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A Proof for Theorem 1

Proof. The original model is given by:

x[t] =

P∑
p=1

A[p]x[t− p] + u[t], (1)

y[t] =

Q∑
q=1

B[q]y[t− q] + Zx[t] + v[t]. (2)

Define the short-hand notations E {· | t} , E {· | yp; s ≤ t} and B̂q , (ZZ>) � Bp, captures the
constraint that site i↔ site j if they belong to the same global component k. Also to reduce clutter,
we use subscripts for time indexing. Suitably adjusting the time-indices, the model of eqn. (1) can
be re-written as:

xt+1 =

P−1∑
p=0

Apxt−p + ut (3)

yt =

Q∑
q=1

B̂qyt−q + Zxt + vt, (4)

It is assumed that the model is stable, that is all the roots of det
∣∣∣I−∑p Apz

−p
∣∣∣ (i.e. z–transform

of A) lie within the unit circle |z| < 1 system. In order to prove Theorem 1 we first introduce the
following proposition:

Proposition 1. Assuming that the system is stable, , then eqn. (3) conditioned on data is equivalent
to:

xt+1 | t =

P−1∑
p=0

Apxt−p | t−p−1 +

P−1∑
p=0

Gpεt−p (5)

yt =

Q∑
q=1

B̂qyt−q + Zxt | t−1 + εt, (6)

where xt | t−1 = E {xt | t− 1}, yt | t−1 = E {yt | t− 1}, εt = yt − yt | t−1, and G are K × N
matrices defined as follows:

Gp =

P−1∑
s=p

AsCov
{
xt−sε

>
t

}
Σ−1ε for p = 0 . . . P − 1
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Proof for this proposition is in Appendix A.1. Defining X̂,Y and Υ as the z–transform of x̂,y and
ε respectively, we get the z–transform of eqn. (5):(

I−
Q−1∑
q=0

B̂qz
−p

)
Y =

I + Z

(
I−

P−1∑
p=0

Apz
−p

)−1(P−1∑
p=0

Gpz
−p

)Υ

As, Z is a N ×K matrix of rank K the left pseudo-inverse of Z is well defined and :(
I−

P−1∑
p=0

Apz
−p

)
Z+

(
I−

Q−1∑
q=0

B̂qz
−q

)
Y =

(
P−1∑
p=0

Gpz
−p

)
Υ +

(
I−

P−1∑
p=0

Apz
−p

)
Z+Υ

therefore

Z∗ −
P−1∑
p=0

ApZ
+z−p −

Q−1∑
q=0

Z+B̂qz
−q +

P−1∑
p=0

Q−1∑
q=0

ApZ
+B̂qz

−(p+q)

=

(
P−1∑
p=0

Gpz
−p

)
Υ +

(
I−

P−1∑
p=0

Apz
−p

)
Z+Υ

Assuming that the system is minimal[3] that is there is strictly no smaller equivalent model, this
represents an N × N rank-K system of auto-regressive order P + Q and moving-average order
P .

A.1 Proof for Proposition 1

Proof. Firstly, because the assumption on the roots of det
∣∣∣I−∑p Apz

p
∣∣∣, the system is wide sense

stationary (WSS) [1]. Now, by the projection property of linear systems the residual εt ⊥ yp; s < t
and therefore:

E {· | t} = E {· | t− 1}+ E {· | εt}

Therefore, the conditional estimate of xt :

xt+1 | t =

P−1∑
p=0

E {Apxt−p + ut | t}

=

P−1∑
p=0

Apxt−p | t,

using the property that ut independent on y0 . . .yt. Defining Hp = Cov
{
xt−pε

>
t

}
Σ−1ε and because

of the WSS condition, it does not depend on t. Therefore,

xt+1 | t =

P−1∑
p=0

Ap

(
xt−p | t−1 + E {xt−p | εt}

)
=A0xt | t−1 +

P−1∑
p=1

Apxt−p | t−1 +

P−1∑
p=0

ApHpεt

=A0xt | t−1 +

P∑
p=1

Ap

(
xt−p | t−2 + E {xt−p | εt−1}

)
+

P−1∑
p=0

ApHpεt

=A0xt | t−1 + A1xt−1 | t−2 +

P∑
p=2

Apxt−p | t−2 +

P∑
p=1

ApHp−1εt−1 +

P−1∑
p=0

ApHpεt
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Continuing this expansion, and settingGp =
∑P−1
s=p AsHs−p for p = 0 . . . P − 1, we get:

xt+1 | t =

P−1∑
p=0

Apxt−p | t−p−1 +

P−1∑
p=0

[
P−1∑
s=p

AsHs−p

]
εt−p

=

P−1∑
p=0

Apxt−p | t−p−1 +

P−1∑
p=0

Gpεt−p (7)

