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Abstract

Events in an online social network can be categorized roughly into endogenous
events, where users just respond to the actions of their neighbors within the net-
work, or exogenous events, where users take actions due to drives external to the
network. How much external drive should be provided to each user, such that the
network activity can be steered towards a target state? In this paper, we model
social events using multivariate Hawkes processes, which can capture both en-
dogenous and exogenous event intensities, and derive a time dependent linear re-
lation between the intensity of exogenous events and the overall network activity.
Exploiting this connection, we develop a convex optimization framework for de-
termining the required level of external drive in order for the network to reach a
desired activity level. We experimented with event data gathered from Twitter,
and show that our method can steer the activity of the network more accurately
than alternatives.

1 Introduction
Online social platforms routinely track and record a large volume of event data, which may corre-
spond to the usage of a service (e.g., url shortening service, bit.ly). These events can be categorized
roughly into endogenous events, where users just respond to the actions of their neighbors within
the network, or exogenous events, where users take actions due to drives external to the network.
For instance, a user’s tweets may contain links provided by bit.ly, either due to his forwarding of a
link from his friends, or due to his own initiative to use the service to create a new link.

Can we model and exploit these data to steer the online community to a desired activity level?
Specifically, can we drive the overall usage of a service to a certain level (e.g., at least twice per
day per user) by incentivizing a small number of users to take more initiatives? What if the goal is
to make the usage level of a service more homogeneous across users? What about maximizing the
overall service usage for a target group of users? Furthermore, these activity shaping problems need
to be addressed by taking into account budget constraints, since incentives are usually provided in
the form of monetary or credit rewards.

Activity shaping problems are significantly more challenging than traditional influence maximiza-
tion problems, which aim to identify a set of users, who, when convinced to adopt a product, shall
influence others in the network and trigger a large cascade of adoptions [1, 2]. First, in influence
maximization, the state of each user is often assumed to be binary, either adopting a product or
not [1, 3, 4, 5]. However, such assumption does not capture the recurrent nature of product usage,
where the frequency of the usage matters. Second, while influence maximization methods identify
a set of users to provide incentives, they do not typically provide a quantitative prescription on how
much incentive should be provided to each user. Third, activity shaping concerns a larger variety of
target states, such as minimum activity and homogeneity of activity, not just activity maximization.

In this paper, we will address the activity shaping problems using multivariate Hawkes processes [6],
which can model both endogenous and exogenous recurrent social events, and were shown to be a
good fit for such data in a number of recent works (e.g., [7, 8, 9, 10, 11, 12]). More importantly,
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we will go beyond model fitting, and derive a novel predictive formula for the overall network ac-
tivity given the intensity of exogenous events in individual users, using a connection between the
processes and branching processes [13, 14, 15, 16]. Based on this relation, we propose a convex
optimization framework to address a diverse range of activity shaping problems given budget con-
straints. Compared to previous methods for influence maximization, our framework can provide
more fine-grained control of network activity, not only steering the network to a desired steady-state
activity level but also do so in a time-sensitive fashion. For example, our framework allows us to
answer complex time-sensitive queries, such as, which users should be incentivized, and by how
much, to steer a set of users to use a product twice per week after one month?

In addition to the novel framework, we also develop an efficient gradient based optimization al-
gorithm, where the matrix exponential needed for gradient computation is approximated using the
truncated Taylor series expansion [17]. This algorithm allows us to validate our framework in a
variety of activity shaping tasks and scale up to networks with tens of thousands of nodes. We also
conducted experiments on a network of 60,000 Twitter users and more than 7,500,000 uses of a pop-
ular url shortening services. Using held-out data, we show that our algorithm can shape the network
behavior much more accurately than alternatives.

2 Modeling Endogenous-Exogenous Recurrent Social Events
We model the events generated by m users in a social network as a m-dimensional counting process
N(t) = (N1(t), N2(t), . . . , Nm(t))", where Ni(t) records the total number of events generated by
user i up to time t. Furthermore, we represent each event as a tuple (ui, ti), where ui is the user iden-
tity and ti is the event timing. Let the history of the process up to time t be Ht := {(ui, ti) | ti ! t},
and Ht− be the history until just before time t. Then the increment of the process, dN(t), in an in-
finitesimal window [t, t+dt] is parametrized by the intensity λ(t) = (λ1(t), . . . , λm(t))" " 0, i.e.,

