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Abstract

Learning the dependency structure between spatially distributed observations of
a spatio-temporal process is an important problem in many fields such as geol-
ogy, geophysics, atmospheric sciences, oceanography, etc. . However, estimation
of such systems is complicated by the fact that they exhibit dynamics at multiple
scales of space and time arising due to a combination of diffusion and convec-
tion/advection [17]. As we show, time-series graphical models based on vector
auto-regressive processes[18] are inefficient in capturing such multi-scale struc-
ture. In this paper, we present a hierarchical graphical model with physically
derived priors that better represents the multi-scale character of these dynamical
systems. We also propose algorithms to efficiently estimate the interaction struc-
ture from data. We demonstrate results on a general class of problems arising in
exploration geophysics by discovering graphical structure that is physically mean-
ingful and provide evidence of its advantages over alternative approaches.

1 Introduction

Consider the problem of determining the connectivity structure of subsurface aquifers in a large
ground-water system from time-series measurements of the concentration of tracers injected and
measured at multiple spatial locations. This problem has the following features: (i) pressure gra-
dients driving ground-water flow have unmeasured disturbances and changes; (ii) the data contains
only concentration of the tracer, not flow direction or velocity; (iii) there are regions of high perme-
ability where ground water flows at (relatively) high speeds and tracer concentration is conserved
and transported over large distances (iv) there are regions of low permeability where ground water
diffuses slowly into the bed-rock and the tracer is dispersed over small spatial scales and longer
time-scales.

Reconstructing the underlying network structure from spatio-temporal data occurring at multiple
spatial and temporal scales arises in a large number of fields. An especially important set of ap-
plications arise in exploration geophysics, hydrology, petroleum engineering and mining where the
aim is to determine the connectivity of a particular geological structure from sparsely distributed
time-series readings [16]. Examples include exploration of ground-water systems and petroleum
reservoirs from tracer concentrations at key locations, or use of electrical, induced-polarization and
electro-magnetic surveys to determine networks of ore deposits, groundwater, petroleum, pollutants
and other buried structures [24]. Other examples of multi-scale spatio-temporal phenomena with
the network structure include: flow of information through neural/brain networks [15], traffic flow
through traffic networks[3]; spread of memes through social networks [23]; diffusion of salinity,
temperature, pressure and pollutants in atmospheric sciences and oceanography [9]; transmission
networks for genes, populations and diseases in ecology and epidemiology; spread of tracers and
drugs through biological networks [17] etc. .
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These systems typically exhibit the following features: (i) the physics are linear in the ob-
served / state variables (e.g. pressure, temperature, concentration, current) but non-linear in the
unknown parameter that determines interactions (e.g. permeability, permittivity, conductance); (ii)
there may be unobserved / unknown disturbances to the system; (iv) (Multi-scale structure) there
are interactions occurring over large spatial scales versus those primarily in local neighborhoods.
Moreover, the large-scale and small-scale processes exhibit characteristic time-scales determined by
the balance of convection velocity and diffusivity of the system. A physics-based approach to esti-
mating the structure of such systems from observed data is by inverting the governing equations [1].
However, in most cases inversion is extremely ill-posed [21] due to non-linearity in model parame-
ters and sparsity of data with respect to the size of the parameter space, necessitating strong priors
on the solution which are rarely available. In contrast, there is a large body of literature on structure
learning for time-series using data-driven methods, primarily developed for econometric and neuro-
scientific data1. The most common approach is to learn vector auto-regressive (VAR) models, either
directly in the time domain[10] or in the frequency domain[4]. These implicitly assume that all
dynamics and interactions occur at similar time-scales and are acquired at the same frequency [14],
although VAR models for data at different sampling rates have also been proposed [2]. These mod-
els, however, do not address the problem of interactions occurring at multiple scales of space and
time, and as we show, can be very inefficient for such systems. Multi-scale graphical models have
been constructed as pyramids of latent variables, where higher levels aggregate interactions at pro-
gressively larger scales [25]. These techniques are designed for regular grids such as images, and
are not directly applicable to unstructured grids, where spatial distance is not necessarily related to
the dependence between variables. Also, they construct O(logN) deep trees thereby requiring an
extremely large (O(N)) latent variable space.

