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Abstract

We address the problem of image collection summarization by learning mixtures of
submodular functions. Submodularity is useful for this problem since it naturally
represents characteristics such as fidelity and diversity, desirable for any summary.
Several previously proposed image summarization scoring methodologies, in fact,
instinctively arrived at submodularity. We provide classes of submodular compo-
nent functions (including some which are instantiated via a deep neural network)
over which mixtures may be learnt. We formulate the learning of such mixtures as a
supervised problem via large-margin structured prediction. As a loss function, and
for automatic summary scoring, we introduce a novel summary evaluation method
called V-ROUGE, and test both submodular and non-submodular optimization
(using the submodular-supermodular procedure) to learn a mixture of submodular
functions. Interestingly, using non-submodular optimization to learn submodular
functions provides the best results. We also provide a new data set consisting of
14 real-world image collections along with many human-generated ground truth
summaries collected using Amazon Mechanical Turk. We compare our method
with previous work on this problem and show that our learning approach outper-
forms all competitors on this new data set. This paper provides, to our knowledge,
the first systematic approach for quantifying the problem of image collection sum-
marization, along with a new data set of image collections and human summaries.

1 Introduction

The number of photographs being uploaded online is growing at an unprecedented rate. A recent
estimate is that 500 million images are uploaded to the internet every day (just considering Flickr,
Facebook, Instagram and Snapchat), a figure which is expected to double every year [22]. Organizing
this vast amount of data is becoming an increasingly important problem. Moreover, the majority
of this data is in the form of personal image collections, and a natural problem is to summarize
such vast collections. For example, one may have a collection of images taken on a holiday trip,
and want to summarize and arrange this collection to send to a friend or family member or to post
on Facebook. Here the problem is to identify a subset of the images which concisely represents
all the diversity from the holiday trip. Another example is scene summarization [28], where one
wants to concisely represent a scene, like the Vatican or the Colosseum. This is relevant for creating
a visual summary of a particular interest point, where we want to identify a representative set of
views. Another application that is gaining importance is summarizing video collections [26, 13] in
order to enable efficient navigation of videos. This is particularly important in security applications,
where one wishes to quickly identify representative and salient images in massive amounts of video.



These problems are closely related and can be unified via the problem of finding the most repre-
sentative subset of images from an entire image collection. We argue that many formulations of
this problem are naturally instances of submodular maximization, a statement supported by the fact
that a number of scoring functions previously investigated for image summarization are (apparently
unintentionally) submodular [30, 28, 5, 29, 8].

A set function f(-) is said to be submodular if for any element v and sets A C B C V\{v}, where
V represents the ground set of elements, f(A U {v}) — f(4) > f(B U {v}) — f(B). This is
called the diminishing returns property and states, informally, that adding an element to a smaller
set increases the function value more than adding that element to a larger set. Submodular functions
naturally model notions of coverage and diversity in applications, and therefore, a number of machine
learning problems can be modeled as forms of submodular optimization [11, 20, 18]. In this paper,
we investigate structured prediction methods for learning weighted mixtures of submodular functions
for image collection summarization.

Related Work: Previous work on image summarization can broadly be categorized into (a)
clustering-based approaches, and (b) approaches which directly optimize certain scoring functions.
The clustering papers include [12, 8, 16]. For example, [12] proposes a hierarchical clustering-based
summarization approach, while [8] uses k-medoids-based clustering to generate summaries. Sim-
ilarly [16] proposes top-down based clustering. A number of other methods attempt to directly
optimize certain scoring functions. For example, [28] focuses on scene summarization and poses an
objective capturing important summarization metrics such as likelihood, coverage, and orthogonality.
While they do not explicitly mention this, their objective function is in fact a submodular function.
Furthermore, they propose a greedy algorithm to optimize their objective. A similar approach was pro-
posed by [30, 29], where a set cover function (which incidentally also is submodular) is used to model
coverage, and a minimum disparity formulation is used to model diversity. Interestingly, they optimize
their objective using the same greedy algorithm. Similarly, [15] models the problem of diverse image
retrieval via determinantal point processes (DPPs). DPPs are closely related to submodularity, and in
fact, the MAP inference problem is an instance of submodular maximization. Another approach for
image summarization was posed by [5], where they define an objective function using a graph-cut func-
tion, and attempt to solve it using a semidefinite relaxation. They unintentionally use an objective that
is submodular (and approximately monotone [18]) that can be optimized using the greedy algorithm.