Moreover, since:

yt | t−1 =E

{
Q∑
q=1

B̂qyt−q + Zxt + vt | t− 1

}
=

Q∑
q=1

B̂qyt−q + Zxt | t−1

we get the following innovations model:

yt =

Q∑
q=1

B̂qyt−q + Zxt | t−1 + εt. (8)

Defining ηt = xt − xt | t−1, we see that:

εt =yt − yt | t−1 = Zxt + vt − Zxt | t−1 = Zηt + vt (9)

while:

ηt+1 =

P−1∑
p=0

Ap

(
xt−p − xt−p | t−1

)
+ ut −

P−1∑
p=0

Gpεt−p

=

P−1∑
p=0

Apηt−p + ut −
P−1∑
p=0

Gp (Zηt−p + vt−p)

=

P−1∑
p=0

(Ap −GpZ) ηt−p + ut −
P−1∑
p=0

Gpvt−p

B Proof for Theorem 2

Proof. In order to prove the theorem, we introduce the following proposition:

Proposition 2. For a 1–d C–D system with infinite boundary conditions and constant Péclet num-
ber, for an impulse at the origin x = 0, the response in the near-field (i.e. at a point close
to the origin) can be approximated by G(t) ≈ δ(t), the Dirac delta function, while in far–
field (i.e. at a point far from the origin) and be approximated by a Gaussian function: G(t) ≈
exp

{
−0.5(t− µ2σ−2

}
/
√
2πσ2 up to a multiplicative factor of order exp

{
−O(t3)

}
, where µ is

equal to the distance and σ2 is proportional to the product of the distance and the Péclet number.

The proof to Proposition 2 is given Appendix B.1. Therefore, for the system of Theorem 2, the
response at location xi to an impulse at xj = 0 can be approximated by a Gaussian function:
G(t)i,j = N

(
µi,j , σ

2
i,j

)
= exp

{
−0.5(t− µi,j)2σ−2

i,j

}
/
√

2πσ2
i,j , where µi,j is equal to the distance

between xi and xj and σi,j is proportional to the production of the distance and the Péclet number.
Moreover, the response at xi to an impulse at xi can be approximated by a Dirac delta. Therefore,
in Fourier domain the transfer function of the 2× 2 system consisting of only nodes xi and xj :

Ψ̂(ω) =

[
1 Ĝi,j(ω)

Ĝj,i(ω) 1

]
, where Ψ(t) =

[
δ(t) Gi,j(t)

Gj,i(t) δ(t)

]
(10)
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is the impulse response matrix of the 2 × 2 system consisting of only nodes xi and xj , and Ψ̂(ω)

is Fourier transform (FT) of Ψ[t]. Also, Ĝi,j(ω) ≈ π−
1
2 exp{−iωµi,j} exp{−σ2

i,jω
2} ⊗ F(ω)

is the FT of G[t]i,j while the FT of δ(t) is 1. The FT of approximation to Ĝi,j(ω) is ob-
tained by convolution of the FT of the multiplicative error term exp

{
−O(t3)

}
with the FT of

exp
{
−0.5(t− µ2σ−2

}
/
√

2πσ2.

However for stable VAR system, the transfer function between any pair of variables conditioned on
the rest is[1]:

Ψ̂(ω) =

[
Âi,i(ω) Âi,j(ω)

Âj,i(ω) Âj,j(ω)

]−1
, (11)

where Âi,j(ω) is the FT of Ai,j [t]. Inverting the matrix in eqn. (10) and equating with terms of
eqn. (11) gives

Âi,j(ω) = − Ĝi,j(ω)

1− Ĝ(ω)∗i,jĜ(ω)i,j

Taking logs of the absolute value (squared) yields

log(Âi,j(ω)∗Âi,j(ω) = log
(

Ĝi,j(ω)∗Ĝi,j(ω)
)
− 2 log

(
1− Ĝi,j(ω)∗Ĝi,j(ω)

)
.

