer
is suboptimal on graphs with high connectivity, and alternatively show that LS labellingis not only
consistent, but also exhibits high Rademacher complexity on a large class of graphs. Using our anal-
ysis, we also develop a sound statistical understanding of the improved classification performance
in combining multiple graphs.

9Relevant resources at: mllab.csa.iisc.ernet.in/rakeshs/nips14
10The (i, j)th entry of an RBF kernel is given by exp

(
−‖xi−xj‖2

2σ2

)
. We set σ to the mean distance.

11Majority graph is a graph where an edge (i, j) is present, if a majority of the graphs have the edge (i, j).
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