E[dN(t)|Ht−] = λ(t) dt. (1)
Intuitively, the larger the intensity λ(t), the greater the likelihood of observing an event in the time
window [t, t + dt]. For instance, a Poisson process in [0,∞) can be viewed as a special counting
process with a constant intensity function λ, independent of time and history. To model the presence
of both endogenous and exogenous events, we will decompose the intensity into two terms

λ(t)︸︷︷︸
overall event intensity

= λ(0)(t)︸ ︷︷ ︸
exogenous event intensity

+ λ∗(t)︸ ︷︷ ︸
endogenous event intensity

, (2)

where the exogenous event intensity models drive outside the network, and the endogenous event
intensity models interactions within the network. We assume that hosts of social platforms can
potentially drive up or down the exogenous events intensity by providing incentives to users; while
endogenous events are generated due to users’ own interests or under the influence of network peers,
and the hosts do not interfere with them directly. The key questions in the activity shaping context
are how to model the endogenous event intensity which are realistic to recurrent social interactions,
and how to link the exogenous event intensity to the endogenous event intensity. We assume that the
exogenous event intensity is independent of the history and time, i.e., λ(0)(t) = λ(0).

2.1 Multivariate Hawkes Process
Recurrent endogenous events often exhibit the characteristics of self-excitation, where a user tends
to repeat what he has been doing recently, and mutual-excitation, where a user simply follows what
his neighbors are doing due to peer pressure. These social phenomena have been made analogy to
the occurrence of earthquake [18] and the spread of epidemics [19], and can be well-captured by
multivariate Hawkes processes [6] as shown in a number of recent works (e.g., [7, 8, 9, 10, 11, 12]).

More specifically, a multivariate Hawkes process is a counting process who has a particular form
of intensity. We assume that the strength of influence between users is parameterized by a sparse
nonnegative influence matrix A = (auu′)u,u′∈[m], where auu′ > 0 means user u′ directly excites
user u. We also allow A to have nonnegative diagonals to model self-excitation of a user. Then, the
intensity of the u-th dimension is

λ∗
u(t) =

∑
i:ti<t

auui g(t− ti) =
∑

u′∈[m]
auu′

∫ t

0
g(t− s) dNu′(s), (3)

where g(s) is a nonnegative kernel function such that g(s) = 0 for s ≤ 0 and
∫∞
0 g(s) ds <

∞; the second equality is obtained by grouping events according to users and use the fact that
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(a) An example social network (b) Branching structure of events
Figure 1: In Panel (a), each directed edge indicates that the target node follows, and can be influenced
by, the source node. The activity in this network is modeled using Hawkes processes, which result in
branching structure of events shown in Panel (b). Each exogenous event is the root node of a branch
(e.g., top left most red circle at t1), and it occurs due to a user’s own initiative; and each event can
trigger one or more endogenous events (blue square at t2). The new endogenous events can create
the next generation of endogenous events (green triangles at t3), and so forth. The social network
will constrain the branching structure of events, since an event produced by a user (e.g., user 1) can
only trigger endogenous events in the same user or one or more of her followers (e.g., user 2 or 3).
∫ t
0 g(t − s) dNu′(s) =

∑
ui=u′,ti<t g(t − ti). Intuitively, λ∗

u(t) models the propagation of peer
influence over the network — each event (ui, ti) occurred in the neighbor of a user will boost her
intensity by a certain amount which itself decays over time. Thus, the more frequent the events
occur in the user’s neighbor, the more likely she will be persuaded to generate a new event.

For simplicity, we will focus on an exponential kernel, g(t− ti) = exp(−ω(t− ti)) in the reminder
of the paper. However, multivariate Hawkes processes and the branching processed explained in
next section is independent of the kernel choice and can be extended to other kernels such as power-
law, Rayleigh or any other long tailed distribution over nonnegative real domain. Furthermore, we
can rewrite equation (3) in vectorial format

λ∗(t) =

∫ t

0
G(t− s) dN(s), (4)

by defining a m × m time-varying matrix G(t) = (auu′g(t))u,u′∈[m]. Note that, for multivariate
Hawkes processes, the intensity, λ(t), itself is a random quantity, which depends on the history Ht.
We denote the expectation of the intensity with respect to history as

µ(t) := EHt− [λ(t)] (5)

2.2 Connection to Branching Processes
A branching process is a Markov process that models a population in which each individual in
generation k produces some random number of individuals in generation k + 1, according some
distribution [20]. In this section, we will conceptually assign both exogenous events and endogenous
events in the multivariate Hawkes process to levels (or generations), and associate these events with
a branching structure which records the information on which event triggers which other events (see
Figure 1 for an example). Note that this genealogy of events should be interpreted in probabilistic
terms and may not be observed in actual data. Such connection has been discussed in Hawkes’
original paper on one dimensional Hawkes processes [21], and it has recently been revisited in the
context of multivariate Hawkes processes by [11]. The branching structure will play a crucial role in
deriving a novel link between the intensity of the exogenous events and the overall network activity.