However, since |Ĝ| � 1 the square magnitude Ĝi,j(ω)∗Ĝi,j(ω)� 1 which implies that

log
(

1− Ĝi,j(ω)∗Ĝi,j(ω)
)
≈ 0 +O

(
Ĝi,j(ω)∗Ĝi,j(ω)

)
Substituting gives

log(Âi,j(ω)∗Âi,j(ω)) ≈ log
(

Ĝi,j(ω)∗Ĝi,j(ω)
)

+O
(

Ĝi,j(ω)∗Ĝi,j(ω)
)

which implies that the FT of |Âi,j(ω)| ≈ |Ĝi,j(ω)| and therefore A[t]i,j can be approximated by
a Gaussian function N (µi,j , σ

2
i,j). Moreover the approximation has a multiplicative error of order

exp
{
−O(t3)

}
.

B.1 Proof for Proposition 2

Consider the dimensionless constant-coefficient convection-diffusion equation in 1–d:

∂f

∂t
+
∂f

∂x
= γ

∂2f

∂t2
,

where f is the process, x is the spatial coordinate and γ = 1/Pe is the inverse of the Péclet number
of the system. Under infinite boundary conditions, the Green’s function (i.e. impulse response) has
the form

g(x, t) =
1√

4πγt
exp

{
−1

2

(x− t)2

2γt

}
. (12)

In order to derive an approximation, assume γ = 1 without loss of generality.

g(x, t) =
1√
2π

exp

{
−1

2

(x− t)2

2t
− 1

2
log 2t

}
(13)
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Writing t = x+ τ , a Taylor series expansion (TSE) of the term in the exponent gives:

exp

{
−1

2

τ2

2(x+ τ)
−1

2
log 2(x+ τ)

}

= exp

{
−1

2

τ2

2

(
(2x)−1 − (2x)−2τ + (2x)−3τ2 − (2x)−4τ3 + . . .

)
− 1

2

(
log 2x+ (2x)−1τ − (2x)−2

2
τ2 +

(2x)−3

3
τ3 + . . .

)}

= exp

{
−1

2

τ2

2x
− 1

2
log 2x− 1

2

(
τ3
(
(2x)−1 − (2x)−2

)
− τ4

(
(2x)−2

2
− (2x)−3

)
+ . . .

)}

≈ 1√
x

exp

{
−1

2

τ2

2x

}
exp

{
−1

2
O(τ3)

}
.

Therefore, for the far-field (i.e. x� 0 ) the approximation holds because:

exp
{
− 1

2
τ2

2x

}
exp

{
− 1

2O(τ3)
} → 1 as τ → 0

and exp

{
−1

2
τ3
}
− exp

{
−1

2

τ2

2x

}
→ 0 as τ →∞,

And for the near-field i.e. as x→ 0 the response function g(x, t)→ δ(t).

C Proof for Theorem 3

Proof. We start by introducing the following notation - let yi ∈ xk imply that Zi,k = 1. For two
vertices yi and yj , let yi ∼ yj indicate that there is at least one shared latent component yi ∈ xk
and yj ∈ xk , i.e. Zi,kZj,k = 1. Also, let B̂ = (ZZ>) � B, where � is the Hadamard product.
Therefore, B̂i,j = 0 ⇒ ∃k s.t. yi ∼ yj . Without loss of generality, we will prove this assertion
for the case below, that is:

Proposition 3. For a given Z, the least-squares (LS) local optimum A∗ and x∗ to

x[t] =

P∑
p=1

A[p]x[t− p] + u[t] (14)

y[t] =B̂y[t− 1] + Zx[t] + v[t], (15)

is also a local optimum for

x[t] =

P∑
p=1

A[p]x[t− p] + u[t] (16)

y[t] =Cy[t− 1] + Zx[t] + v[t], (17)

for some diagonal matrix C.

The more general case of Theorem 3 is a straightforward extension of this proof.

First, we observe that as eqn. (14) is decoupled from B, the local minimum A∗[p] conditioned on x∗

is de-coupled from B. Therefore, we only need to show that if

x+ = argmin
x

f(x)
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where:

f(x) =
∑
t

[
y[t]− B̂y[t− 1]− Zx[t]

]>
[y[t]− By[t− 1]− Zx[t]]

then x+ also a LS solution to eqn. (17).