In this paper, we propose a new approach to learning the graphical structure of a multi-scale spatio-
temporal system using a hierarchy of VAR models with one VAR system representing the large-
scale (global) system and one VAR-X model for the (small-scale) local interactions. The main
contribution of this paper is to model the global system as a flow network in which the observed
variable both convects and diffuses between sites. Convection-diffusion (C–D) processes naturally
exhibit multi-scale dynamics [8] and although at small spatial scales their dynamics are varied and
transient, at larger spatial scales these processes are smooth, stable and easy to approximate with
coarse models [13]. Based on this property, we derive a regularization that replicates the large-scale
dynamics of C–D processes. The hierarchial model along with this physically derived prior learns
graphical structures that are not only extremely sparse and rich in their description of the data, but
also physically meaningful. The multi-scale model both reduces the number of edges in the graph by
clustering nodes and also has smaller order than an equivalent VAR model. Next in Section 3, model
relaxations to simplify estimation along with efficient algorithms are developed. In Section 4, we
present an application to learning the connectivity structure for a class of problems dealing with flow
through a medium under a potential/pressure field and provide theoretical and empirical evidence of
its advantages over alternative approaches.

One similar approach is that of clustering variables while learning the VAR structure [12] using
sampling-based inference. This method does not, however, model dynamical interactions between
the clusters themselves. Alternative techniques such as independent process analysis [20] and AR-
PCA [7] have also been proposed where auto-regressive models are applied to latent variables ob-
tained by ICA or PCA of the original variables. Again, because these are AR not VAR models,
the interactions between the latent variables are not captured, and moreover, they do not model the
dynamics of the original space. In contrast to these methods, the main aspects of our paper are a
hierarchy of dynamical models where each level explicitly corresponds to a spatio-temporal scale
along with efficient algorithms to estimate their parameters. Moreover, as we show in Section 4,
the prior derived from the physics of C–D processes is critical to estimating meaningful multi-scale
graphical structures.

2 Multi-scale Graphical Model

Notation: Throughout the paper, upper case letters indicate matrices and lower-case boldface for
vectors, subscript for vector components and [t] for time-indexing.

1http://clopinet.com/isabelle/Projects/NIPS2009+/
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Let y ∈ RN×T , where y[t] = {y1[t] . . .yN [t]}; t = 1 . . . T , be the time-series data observed at
N sites over T time-points. To capture the multi-scale structure of interactions at local and global
scales, we introduce theK–dimensional (K � N ) latent process x[t] = {x1[t] . . .xK [t]}; t = 1 . . . T
to represent K global components that interact with each other. Each observed process yi is then a
summation of local interactions along with a global interaction. Specifically:

Global–process: x[t] =
∑P
p=1 A[p]x[t− p] + u[t],

Local–process: y[t] =
∑Q
q=1 B[q]y[t− q] + Zx[t] + v[t].

(1)

Here Zi,k, i = 1 . . . N, k = 1 . . .K are binary variables indicating if site yi belongs to global com-
ponent xk. The N ×N matrices B[1] . . .B[Q] capture the graphical structure and dynamics of the
local interactions between all yi and yj , while the set of K ×K matrices A = {A1 . . .A[P ]} de-
termines the large-scale graphical structure as well as the overall dynamical behavior of the system.
The processes v ∼ N (0, σ2

vI) and u ∼ N (0, σ2
uI) are iid innovations injected into the system at the

global and local scale respectively.

Remark: From a graphical perspective, two latent components xk and xl are conditionally inde-
pendent given all other components xm, ∀m 6= k, l if and only if A[p]i,j = 0 for all p = 1 . . . P .
Moreover, two nodes yi and yj are conditionally independent given all other nodes ym 6= i, j and
latent components xk,∀k = 1 . . .K, if and only if B[q]i,j = 0 for all q = 1 . . . Q.

To create the multi-scale hierarchy in the graphical structure, the following two conditions are im-
posed: (i) each yi belong to only one global component xk, i.e. Zi,kZi,l = δ[k, l], ∀i = 1 . . . N ; and
(ii) Bi,j be non-zero only for nodes within the same component, i.e. Bi,j = 0 if yi and yj belong to
different global components xk and xk′ .