Our Contributions: We introduce a family of submodular function components for image collection
summarization over which a convex mixture can be placed, and we propose a large margin formulation
for learning the mixture. We introduce a novel data set of fourteen personal image collections, along
with ground truth human summaries collected via Amazon mechanical Turk, and then subsequently
cleaned via methods described below. Moreover, in order to automatically evaluate the quality of
novel summaries, we introduce a recall-based evaluation metric, which we call V-ROUGE, to compare
automatically generated summaries to the human ones. We are inspired by ROUGE [17], a well-
known evaluation criterion for evaluating summaries in the document summarization community, but
we are unaware of any similar efforts in the computer vision community for image summarization. We
show evidence that V-ROUGE correlates well with human evaluation. Finally, we extensively validate
our approach on these data sets, and show that it outperforms previously explored methods developed
for similar problems. The resulting learnt objective, moreover, matches human summarization
performance on test data.

2 Image Collection Summarization

Summarization is a task that most humans perform intuitively. Broadly speaking, summarization is
the task of extracting information from a source that is both minimal and most important. The precise
meaning of most important (relevance) is typically subjective and thus will differ from individual
to individual and hence is difficult to precisely quantify. Nevertheless, we can identify two general
properties that characterize good image collection summarizes [19, 28]:

Fidelity: A summary should have good coverage, meaning that all of the distinct “concepts” in
the collection have at least one representative in the summary. For example, a summary of a photo
collection containing both mountains and beaches should contain images of both scene types.

Diversity: Summaries should be as diverse as possible, i.e., summaries should not contain images
that are similar or identical to each other. Other words for this concept include diversity or dispersion.
In computer vision, this property has been referred to as orthogonality [28].



Note that [28] also includes the notion of “likelihood,” where summary images should have high
similarity to many other images in the collection. We believe, however, that such likelihood is
covered by fidelity. L.e., a summary that only has images similar to many in the collection might miss
certain outlier, or minority, concepts in the collection, while a summary that has high fidelity should
include a representative image for every both majority and minority concept in the collection.Also,
the above properties could be made very high without imposing further size or budget constraints.
Le., the goal of a summary is to find a small or within-budget subset having the above properties.

2.1 Problem Formulation

We cast the problem of image collection summarization as a subset selection problem: given a
collection of images Z = (I, Ia, - - - , I|y|) represented by an index set V' and given a budget c, we
aim to find a subset S C V,|S| < ¢, which best summarizes the collection. Though alternative
approaches are possible, we aim to solve this problem by learning a scoring function F': 2V — R,
such that high quality summaries are mapped to high scores and low quality summaries to low scores.
Then, image collection summarization can be performed by computing:

S* € argmaxgcy, g)<c F1(9). (1)

For arbitrary set functions, computing S* is intractable, but for monotone submodular functions
we rely on the classic result [25] that the greedy algorithm offers a constant-factor mathematical
quality guarantee. Computational tractability notwithstanding, submodular functions are natural for
measuring fidelity and diversity [19] as we argue in Section 4.

2.2 Evaluation Criteria: V-ROUGE

Before describing practical submodular functions for mixture components, we discuss a crucial ele-
ment for both summarization evaluation and for the automated learning of mixtures: an objective evalu-
ation criterion for judging the quality of summaries. Our criterion is constructed similar to the popular
ROUGE score used in multi-document summarization [17] and that correlates well with human per-
ception. For document summarization, ROUGE (which in fact, is submodular [19, 20]) is defined as:

ZwEW ESeS min (¢, (A), cw(S5))
ZwEW ngs cw ()

where S is a set of human-generated reference summaries, W is a set of features (n-grams), and where
¢w(A) is the occurrence-count of w in summary A. We may extend r(+) to handle images by letting VW
be a set of visual words, S a set of reference summaries, and ¢,,(A) be the occurrence-counts of visual
word w in summary A. Visual words can for example be computed from SIFT-descriptors [21] as com-
mon in the popular bag-of-words framework in computer vision [31]. We call this V-ROUGE (visual
ROUGE). In our experiments, we use visual words extracted from color histograms, from super-pixels,
and also from OverFeat [27], a deep convolutional network — details are given in Section 5.