Now,

1

2
∇x[t]f(x) =

[
y[t]− By[t− 1]− Zx[t]

]>
Z = y[t]>Z− y[t− 1]>B̂>Z− x[t]>Z>Z

Defining η = B̂y[t−1] , we get ηi =
[
B̂y[t− 1]

]
i

=
∑
j yj [t−1]B̂i,j , that is ηi =

∑
j Bi,jyj [t−1]

for all yj such that yi ∼ yj .

Moreover,
[
η>Z

]
k

=
∑
i ηiZi,k that is

[
η>Z

]
k

=
∑
i ηi for all yi ∈ xk. Therefore, chaining these

two we get
[
Z>η

]
k

=
∑
i

∑
j Bi,jyj [t − 1] for all i s.t. yi ∈ xk and j s.t. yi ∼ yj , which is the

same as
[
Z>η

]
k

=
∑

yi∈xk

∑
yj∈xk

Bi,jyj [t− 1].

Therefore

1

2

[
∇x[t]f(x)

]
k

=
[
y[t]>Z

]
−
[
Z>η

]
k

=
∑

yi∈xk

∑
yj∈xk

Bi,jyj [t− 1]−
[
x[t]>Z>Z

]
k

(18)

This gradient is equivalent to 1
2∇x[t]g(x) where g(x) is the LS objective of eqn. (17).

1

2
∇x[t]g(x) =y[t]>Z− y[t− 1]>CZ− x[t]>Z>Z

where
[
y[t− 1]>CZ

]
k

=
∑
j∈xk

Cjyj [t− 1], for Cj =
∑

yi∈xk
Bi,j .

Note that the Hessian of the objective function is independent of B and C. Therefore, the two
quadratic problems differ only in a constant independent of x and therefore have the same optimal
solutions.

D Optimization with respect to x

The state-space model

x[t] =

P∑
p=1

A[p]x[t− p] + u[t] and y[t] =

Q∑
q=1

C[p]y[t− q] + Zx[t] + v[t], (19)

can be re-written as the followed augmented state space form

ζ[t+ 1] = Aaugζ
′[t] + ν[t] and ϑ[t] = Zaugζ

′[t] + v[t],

where ζ[t] = (x[t] . . .x[t− P ])> is the augmented state, ϑ[t] =
(
y[t]−

∑Q
q=1 C

(n)[q]y[t− q]
)>

is

the augmented observation, ν[t] = (u[t], 0 . . . 0)
> is the augmented state innovations the matrices

Aaug is a PK × PK matrix with A(n)[1] . . .A(n)[P ] on the first rowand Zaug is a N ×KP matrix
constructed from A(n) and Z(n). Namely:

Aaug =


A[1] A[2] . . . A[P ]

I 0 . . . 0
0 I . . . 0
...

...
. . .

...

 Zaug = [Z 0 . . . 0]
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Rewriting the summation of time in vector-matrix format for notational clarity, the optimization
problem is then:

ζ(n+1) = argmin
ζ
‖ϑ−∆augζ‖2 + λ0 ‖Λaugζ‖2

where ∆ and Λ are the T × T block-diagonal matrices:

∆ =


Zaug 0 . . . 0

0 Zaug . . . 0
...

...
. . .

...
0 0 . . . Zaug

 Λaug =


−Aaug I 0 . . . 0

0 −Aaug I . . . 0
...

...
...

. . .
...

0 0 0 . . . −Aaug


This is a T × T tri-diagonal Toeplitz system with blocks of size KP and which can be solved using
specialized solvers that have running time of O(T ×KP 3) [2]. In case the system is ill-conditioned
or rank-deficient, a small perturbation may be added along the diagonal of the matrix. However in
practice, we have observed the system to be well conditioned, especially when close to a solution
point.

E Proximal operators

E.1 Operator for Z

Defining Zi,· = {Zi,1 . . .Zi,K}, the proximal operator proxh(Z(n)) with respect to Z, and writing
the unit-ball constraint ‖Zi,·‖2 ≤ 1 as an indicator function I1

(
‖Zi,·‖2

)
, we get:

proxg(Ẑ) = argmin
Z

λ3 ‖Z‖1 +

N∑
i=1

I1
(
‖Zi,·‖22

)
+

1

2

∥∥∥Z− Ẑ)
∥∥∥2

=λ3

N∑
i=1

‖Zi,·‖1 +

N∑
i=1

I1
(
‖Zi,·‖22

)
+

1

2

N∑
i=1

∥∥∥Zi,· − Ẑ)i,·

∥∥∥2
As the problem is decomposable into a sum of problems over Z[1, ·] . . .Z[N, ·], consider the indi-
vidual problem of the form:

argmin
z

λ3 ‖z‖1 +
1

2
‖z− ẑ)‖2

subject to ‖z‖2 ≤ 1

where z = {z1 . . . zK} represents any Zi,·.