The advantages of this model over a VAR graphical model are two fold: (i) the hierarchical structure,
the fact that K � N and that yi ↔ yj only if they are in the same global component results in
a very sparse graphical model with a rich multi-scale interpretation; and (ii) as per Theorem 1, the
model of eqn. (1) is significantly more parsimonious than an equivalent VAR model for data that is
inherently multi-scale.
Theorem 1. The model of eqn. (1) is equivalent to a vector auto-regressive moving-average
(VARMA) process y[t] =

∑R
r=1 D[r]y[t − r] +

∑S
s=0 E[s]ε[t − s] where P ≤ R ≤ P + Q and

0 ≤ S ≤ P , D[r] are N × N full-rank matrices and E[s] are N × N matrices with rank less than
K. Moreover the upper bounds are tight if the model of eqn. (1) is minimal. The proof is given in
Supplemental Appendix A.

The multi-scale spatio-temporal dynamics are modeled as stable convection–diffusion (C–D)
processes governed by hyperbolic–parabolic PDEs of the form ∂y/∂t + ∇ · (~cy) = ∇ · κ∇ + s,
where y is the quantity corresponding to y, κ is the diffusivity and c is the convection velocity
and s is an exogenous source. The balance between convection and diffusion is quantified by the
Péclet number2 of the system [8]. These processes are non-linear in diffusivity and velocity and
a full-physics inversion involves estimating κ and ~c at each spatial location, which is a highly
ill-posed and under-constrained[1]. However, because for systems with physically reasonable
Péclet numbers, dynamics at larger scales can be accurately approximated on increasingly coarse
grids [13], we simplify the model by assuming that conditioned on the rest of the system, the
large-scale dynamics between any two components xi ∼ xj | xk ∀k 6= i, j can be approximated by
a 1-d C–D system with constant Péclet number. This approximation allows us to use Proposition 2:

Theorem 2. For the VAR system of eqn. (1), if the dynamics between any two variables xi ∼
xj | xk ∀k 6= i, j are 1–d C–D with infinite boundary conditions and constant Péclet num-
ber, then the VAR coefficients Ai,j [t] can be approximated by a Gaussian function Ai,j [t] ≈
exp

{
−0.5(t− µi,j)2σ−2

i,j

}
/
√

2πσ2
i,j where µi,j is equal to the distance between i and j and σ2

i,j

is proportional to the product of the distance and the Péclet number. Moreover, this approximation
has a multiplicative-error exp(−O(t3)). Proof is given in Supplemental Appendix B.

In effect, the dynamics of a multi-dimensional (i.e. 2-d or 3-d) continuous spatial system are approx-
imated as a network of 1-dimensional point-to-point flows consisting of a combination of advection

2The Péclet number Pe = Lc/κ is a dimensionless quantity which determines the ratio of advective to
diffusive transfer, where L is the characteristic length, c is the advective velocity and κ is the diffusivity of the
system
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and diffusion. Although in general, the dynamics of higher-dimensional physical systems are not
equivalent to super-position of lower-dimensional systems, as we show in this paper, the stability of
C–D physics [13] allows replicating the large-scale graphical structure and dynamics, while avoid-
ing the ill-conditioned and computationally expensive inversion of a full-physics model. Moreover,
the stability of the C–D impulse response function ensures that the resulting VAR system is also
stable.

3 Model Relaxation and Regularization

As the model of eqn. (1) contains non-linear interactions of real-valued variables x,A and B with
binary Z along with mixed constraints, direct estimation would require solving a mixed integer
non-linear problem. Instead, in this section we present relaxations and regularizations that allow
estimation of model parameters via convex optimization. The next theorem states that for a given
assignment of measurement sites to global components, the interactions within a component do not
affect the interactions between components, which enables replacing the mixed non-linearity due to
the constraints on B[q] with a set of unconstrained diagonal matrices C[q], q = 1 . . . Q.
Theorem 3. For a given global-component assignment Z, if A∗ and x∗ are local optima to the
least-squares problem of eqn. (1), then they are also a local optimum to the least-squares problem
for:

x[t] =

P∑
p=1

A[p]x[t− p] + u[t] and y[t] =

Q∑
q=1

C[p]y[t− q] + Zx[t] + v[t], (2)

where C[r], r = 1 . . . b are diagonal matrices. The proof is given in Supplemental Appendix C.
Furthermore, a LASSO regularization term proportional ‖C‖1 =

∑N
i=1

∑Q
q=1 |C[q][i, i] is added to

reduce the number of non-zero coefficients and thereby the effective order of C .