rs(4) = (£ r(A) when S is clear from the context), (2)

3 Learning Framework

We construct our submodular scoring functions F,(-) as convex combinations of non-negative
submodular functions fi, fa,..., fm, i.e. Fy(S) = 27;1 w; fi(S), where w = (w1,...,wy),
w; > 0, Zz w; = 1. The functions f; are submodular components and assumed to be normalized:
i.e., fi(0) =0, and f;(V) = 1 for polymatroid functions and maxacy f;(A4) < 1 for non-monotone
functions. This ensures that the components are compatible with each other. Obviously, the merit of
the scoring function F,(-) depends on the selection of the components. In Section 4, we provide a
large number of natural component choices, mixtures over which span a large diversity of submodular
functions. Many of these component functions have appeared individually in past work and are
unified into a single framework in our approach.

Large-margin Structured Prediction: We optimize the weights w of the scoring function F,,(-)
in a large-margin structured prediction framework, i.e. the weights are optimized such that human
summaries S are separated from competitor summaries by a loss-dependent margin:

Fu(S) > Fu(S") + £(S), VS€S,S eV\S, 3)

where ¢(-) is the considered loss function, and where ) is a structured output space (for example )
is the set of summaries that satisfy a certain budget ¢, i.e. Y = {S' C V : |S'| < ¢}). We assume



the loss to be normalized, 0 < ¢(S’) < 1,V.S” C V, to ensure mixture and loss are calibrated.
Equation (3) can be stated as Fy,(S) > maxg/ey [Fi(S7) + £(S")], VS € S which is called loss-
augmented inference. We introduce slack variables and minimize the regularized sum of slacks [20]:

A
i Fou(S") + (5] = Fiu(S)| + 2wl2, 4
L ;g;[ggg[ (5) + ()] - Fu($)| + Sl @

where the non-negative orthant constraint, w > 0, ensures that the final mixture is submodular. Note
a 2-norm regularizer is used on top of a 1-norm constraint ||w]||; = 1 which we interpret as a prior to
encourage higher entropy, and thus more diverse mixture, distributions. Tractability depends on the
choice of the loss function. An obvious choice is £(S) = 1 — r(S), which yields a non-submodular
optimization problem suitable for optimization methods such as [10] (and which we try in Section 7).
We also consider other loss functions that retain submodularity in loss augmented inference. For

now, assume that S = maxgrcy[F,, (S’) + £(S’)] can be estimated efficiently. The objective in (4)
can then be minimized using standard stochastic gradient descent methods, where the gradient for
sample .S with respect to weight w; is given as
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(Ful$)+ 05) ~ Fuls) + 5wlB) = £(5) = £:(5) + hus. ®

Loss Functions: A natural loss function is ¢;_r(S) = 1 — r(S) where r(S) = V-ROUGE(S).
Because r(S) is submodular, 1 — 7(S) is supermodular and hence maximizing F,(S’) + ¢(S)
requires difference-of-submodular set function maximization [24] which is NP-hard [10]. We
also consider two alternative loss functions [20], complement V-ROUGE and surrogate V-ROUGE.
Complement V-ROUGE sets £.(S) = r(V \ S) and is still submodular but it is non-monotone.
£.(+) does have the necessary characteristics of a proper loss: summaries S with large V-ROUGE
score are mapped to small values and summaries S_ with small V-ROUGE score are mapped to
large values. In particular, submodularity means r(S) + (V' \ S) > »(V) + r(0) = (V) or
r(V\S) > r(V)—r(S) =1-r(S), so complement rouge is a submodular upper bound of the ideal
supermodular loss. We define surrogate V-ROUGE as (g (A) = £+ > gcs Zwewg cw(A), where

WY is the set of visual words that do not appear in reference summary S and Z is a normalization
constant. Here, a summary has a high loss if it contains many visual words that do not occur in
reference summaries and a low loss if it mainly contains visual words that occur in the reference
summaries. Surrogate V-ROUGE is not only monotone submodular, it is modular.