More specifically, we assign all exogenous events to the zero-th generation, and record the number
of such events as N (0)(t). These exogenous events will trigger the first generation of endogenous
events whose number will be recorded as N (1)(t). Next these first generation of endogenous events
will further trigger a second generation of endogenous events N (2)(t), and so on. Then the total
number of events in the network is the sum of the numbers of events from all generations

N(t) = N (0)(t) +N (1)(t) +N (2)(t) + . . . (6)

Furthermore, denote all events in generation k − 1 as H(k−1)
t . Then, independently for each event

(ui, ti) ∈ H(k−1)
t in generation k − 1, it triggers a Poisson process in its neighbor u independently

with intensity auuig(t−ti). Due to the superposition theorem of independent Poisson processes [22],
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the intensity, λ(k)
u (t), of events at node u and generation k is simply the sum of conditional intensities

of the Poisson processes triggered by all its neighbors, i.e., λ(k)
u (t) =

∑
(ui,ti)∈H(k−1)

t
auuig(t −

ti) =
∑

u′∈[m]

∫ t
0 g(t − s) dN (k−1)

u′ (s). Concatenate the intensity for all u ∈ [m], and use the
time-varying matrix G(t) (4), we have

λ(k)(t) =

∫ t

0
G(t− s) dN (k−1)(s), (7)

where λ(k)(t) = (λ(k)
1 (t), . . . , λ(k)

m (t))" is the intensity for counting process N (k)(t) at k-th gen-
eration. Again, due to the superposition of independent Poisson processes, we can decompose the
intensity of N(t) into a sum of conditional intensities from different generation

λ(t) = λ(0)(t) + λ(1)(t) + λ(2)(t) + . . . (8)
Next, based on the above decomposition, we will develop a closed form relation between the ex-
pected intensity µ(t) = EHt− [λ(t)] and the intensity, λ(0)(t), of the exogenous events. This rela-
tion will form the basis of our activity shaping framework.

3 Linking Exogenous Event Intensity to Overall Network Activity
Our strategy is to first link the expected intensity µ(k)(t) := EHt− [λ

(k)(t)] of events at the k-th
generation with λ(0)(t), and then derive a close form for the infinite series sum

µ(t) = µ(0)(t) + µ(1)(t) + µ(2)(t) + . . . (9)
Define a series of auto-convolution matrices, one for each generation, with G(!0)(t) = I and

G(!k)(t) =

∫ t

0
G(t− s)G(!k−1)(s) ds = G(t) #G(!k−1)(t) (10)

Then the expected intensity of events at the k-th generation is related to exogenous intensity λ(0) by

Lemma 1 µ(k)(t) = G(!k)(t)λ(0).
Next, by summing together all auto-convolution matrices,

Ψ(t) := I +G(!1)(t) +G(!2)(t) + . . .

we obtain a linear relation between the expected intensity of the network and the intensity of the
exogenous events, i.e., µ(t) = Ψ(t)λ(0). The entries in the matrix Ψ(t) roughly encode the “influ-
ence” between pairs of users. More precisely, the entry Ψuv(t) is the expected intensity of events
at node u due to a unit level of exogenous intensity at node v. We can also derive several other
useful quantities from Ψ(t). For example, Ψ•v(t) :=

∑
u Ψuv(t) can be thought of as the overall

influence user v has on all users. Surprisingly, for exponential kernel, the infinite sum of matrices
results in a closed form using matrix exponentials. First, let ·̂ denote the Laplace transform of a
function, and we have the following intermediate results on the Laplace transform of G(!k)(t).

Lemma 2 Ĝ(!k)(z) =
∫∞
0 G(!k)(t) dt = 1

z · Ak

(z+ω)k

With Lemma 2, we are in a position to prove our main theorem below:
Theorem 3 µ(t) = Ψ(t)λ(0) =

(
e(A−ωI)t + ω(A− ωI)−1(e(A−ωI)t − I)

)
λ(0).

Theorem 3 provides us a linear relation between exogenous event intensity and the expected overall
intensity at any point in time but not just stationary intensity. The significance of this result is that
it allows us later to design a diverse range of convex programs to determine the intensity of the
exogenous event in order to achieve a target intensity.