Next, the binary indicator variables Zi,k are relaxed to be real-valued. Also, an `1 penalty, which
promotes sparsity, combined with an `2 term has been shown to estimate disjoint clusters[19]. There-
fore, the spatial disjointedness constraint Zi,kZi,l = δk,l, ∀i = 1 . . . N , is relaxed by a penalty propor-
tional to ‖Zi,·‖1 along with the constraint that for each yi, the indicator vector Zi,· should lie within
the unit sphere, i.e. ‖Zi,·‖2 ≤ 1. This penalty, which also ensures that |Zi,k| ≤ 1, allows interpretation
of Zi,· as a soft cluster membership.

One way to regularize Ai,j according to Theorem 2 would be to directly parameterize it as a Gaus-
sian function. Instead, observe that G(t) = exp

{
−0.5(t− µ)2/σ2

}
/
√

2πσ2 satisfies the equation
[∂t + (t− µ)/σ]G = 0, subject to

∫
G(t)dt = 1. Therefore, defining the discrete version of this

operator as D(γi,j), a P × P diagonal matrix, the regularization A is as a penalty proportional to

‖D(γ)A‖2,1 =
∑
i,j

‖D(γi,j)Ai,j‖2 where D (γi,j)p,p = ∂̂p + γi,j (p− µi,j) , (3)

along with the relaxed constraint 0 ≤
∑
p Ai,j [p] ≤ 1. Here, ∂̂p is an approximation to time-

differentiation, µi,j is equal to the distance between i and j which is known, and γi,j ≥ Γ is inversely
proportional to σi,j . Importantly, this formulation also admits 0 as a valid solution and has two
advantages over direct parametrization: (i) it replaces a problem that is non-linear in σ2

i,j ; i, j =
1 . . .K with a penalty that is linear in Ai,j ; and (ii) unlike Gaussian parametrization, it admits the
sparse solution Ai,j = 0 for the case when xi does not directly affect xj . The constant Γ > 0 is a user-
specified parameter which prevents γi,j from taking on very small values, thereby obviation solutions
of Ai,j with extremely large variance i.e. with very small but non-zero value. This penalty, derived
from considerations of the dynamics of multi-scale spatio-temporal systems, is the key difference of
the proposed method as compared to sparse time-series graphical model via group LASSO [11].

Putting it all together, the multi-scale graphical model is obtained by optimizing:
[x∗,A∗,C∗,Z∗, γ∗] = argmin

x,A,C,Z,γ
f(x,A,C,Z, γ) + g(x,A,C,Z) (4)

subject to ‖Zi,·‖22 ≤ 1 for all i = 1 . . . N and 0 ≤
∑
p Ai,j [p] ≤ 1 for all i, j = 1 . . .K, and γi,j ≥

Γ, ∀i, j = 1 . . .K. The objective function is split into a smooth portion :

f(x, θ) =

T∑
t=1

∥∥∥∥∥y[t]−
Q∑
q=1

C[q]y[t− q]− Zx[t]

∥∥∥∥∥
2

2

+ λ0

∥∥∥∥∥x[t]−
P∑
p=1

A[p]x[t− p]

∥∥∥∥∥
2

2
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and a non-smooth portion g(θ) = λ1 ‖D(γ)A‖2,1 + λ2 ‖C‖2,1 + λ3 ‖Z‖1 . After solving eqn. (4),
the local graphical structure within each global component is obtained by solving: B∗ =

argminB

∑T
t=1

∥∥∥y[t]−
∑Q
q=1 B[q]y[t− q]− Z∗x∗[t]

∥∥∥2

2
+ λ4 ‖B‖2,1 , where the zeros of B[q] are pre-

determined from Z∗.