Loss augmented Inference: Depending on the loss function, different algorithms for performing
loss augmented inference, i.e. computation of the maximum in (4), must be used. When using the
surrogate 10ss lgy(+), the mixture function together with the loss, i.e. f1(S) = F,,(S) + £(9), is
submodular and monotone. Hence, the greedy algorithm [25] can be used for maximization. This
algorithm is extremely simple to implement, and starting at S° = (), iteratively chooses an element
j & S* that maximizes fr(S* U j), until the budget constraint is violated. While the complexity of
this simple procedure is O(n?) function evaluations, it can be significantly accelerated, thanks again
to submodularity [23], which in practice we find is almost linear time. When using complement rouge
¢c(-) as the loss, fr(.9) is still submodular but no longer monotone, so we utilize the randomized
greedy algorithm [2] (which is essentially a randomized variant of the greedy algorithm above, and
has approximation guarantees). Finally, when using loss 1-V-ROUGE, F,,(S) + £(S) is neither
submodular nor monotone and approximate maximization is intractable. However, we resort to well
motivated and scalable heuristics, such as the submodular-supermodular procedures that have shown
good performance in various applications [24, 10].

Runtime Inference: Having learnt the weights for the mixture components, the resulting function
F,(S) = >, w; f;(S) is monotone submodular, which can be optimized by the accelerated greedy
algorithm [23]. Thanks to submodularity, we can obtain near optimal solutions very efficiently.

4 Submodular Component Functions

In this section, we consider candidate submodular component functions to use in Fy, (). We consider
first functions capturing more of the notion of fidelity, and then next diversity, although the distinction
is not entirely crystal clear in these functions as some have aspects of both. Many of the components
are graph-based. We define a weighted graph G(V, E, s), with V representing a the full set of images
and E is every pair of elements in V. Each edge (¢, j) € E has weight s; ; computed from the visual
features as described in Section 7. The weight s; ; is a similarity score between images 7 and j.



4.1 Fidelity-like Functions

A function representing the fidelity of a subset to the whole is one that gets a large value when
the subset faithfully represents that whole. An intuitively reasonable property for such a function
is one that scores a summary highly if it is the case that the summary, as a whole, is similar to a
large majority of items in the set V. In this case, if a given summary A has a fidelity of f(A), then
any superset B D A should, if anything, have higher fidelity, and thus it seems natural to use only
monotone non-decreasing functions as fidelity functions. Submodularity is also a natural property
since as more and more properties of an image collection are covered by a summary, the less chance
any given image not part of the summary would have in offering additional coverage — in other
words, submodularity is a natural model for measuring the inherent redundancy in any summary.
Given this, we briefly describe some possible choices for coverage functions:

Facility Location. Given a summary S C V, we can quantify coverage of the whole image collection
V' by the similarity between ¢ € V and its closest image j € S. Summing these similarities yields the
facility location function facjoc.(S) = D icy MaXjes s; 5. The facility location function has been
used for scene summarization in [28] and as one of the components in [20].

Sum Coverage. Here, we compute the average similarity in S rather than the similarity of the best
element in S only. From the graph perspective (G) we sum over the weights of edges with at least
one vertex in S. Thus, faumcov.(S) = > ey Zjes Sij-

Thresholded sum/truncated graph cut This function has been used in document summariza-
tion [20] and is similar to the sum coverage function except that instead of summing over all elements
in S, we threshold the inner sum. Define 0;(S) = >, i,5, i.e. informally, ¢;(5) conveys how
much of image ¢ is covered by S. In order to keep an element ¢ from being overly covered by S as the
cause of the objective getting large, we define finresh.sum(S) = D,y min(o;(S), o3 (V)), which is
both monotone and submodular [20]. Under budget constraints, this function avoids summaries that
over-cover any images.

Feature functions. Consider a bag-of-words image model where for i € V, b; = (b; w)wew
is a bag-of-words representation of image ¢ indexed by the set of visual words W (cf. Section 5).
We can then define a feature coverage function [14], defined using the visual words, as follows:
Jreateov.(S) = D wew 9 (Ziel bi}w), where g(-) is a monotone non-decreasing concave function.
This class is both monotone and submodular, and an added benefit of scalability, since it does not
require computation of a O(n?) similarity matrix like the graph-based functions proposed above.