In fact, we can recover the previous results in the stationary case as a special case of our general
result. More specifically, a multivariate Hawkes process is stationary if the spectral radius

Γ :=

∫ ∞

0
G(t) dt =

(∫ ∞

0
g(t) dt

)(
auu′

)

u,u′∈[m]
=

A

ω
(11)

is strictly smaller than 1 [6]. In this case, the expected intensity is µ = (I − Γ)−1λ(0) independent
of the time. We can obtain this relation from theorem 3 if we let t → ∞.
Corollary 4 µ = (I− Γ)−1 λ(0) = limt→∞ Ψ(t)λ(0).
Refer to Appendix A for all the proofs.
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4 Convex Activity Shaping Framework
Given the linear relation between exogenous event intensity and expected overall event intensity, we
now propose a convex optimization framework for a variety of activity shaping tasks. In all tasks
discussed below, we will optimize the exogenous event intensity λ(0) such that the expected overall
event intensity µ(t) is maximized with respect to some concave utility U(·) in µ(t), i.e.,

maximizeµ(t),λ(0) U(µ(t))
subject to µ(t) = Ψ(t)λ(0), c"λ(0) ! C, λ(0) " 0

(12)

where c = (c1, . . . , cm)" " 0 is the cost per unit event for each user and C is the total budget.
Additional regularization can also be added to λ(0) either to restrict the number of incentivized
users (with $0 norm ‖λ(0)‖0), or to promote a sparse solution (with $1 norm ‖λ(0)‖1, or to obtain a
smooth solution (with $2 regularization ‖λ(0)‖2). We next discuss several instances of the general
framework which achieve different goals (their constraints remain the same and hence omitted).

Capped Activity Maximization. In real networks, there is an upper bound (or a cap) on the activity
each user can generate due to limited attention of a user. For example, a Twitter user typically posts
a limited number of shortened urls or retweets a limited number of tweets [23]. Suppose we know
the upper bound, αu, on a user’s activity, i.e., how much activity each user is willing to generate.
Then we can perform the following capped activity maximization task

maximizeµ(t),λ(0)

∑
u∈[m] min {µu(t), αu} (13)

Minimax Activity Shaping. Suppose our goal is instead maintaining the activity of each user in the
network above a certain minimum level, or, alternatively make the user with the minimum activity
as active as possible. Then, we can perform the following minimax activity shaping task

maximizeµ(t),λ(0) minu µu(t) (14)

Least-Squares Activity Shaping. Sometimes we want to achieve a pre-specified target activity
levels, v, for users. For example, we may like to divide users into groups and desire a different level
of activity in each group. Inspired by these examples, we can perform the following least-squares
activity shaping task

maximizeµ(t),λ(0) −‖Bµ(t)− v‖22 (15)
where B encodes potentially additional constraints (e.g., group partitions). Besides Euclidean dis-
tance, the family of Bregman divergences can be used to measure the difference between Bµ(t)
and v here. That is, given a function f(·) : Rm (→ R convex in its argument, we can use
D(Bµ(t)‖v) := f(Bµ(t))− f(v)− 〈∇f(v),Bµ(t)− v〉 as our objective function.

Activity Homogenization. Many other concave utility functions can be used. For example, we may
want to steer users activities to a more homogeneous profile. If we measure homogeneity of activity
with Shannon entropy, then we can perform the following activity homogenization task

maximizeµ(t),λ(0) −
∑

u∈[m] µu(t) lnµu(t) (16)

5 Scalable Algorithm
All the activity shaping problems defined above require an efficient evaluation of the instantaneous
average intensity µ(t) at time t, which entails computing matrix exponentials to obtain Ψ(t). In
small or medium networks, we can rely on well-known numerical methods to compute matrix expo-
nentials [24]. However, in large networks, the explicit computation of Ψ(t) becomes intractable.

Fortunately, we can exploit the following key property of our convex activity shaping framework:
the instantaneous average intensity only depends on Ψ(t) through matrix-vector product operations.
In particular, we start by using Theorem 3 to rewrite the multiplication of Ψ(t) and a vector v
as Ψ(t)v = e(A−ωI)tv + ω(A − ωI)−1

(
e(A−ωI)tv − v

)
. We then get a tractable solution by

first computing e(A−ωI)tv efficiently, subtracting v from it, and solving a sparse linear system of
equations, (A − ωI)x =

(
e(A−ωI)tv − v

)
, efficiently. The steps are illustrated in Algorithm 1.

Next, we elaborate on two very efficient algorithms for computing the product of matrix exponential
with a vector and for solving a sparse linear system of equations.