3.1 Optimization

Given values of [A,Z,C], the problem of eqn. (4) is unconstrained and strictly convex in x and
γ and given [x, γ], it is unconstrained and strictly convex in C and convex constrained in A and
Z. Therefore, under these conditions block coordinate descent (BCD) is guaranteed to produce a
sequence of solutions that converge to a stationary point [22]. To avoid saddle-points and achieve
local-minima, a random feasible-direction heuristic is used at stationary points. Defining blocks of
variables to be [x, γ], and [A,C,Z], BCD operates as follows:

1 Initialize x(0) and γ(0)

2 Set n = 0 and repeat until convergence:

[A(n+1),Z(n+1),C(n+1)]← min
[A,Z,C]

f(x(n),A,C,Z, γ(n)) + g(x(n),A,C,Z)

[x(n+1), γ(n+1)]←min
[x,γ]

f(x,A(n+1),C(n+1),Z(n+1), γ) + g(x,A(n+1),C(n+1),Z(n+1)).

At each iteration x(n+1) is obtained by directly solving a T × T tri-diagonal Toeplitz system with
blocks of size KP which has a have running time of O(T ×KP 3) (§Supplemental Appendix D for
details).

Estimating γ(n+1) given A(n+1) is obtained by solving minγi,j
∑P
p=1

(
∂̂pAi,j [p] + γi,j (p− µi,j) Ai,j [p]

)2

subject to γi,j > Γ for all i, j = 1 . . .K and i 6= j. This gives γ
(n+1)
i,j =

max
(

Γ, −
∑
p ∂tAi,j (p− µi,j) Ai,j/

∑
p((p− µi,j) Ai,j)

2
)

.

Optimization with respect to A,Z,C is performed using proximal splitting with Nesterov accel-
eration [5] which produces ε–optimal solutions in O(1/

√
ε) time, where the constant factor de-

pends on
√
L(∇θf), the Lipschitz constant of the gradient of the smooth portion f . Defining

θ = [A,Z,C], the key step in the optimization are proximal-gradient-descent operations of the form:
θ(m) = proxαmg

(
θ(m−1) − αm∇θf

(
x(n), γ(n), θ(m−1)

))
, where m is the current gradient-descent

iterate, αm is the step size and the proximal operator is defined as: proxg(θ) = minθ g(x(n), γ(n), θ)+
1
2
‖θ −Θ‖2.

The gradients ∇Af , ∇Cf and ∇Zf are straightforward to compute. As shown in Supplemental
Appendix E.1, the problem in Z is decomposable into a sum of problems over Zi,· for i = 1 . . . N ,
where the proximal operator for each Zi,· is proxg (Zi,·) = max

(
1, ‖Tλ(Zi,·)‖−1

2

)
Tλ(Zi,·). Here

Tλ3(Zi,k) = sign(Zi,k) min(|Zi,k| − λ3, 0) is the element-wise shrinkage operator.

Because A has linear constraints of the form 0 ≤
∑
p Ai,j [p] ≤ 1, the proximal operator does not

have a closed form solution and is instead computed using dual-ascent [6]. As it can be decomposed
across Ai,j for all i, j = 1 . . .K, consider the computation of proxg (â) where â represents one
Ai,j . Defining η as the dual variable, dual-ascent proceeds by iterating the following two steps until
convergence:

(i): a(n+1) =

{
â + η(n)1− λ â+η(n)1

‖D−1â+η(n)1‖
2

if
∥∥∥D−1â + η(n)1

∥∥∥
2
> λ

0 otherwise

(ii): η(n+1) =

{
η(n) − α(n)1>a(n+1) if 1>a(n+1) < 0

η(n) + α(n)
(
1>a(n+1) − 1

)
if 1>a(n+1) > 1

.