Introducing Lagrange multipliers µ ∈ R+ and η ∈ R+K , the dual is:

L(z, µ, η) =λ3 ‖z‖1 +
1

2
‖z− ẑ)‖2 +

µ

2

(
‖z‖22 − 1

)

Dual feasibility implies:

0 = ∂L(z, µ, η)zk =λ3∂k ‖z‖1 + zk − ẑk + µzk

therefore in vector format

z(1 + µ) =ẑ− λ3∂ ‖z‖1
where the sub-gradient

∂k ‖z‖1 =

{
1 if k > 0
−1 if zk < 0

(−1,+1) if zk = 0
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Now if there is at-least one k such that |ẑk| > λ, then the following argument applies;

If z∗k > 0 then ∂ ‖z‖1 = 1. Therefore, (1 + µ)z∗k = (z′ − λ) > 0. This implies that if z′ > λ then
(1 + µ)z∗k = (ẑ− λ). Similarly if ẑ > −λ then (1 + µ)z∗k = (ẑ + λ), and if −λ ≤ ẑ ≤ λ then
z∗k = 0.

Defining Tλ as the element-wise shrinkage operator, we get (1 + µ)z∗ = Tλ(z′). Moreover, setting
µ = min (‖Tλ(z′‖2 − 1, 0) satisfies the complementary slackness condition:

µ∗ >0 if ‖z‖22 = 1

µ∗ =0 if ‖z‖22 < 1

However if |ẑk| ≤ λ, then z∗ = 0 is the only feasible solution.

Therefore, the final solution is:

z∗ = max

(
1,

1

‖Tλ(ẑ)‖2

)
Tλ(ẑ)

E.2 Operator for A

The proximal operator for A is

proxg(Â) = argmin
A

K∑
i,j=1

[
λ1 ‖D(γi,j)Ai,j‖2 +

1

2

∥∥∥Ai,j − Âi,j

∥∥∥2] ,
subject to 0 ≤

∑
pAi,j [p] ≤ 1 for all i, j = 1 . . .K, where D(γi,j) represents the operator ∂̂t +

γi,j(p − µi,j) and is a P × P full-rank matrix. Since this can be split across all Ai,j , consider one
problem of the form:

proxg(â) = argmin
a

λ1 ‖Da‖2 +
1

2
‖a− â‖2 , (20)

subject to 0 ≤ 1>a ≤ 1 where a represents any Ai,j , and D represents the corresponding D(γi,j).

The Lagrangian of the problem is:

Lproxg
(a, η1, η2) = λ1 ‖Da‖2 +

1

2
‖a− â‖2 − η11>a + η2(1>a− 1) (21)

where η1 > 0 and η2 > 0 are Lagrange multipliers for −1>a ≤ 0 and 1>a ≤ 1

As D is full rank, define b = Da and b̂ = D−1â. Therefore, eqn. (22) can be rewritten as :

proxg(â) =D

[
argmin

b
λ1 ‖b‖2 +

1

2

∥∥∥(b− b̂)
∥∥∥2] ,

subject to 0 ≤ 1>D−1b ≤ 1.

The dual feasible solution b∗(η1, η2) of the corresponding Lagrangian satisfies the equation:

b∗(η1, η2) = b̂− λ1∂b ‖b∗‖2 + (η1 − η2)D−11,

where ∂b ‖Db∗‖2, the sub-gradient of
√∑P

p′=1(
∑P
p=1 b[p])2 is given by:

∂b[p] ‖b∗‖2 =
b∗[p]
‖b∗‖2

if ‖b∗‖2 > 0

(−1,+1) if ‖b∗‖2 = 0

Therefore, given values of η1 and η2 and defining β = (η1 − η2)D−11, we get

b∗[p](η1, η2) =

{
b̂[p] + β[p]− λ b̂[p]+β[p]