4.2 Diversity

Diversity is another trait of a good summary, and there are a number of ways to quantify it. In this
case, while submodularity is still quite natural, monotonicity sometimes is not.

Penalty based diversity/dispersion Given a set .S, we penalize similarity within S by summing
over all pairs as follows: fuissim.(S) = —>_,cg ZjGS,j>i si,; [28] (a variant, also submodular,
takes the form — Zz jes Siyj [19]). These functions are submodular, and monotone decreasing, so
when added to other functions can yield non-monotone submodular functions. Such functions have

occurred before in document summarization [19], as a dispersion function [1], and even for scene
summarization [28] (in this last case, the submodularity property was not explicitly mentioned).

Diversity reward based on clusters. As in [20], we define a cluster based function rewarding
diversity. Given clusters P;, P», - - - , Pj obtained by some clustering algorithm. We define diversity

reward functions faivreward (S) = 2?21 g(S N P;), where g(-) is a monotone submodular function
s0 that fgivrewara(-) is also monotone and submodular. Given a budget, fuiyrewara(S) is maximized

by selecting .S as diverse, over different clusters, as possible because of diminishing credit when
repeatedly choosing an item in a cluster.

5 Visual Words for Evaluation

V-ROUGE (see Section 2.2) depends on a visual “bag-of-words” vocabulary, and to construct a visual
vocabulary, multitude choices exists. Common choices include SIFT descriptors [21], color descrip-
tors [34], raw image patches [7], etc. For encoding, vector quantization (histogram encoding) [4],
sparse coding [35], kernel codebook encoding [4], etc. can all be used. For the construction of our



V-ROUGE metric, we computed three lexical types and used their union as our visual vocabulary. The
different types are intended to capture information about the images at different scales of abstraction.

Color histogram. The goal here is to capture overall image information via color information. We
follow the method proposed in [34]: Firstly, we extract the most frequent colors in RGB color space
from the images in an image collection using 10 x 10 pixel patches. Secondly, these frequent colors
are clustered by k-means into 128 clusters, resulting in 128 cluster centers. Finally, we quantize the
most frequent colors in every 10 x 10 pixel image patch using nearest neighbor vector quantization.
For every image, the resulting bag-of-colors is normalized to unit ¢; -norm.

Super pixels. Here, we wish to capture information about small objects or image regions that are
identified by segmentation. Images are first segmented using the quick shift algorithm implemented
in VLFeat [33]. For every segment, dense SIFT descriptors are computed and clustered into 200
clusters. Then, a patch-wise intermediate bag of words byuch is computed by vector quantization
and the RGB color histogram of the corresponding patch cpach is appended to that set of words.
This results in intermediate features ¢pach = [bpach, Cparcn]- These intermediate features are again
clustered into 200 clusters. Finally, the intermediate features are vector-quantized according to their
¢1-distance. This final bag-of-words representation is normalized to unit #1-norm.

Deep convolutional neural network. Our deep neural network based words are meant to capture
high-level information from the images. We use OverFeat [27], i.e. an image recognizer and feature
extractor based on a convolutional neural network for extracting medium to high level image features.
A sliding window is moved across an input picture such that every image is divided into 10 x 10
blocks (using a 50% overlap) and the pixels within the window are presented to OverFeat as input.
The activations on layer 17 are taken as intermediate features ¢, and clustered by k-means into 300
clusters. Then, each ¢y, is encoded by kernel codebook encoding [4]. For every image, the resulting
bag-of-words representation is normalized to the unit ¢;-norm.

6 Data Collection

Dataset. One major contribution of our paper is our new data set which we plan soon to publicly
release. Our data set consists of 14 image collections, each comprising 100 images. The image
collections are typical real world personal image collections as they, for the most part, were taken
during holiday trips. For each collection, human-generated summaries were collected using Amazon
mechanical Turk. Workers were asked to select a subset of 10 images from an image collection such
that it summarizes the collection in the best possible way.' In contrast to previous work on movie
summarization [13], Turkers were not tested for their ability to produce high quality summaries.
Every Turker was rewarded 10 US cents for every summary.