Here n indexes the dual-ascent inner loop and α(n) is an appropriately chosen step-size. Note that
D(γi,j), the P × P matrix approximation to ∂t + γi,jt is full rank and therefore invertible. And
finally, the proximal operator for Ci,i for all i = 1 . . . N is Ci,i − λ2Ci,i/ ‖Ci,i‖2 if ‖Ci,i‖2 > λ2 and
0 otherwise.
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Remark: The hyper-parameters of the systems are multipliers λ0 . . . λ4 and threshold Γ. The term
λ0, which is proportional to σu/σv, implements a trade-off between innovations in the local and
global processes. The parameter λ1 penalizes deviation of Ai,j from expected C–D dynamics, while
λ2, λ3 and λ4 control the sparsity of C, Z and B respectively. As explained earlier Γ > 0, the lower
bound on γi,j , prohibits estimates of Ai,j with very high variance and thereby controls the spread /
support of A.
Hyper-parameter selection: Hyper-parameter values that minimize cross-validation error are ob-
tained using grid-search. First, solutions over the full regularization path are computed with warm-
starting. In our experience, for sufficiently small step sizes warm-starting leads to convergence in a
few (< 5) iterations regardless of problem size. Moreover, as B is solved in a separate step, selection
of λ4 is done independently of λ0 . . . λ3. Experimentally, we have observed that an upper limit on
Γ = 1 and step-size of 0.1 is sufficient to explore the space of all solutions. The upper limit on λ3
is the smallest value for which any indicator vector Zi,· becomes all zero. Guidance about minimum
and maximum values λ0 is obtained using the system identification technique of auto-correlation
least squares.
Initialization: To cold start the BCD, γ(0)

i,j is initialized with the upper bound Γ = 1 for all
i, j = 1 . . .K. The variables x

(0)
1 . . .x

(0)
K are initialized as centroids of clusters obtained by K–

means on the time-series data y1 . . .yN .
Model order selection: Because of the sparsity penalties, the solutions are relatively insensitive to
model order (P,Q). Therefore, these are typically set to high values and the effective model order
is controlled through the sparsity hyper-parameters.

4 Results

In this section we present an application to determining the connectivity structure of a medium from
data of flow through it under a potential/pressure field. Such problems include flow of fluids through
porous media under pressure gradients, or transmission of electric currents through resistive media
due to potential gradients, and commonly arise in exploration geophysics in the study of sub-surface
systems like aquifers, petroleum reservoirs, ore deposits and geologic bodies [16]. Specifically,
these processes are defined by PDEs of the form:

~c + κ∇ · p = 0 and
∂y

∂t
+∇ (y~c) = sy, (5)

where ∇ · ~c = sq and ~n · ∇~c|∂Ω = 0, (6)

where y is the state variable (e.g. concentration or current), p is the pressure or potential field driving
the flow, ~c is the resulting velocity field, κ is the permeability / permittivity, sq is the pressure/poten-
tial forcing term, sy is the rate of state variable injection into the system. The domain boundary is
denoted by ∂Ω and the outward normal by ~n. The initial condition for tracer is zero over the entire
domain.

In order to permit evaluation against ground truth, we used the permeability field in Fig. 1(a) based
on a geologic model to study the flow of fluids through the earth subsurface under naturally and
artificially induced pressure gradients. The data were generated by numerical simulation of eqn. (5)
using a proprietary high-fidelity solver for T = 12500s with spatially varying pressure loadings
between ±100 units and with random temporal fluctuations (SNR of 20dB). Random amounts of
tracer varying between 0 and 5 units were injected and concentration measured at 1s intervals at
the 275 sites marked in the image. A video of the simulation is provided as supplemental to the
manuscript, and the data and model are available on request . These concentration profiles at the
275 locations are used as the time-series data y input to the multi-scale graphical model of eqn. (1).

Estimation was done for K = 20, with multiple initializations and hyper-parameter selection as
described above. The K-means step was initialized by distributing seed locations uniformly at
random. The model orders P and Q were kept constant at 50 and 25 respectively. Labels and colors
of the sites in Fig. 1(b) indicate the clusters identified by the K-means step for one initialization
of the estimation procedure, while the estimated multi-scale graphical structure is shown in Figures
1(c)–(d). The global graphical structure (§Fig. 1(c)) correctly captures large-scale features in the
ground truth. Furthermore, as seen in Fig. 1(d) the local graphical structure (given by the coefficients
of B) are sparse and spatially compact. Importantly, the local graphs are spatially more contiguous
than the initial K-means clusters and only approximately 40% of the labels are conserved between
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(d) Local graphical structure
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Figure 1: Fig.(a). Ground truth permeability (κ) map overlaid with locations where the tracer is injected and
measured. Fig.(b). Results of K–means initialization step. Colors and labels both indicate cluster assignments
of the sites. Fig.(c). The global graphical structure for latent variable x. The nodes are positioned at the cen-
troids of the corresponding local graphs. Fig.(d). The local graphical structure. Again, colors and labels both
indicate cluster (i.e. global component) assignments of the sites. Fig.(e). The multi-scale graphical structure
obtained when the Gaussian function prior is replaced by group LASSO on A . Fig.(f). The graphical structure
estimated using non-hierarchal VAR with group LASSO.
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the K-means initialization and the final solution. Furthermore, as shown in Supplemental Appendix
F, the estimated graphical structure is fairly robust to initialization, especially in recovering the
global graph structure. For all initializations, estimation from a cold-start converged in 65–90 BCD
iterations, while warm-starts converged in < 5 iterations.