‖b̂+β‖
2

, if
∥∥∥b̂ + β

∥∥∥
2
> λ

0 otherwise
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which gives:

a∗(η1, η2) =

{
â+ (η1 − η2)1− λ â+(η1−η2)1

‖D−1â+(η1−η2)1‖2
if

∥∥D−1â+ (η1 − η2)1
∥∥
2
> λ

= 0 otherwise
(22)

And the gradient of eqn. (21) with respect the dual variables at the dual-feasible solution is :

∇η1L =− 1>a
and ∇η2L =1>a

Therefore, the dual-ascent step is

η
(k+1)
1 =η

(k)
1 − α(k) min{1>a, 0}

η
(k+1)
2 =η

(k)
2 + α(k) max{1>a− 1, 0}

Therefore using the fact that violation of constraints for η1 and η2 are mutually exclusive, we com-
bine η1, η2 into a single dual variable η ∈ R, giving the the dual feasible solution as:

a(n+1) =

{
â + η(n)1− λ â+η(n)1

‖D−1â+η(n)1‖
2

if
∥∥D−1â + η(n)1

∥∥
2
> λ

0 otherwise
(23)

and the dual-ascent step is:

η(n+1) =

{
η(n) − α(n)1>a(n) if 1>a(n) < 0

η(n) + α(n)(1>a(n) − 1) if 1>a(n) > 1
(24)

F Dependence on Initialization

In order to demonstrate the robustness of the solution to initialization, here we show the result of
estimation procedure for different initializations of the K-means step. As mentioned earlier, the the
initial positions of the K-means centroids are uniformly distributed at random. It can be observed
that regardless of the K–means solution the algorithm converges to highly consistent global graph-
ical structures. Note that for each solution, labels values have been selected to maximize overlap
across results to improve comparison.

G Cross-Validation

A 10-fold block cross validation approach is used for model selection and to assess the performance
of the various models. Here the time-series y[t]; 1 = 1 . . . T is divided into 10 contiguous blocks of
length T/10 each and the model parameters estimated using 9 blocks. The data from the remaining
block (indexed as t = 1 . . . T ′) are the fitted to the model using least squares to get ŷ. For example
for the standard order-P VAR model with parameters A[1] . . .A[P ], this would be

min
ŷ

∑
t

‖ŷ[t]− y[t]‖2

such that ŷ[t] =

P∑
p=1

A[p]ŷ[t− p]

Defining η[t]; t = 1 . . . T as the Lagrange multiplier for each constraint and ρ > 0 as the augmented
Lagrangian multiplier term, the solution for this is computed using a dual-ascent procedure, where
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(e) K-Means initialization
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(f) Estimated graphical structure

Figure 1: The leftcolumn shows the node assignments after one K–means initialization step. The right
column shows the estimated graphical structure for the corresponding initialization. The nodes in the latent
global graph are positioned at the centroids of the corresponding local graphs. In all figures, colors and labels
both indicate cluster assignments of the sites. Labels for the local nodes are omitted for clarity.
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each iteration involves the following two steps:

[Primal update]: ŷ[t](k+1) = y[t]− 1

2

(
η(k)[t]−

P∑
p=1

A[p]>η(k)[t+ p]

)

[Dual update]: η[t](k+1) = η[t](k) + ρ

(
ŷ(k+1)[t]−

P∑
p=1

A[p]ŷ(k+1)[t− p]

)

Estimating the best least-squares fit for the hierarchical model, given parameters A,B and Z and
hyper-parameter λ0, involves solving

min
ŷ,x

∑
t

‖ŷ[t]− y[t]‖2 +

∥∥∥∥∥x[t]− λ0
P∑
p=1

A[p]x[t− p]

∥∥∥∥∥
2

such that ŷ[t] =

Q∑
q=1

B[q]ŷ[t− p] + Zx[t]

which can be solved using the following dual-ascent scheme:

[Primal update]: ŷ[t](k+1) = y[t]− 1

2

(
η(k)[t]−

Q∑
q=1

B[q]>η(k)[t+ p]

)

[Dual update]: η[t](k+1) = η[t](k) + ρ

(
ŷ(k+1)[t]−

Q∑
q=1

B[p]ŷ(k+1)[t− p]− Zx(k+1)[t]

)

while x(k+1) is estimated using the method described in Supplemental Appendix D.

The relative error is then defined as √∑
t ‖y[t]− ŷ[t]‖∑

t ‖y[t]‖
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