Pruning of poor human-generated summaries. The summaries collected using Amazon
mechanical Turk differ drastically in quality. For example, some of the collected summaries have low
quality because they do not represent an image collection properly, e.g. they consist only of pictures
of the same people but no pictures showing, say, architecture. Even though we went through several
distinct iterations of summary collection via Amazon Turk, improving the quality of our instructions
each time, it was impossible to ensure that all individuals produced meaningful summaries. Such
low quality summaries can drastically degrade performance of the learning algorithm. We thus
developed a strategy to automatically prune away bad summaries, where “bad” is defined as the
worst V-ROUGE score relative to a current set of human summaries. The strategy is depicted in
Algorithm 1. Each pruning step removes the worst human summary, and then creates a new instance
of V-ROUGE using the updated pruned summaries. Pruning proceeds as long as a significant fraction
(greater than a desired “p-value”) of null-hypothesis summarizes (generated uniformly at random)
scores better than the worst human summary. We chose a significant value of p = 0.10.

7 Experiments

To validate our approach, we learned mixtures of submodular functions with 594 component
functions using the data set described in Section 6. In this data set, all human generated reference
summaries are size 10, and we evaluated performance of our learnt mixtures also by producing size
10 summaries. The component functions were the monotone submodular functions described in

"We did not provide explicit instructions on precisely how to summarize an image collection and instead
only asked that they choose a representative subset. We relied on their high-level intuitive understanding that the
gestalt of the image collection should be preserved in the summary.



Algorithm 1 Algorithm for pruning poor human-generated summaries.

Require: Confidence level p, human summaries S, number of random summaries [V
Sample N uniformly at random size-10 image sets, to be used as summaries R = (R1,...,Ry)
Instantiate V-ROUGE-score rs(-) instantiated with summaries S
0+ ﬁ > Rrer Lrs(R)>minges rs(s)} // fraction of random summaries better than worst human

while 0 > p do
S «+ S\ (argmingeg 7s(S))
Re-instantiate V-ROUGE score 75 (-) using updated pruned human summaries S.
Recompute overlap o as above, but with updated V-ROUGE score.

end while

return Pruned human summaries S
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Figure 1: Three example 10x 10 image collections from our new data set.

Section 4 using features described in Section 5. For weight optimization, we used AdaGrad [6], an
adaptive subgradient method allowing for informative gradient-based learning. We do 20 passes
through the samples in the collection.

We considered two types of experiments: 1) cheating experiments to verify that our proposed mixture
components can effectively learn good scoring functions; and 2) a 14-fold cross-validation experiment
to test our approach in real- world scenarios. In the cheating experiments, training and testing is
performed on the same image collection, and this is repeated 14 times. By contrast, for our 14-fold
cross-validation experiments, training is performed on 13 out of 14 image collections and testing is
performed on the held out summary, again repeating this 14 times. In both experiment types, since
our learnt functions are always monotone submodular, we compute summaries S* of size 10 that
approximately maximize the scoring functions using the greedy algorithm. For these summaries,
we compute the V-ROUGE score r(.S*). For easy score interpretation, we normalize it according to

sc(S*) = (r(S*) — R)/(H — R), where R is the average V-ROUGE score of random summaries
(computed from 1000 summaries) and where [ is the average V-ROUGE score of the collected final
pruned human summaries. The result sc(S*) is smaller than zero if S* scores worse than the average
random summary and larger than one if it scores better than the average human summary.

The best cheating results are shown as Cheat in Table 1, learnt using 1-V-ROUGE as a loss. The
results in column Min are computed by constrainedly minimizing V-ROUGE via the methods of [11],
and the results in column Max are computed by maximizing V-ROUGE using the greedy algorithm.
Therefore, the Max column is an approximate upper bound on our achievable performance. Clearly,
we are able to learn good scoring functions, as on average we significantly exceed average human
performance, i.e., we achieve an average score of 1.42 while the average human score is 1.00.