Figure 2: Response functions at node in cmpnt 17 to
impulse in cmpnt 1 of Fig. 1(c). Plotted are the impulse
responses for eqn. (5) along with 90% bands, the multi-
scale model with C–D prior, the multi-scale model
with group LASSO prior, and the non-hierarchical VAR
model with group LASSO prior.

Fig. 1(e) shows the results of estimating the
multi-scale model when the penalty term of
eqn. (3) for the C–D process prior is replaced
by group LASSO. This result highlights the im-
portance of the physically derived prior to re-
construct the graphical structure of the prob-
lem. Fig. 1(f) shows the graphical structure
estimated using a non-hierarchal VAR model
with group LASSO on the coefficients [11] and
auto-regressive order P = 10. Firstly, this is a
significantly larger model with P ×N2 coeffi-
cients as comparedO(P×N)+O(Q×K2) for
the hierarchical model, and is therefore much
more expensive to compute. Furthermore, the
estimated graph is denser and harder to inter-
pret in the terms of the underlying problem,
with many long range edges intermixed with
short range ones. In all cases, model hyper-
parameters were selected via 10-fold cross-validation described in Supplemental Appendix G. In-
terestingly, in terms of misfit (i.e. training ) error

(∑
t ‖y[t]− ŷ[t]‖ /

∑
t ‖y[t]‖

)
, the non-hierarchal

VAR model performs best (≈ %12.1 ± 4.4 relative error) while group LASSO and C–D penalized
hierarchal models perform equivalently ( 18.3±5.7% and 17.6±6.2%) which can be attributed to the
higher degrees of freedom available to non-hierarchical VAR. However, in terms of cross-validation
(i.e. testing) error, the VAR model was the worst ( 94.5± 8.9%) followed by group LASSO hierar-
chal model (48.3 ± 3.7%). The model with the C–D prior performed the best, with a relative-error
of 31.6± 4.5%.

To characterize the dynamics estimated by the various approaches, we compared the impulse re-
sponse functions (IRF) of the graphical models with that of the ground truth model (§eqn. (5)). The
IRF for a node i is straightforward to generate for eqn. (5), while those for the graphical models are
obtained by setting v0[i] = 1 and v0[j] = 0 for all j 6= i and vt = 0 for t > 0 and then running
their equations forward in time. The responses at a node in global component 17 of Fig. 1(c) to an
impulse at a node in global component 1 is shown in Fig. 2. As the IRF for eqn. (5) depends on the
driving pressure field which fluctuates over time, the mean IRF along with 90% bands are shown.
It can be observed that the multi-scale model with the C–D prior is much better at replicating the
dynamical properties of the original system as compared to the model with group LASSO, while a
non-hierarchical VAR model with group LASSO fails to capture any relevant dynamics. The results
of comparing IRFs for other pairs of sites were qualitatively similar and therefore omitted.

5 Conclusion

In this paper, we proposed a new approach that combines machine-learning / data-driven techniques
with physically derived priors to reconstruct the connectivity / network structure of multi-scale
spatio-temporal systems encountered in multiple fields such as exploration geophysics, atmospheric
and ocean sciences . Simple yet computationally efficient algorithms for estimating the model were
developed through a set of relaxations and regularization. The method was applied to the problem
of learning the connectivity structure for a general class of problems involving flow through a per-
meable medium under pressure/potential fields and the advantages of this method over alternative
approaches were demonstrated. Current directions of investigation includes incorporating different
types of physics such as hyperbolic (i.e. wave) equations into the model. We are also investigating
applications of this technique to learning structure in other domains such as brain networks, traffic
networks, and biological and social networks.
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