Results for cross-validation experiments are presented in Table 1. In the columns Our Methods
we present the performance of our mixtures learnt using the proposed loss functions described in
Section 3. We also present a set of baseline comparisons, using similarity scores computed via a
histogram intersection [32] method over the visual words used in the construction of V-ROUGE. We
present baseline results for the following schemes:

FL the facility location objective fec1oc.(S) alone;
FL,., the facility location objective mixed with a A-weighted penalty, i.e. fruc1oc.(S) + A faissim. (S):
MMR Maximal marginal relevance [3], using A to tradeoff between relevance and diversity;

GCpen Graphcut mixed with a A\-weighted penalty, similar to FL, but where graphcut is used in
place of facility location;

kM K-Medoids clustering [9, Algorithm 14.2]. Initial cluster centers were selected uniformly at
random. As a dissimilarity score between images 4 and j, we used 1 — s; ;. Clustering was
run 20 times, and we used the cluster centers of the best clustering as the summary.



In each of the above cases where a A\ weight is used, we take for each image collection the A €
{0,0.1,0.2,...,0.9,1.0} that produced a submodular function that when maximized produced the
best average V-ROUGE score on the 13 training image sets. This approach, therefore, selects the best
baseline possible when performing a grid-search on the training sets. Note that both A-dependent
functions, i.e. FLpe, and GCpyy, are non-monotone submodular. Therefore, we used the randomized
greedy algorithm [2] for maximization which has a mathematical guarantee (we ran the algorithm 10
times and used the best result).

Table 1 shows that using 1-V-ROUGE as a loss significantly outperforms the other methods. Further-
more, the performance is on average better than human performance, i.e. we achieve an average score
of 1.13 while the average human score is 1.00. This indicates that we can efficiently learn scoring
functions suitable for image collection summarization. For the other two losses, i.e. surrogate and
complement V-ROUGE, performance is significantly worse. Thus, in this case it seems advantageous
to use the proper (supermodular) loss and heuristic optimization (the submodular-supermodular
procedure [24, 10]) for loss-augmented inference during training, compared to using an approximate
(submodular or modular) loss in combination with an optimization algorithm for loss-augmented
inference with strong guarantees. This could, however, perhaps be circumvented by constructing a
more accurate strictly submodular surrogate loss but we leave this to future work.

Table 1: Cross-Validation Experiments (see text for details). Average human performance is 1.00,
average random performance is 0.00. For each image collection, the best result achieved by any of
Our Methods and by any of the Baseline Methods is highlighted in bold.

Limits Our Methods Baseline Methods
No. Min Max Cheat {¢1_p /. Csurr FL FL,, MMR GCp, kM

-255 278 171 151 087 -036 145 0.82 -0.51 1.06 1.23
-2.06 222 138 127 126 044 0.18 058 0.65 021  0.89
-207 224 164 146 095 023 047 094 085 -0.53 0.52
-320 2.04 142 1.04 081 -0.18 0.71 1.01 0.51 -0.02  1.32
-1.65 192 160 111 1.06 058 096 0.93 095 -1.28 0.70
-283 240 1.81 147 065 027 126 1.16 -008 020 1.05
-244 207 107 107 09 0.15 093 0.70 -033 -0.84 0.97
-1.66 2.04 145 113 096 0.07 062 038 057 -127 091
-232 259 173 121 1.13 051 081 094 009 -0.59 0.38
-146 234 139 106 0.78 0.14 158 099 -026 007 0.73
11 -155 185 122 095 092 -0.08 043 056 -029 0.05 0.26
12 -1.74 239 157 111 058 0.12 078 054 002 -0.01 0.63
13 -094 172 077 032 053 014 002 -006 052 -0.04 0.02
14 -146 175 107 108 097 077 023 014 022 -080 0.29
Avg. -200 217 142 113 089 020 0.75 0.69 0.21 -0.27  0.71

—
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8 Conclusions and Future Work

We have considered the task of automated summarization of image collections. A new data set
together with many human generated ground truth summaries was presented and a novel automated
evaluation metric called V-ROUGE was introduced. Based on large-margin structured prediction,
and either submodular or non-submodular optimization, we proposed a method for learning scoring
functions for image collection summarization and demonstrated its empirical effectiveness. In future
work, we would like to scale our methods to much larger image collections. A key step in this
direction is to consider low complexity and highly scalable classes of submodular functions. Another
challenge for larger image collections is how to collect ground truth, as it would be difficult for a
human to summarize a collection of, say, 10,000 images.
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