For the computation of the product of matrix exponential with a vector, we rely on the iterative
algorithm by Al-Mohy et al. [17], which combines a scaling and squaring method with a truncated
Taylor series approximation to the matrix exponential. For solving the sparse linear system of equa-
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Algorithm 1: Average Instantaneous Intensity
input : A, ω, t, v
output: Ψ(t)v
v1 = e(A−ωI)tv
v2 = v2 − v;
v3 = (A− ωI)−1v2

return v1 + ωv3;

Algorithm 2: PGD for Activity Shaping
Initialize λ(0);
repeat

1- Project λ(0) into λ(0) " 0, c!λ(0) ! C;
2- Evaluate the gradient g(λ(0)) at λ(0);
3- Update λ(0) using the gradient g(λ(0));

until convergence;

tion, we use the well-known GMRES method [25], which is an Arnoldi process for constructing
an l2-orthogonal basis of Krylov subspaces. The method solves the linear system by iteratively
minimizing the norm of the residual vector over a Krylov subspace.

Perhaps surprisingly, we will now show that it is possible to compute the gradient of the objec-
tive functions of all our activity shaping problems using the algorithm developed above for com-
puting the average instantaneous intensity. We only need to define the vector v appropriately
for each problem, as follows: (i) Activity maximization: g(λ(0)) = Ψ(t)"v, where v is de-
fined such that vj = 1 if αj > µj , and vj = 0, otherwise. (ii) Minimax activity shaping:
g(λ(0)) = Ψ(t)"e, where e is defined such that ej = 1 if µj = µmin, and ej = 0, otherwise. (iii)
Least-squares activity shaping: g(λ(0)) = 2Ψ(t)"B" (

BΨ(t)λ(0) − v
)
. (iv) Activity homoge-

nization: g(λ(0)) = Ψ(t)" ln (Ψ(t)λ(0)) + Ψ(t)"1, where ln(·) on a vector is the element-wise
natural logarithm. Since the activity maximization and the minimax activity shaping tasks require
only one evaluation of Ψ(t) times a vector, Algorithm 1 can be used directly. However, computing
the gradient for least-squares activity shaping and activity homogenization is slightly more involved
and it requires to be careful with the order in which we perform the operations (Refer to Appendix B
for details). Equipped with an efficient way to compute of gradients, we solve the corresponding
convex optimization problem for each activity shaping problem by applying projected gradient de-
scent (PGD) [26] with the appropriate gradient1. Algorithm 2 summarizes the key steps.

6 Experimental Evaluation
We evaluate our framework using both simulated and real world held-out data, and show that our
approach significantly outperforms several baselines. The appendix contains additional experiments.

Dataset description and network inference. We use data gathered from Twitter as reported in [27],
which comprises of all public tweets posted by 60,000 users during a 8-month period, from January
2009 to September 2009. For every user, we record the times she uses any of six popular url short-
ening services (refer to Appendix C for details). We evaluate the performance of our framework on
a subset of 2,241 active users, linked by 4,901 edges, which we call 2K dataset, and we evaluate its
scalability on the overall 60,000 users, linked by ∼ 200,000 edges, which we call 60K dataset. The
2K dataset accounts for 691,020 url shortened service uses while the 60K dataset accounts for ∼7.5
million uses. Finally, we treat each service as independent cascades of events.

In the experiments, we estimated the nonnegative influence matrix A and the exogenous intensity
λ(0) using maximum log-likelihood, as in previous work [8, 9, 12]. We used a temporal resolution
of one minute and selected the bandwidth ω = 0.1 by cross validation. Loosely speaking, ω = 0.1
corresponds to loosing 70% of the initial influence after 10 minutes, which may be explained by the
rapid rate at which each user’ news feed gets updated.

Evaluation schemes. We focus on three tasks: capped activity maximization, minimax activity
shaping, and least square activity shaping. We set the total budget to C = 0.5, which corresponds
to supporting a total extra activity equal to 0.5 actions per unit time, and assume all users entail the
same cost. In the capped activity maximization, we set the upper limit of each user’s intensity, α,
by adding a nonnegative random vector to their inferred initial intensity. In the least-squares activity
shaping, we set B = I and aim to create three user groups: less-active, moderate, and super-active.
We use three different evaluation schemes, with an increasing resemblance to a real world scenario:

Theoretical objective: We compute the expected overall (theoretical) intensity by applying Theo-
rem 3 on the optimal exogenous event intensities to each of the three activity shaping tasks, as well
as the learned A and ω. We then compute and report the value of the objective functions.

1For nondifferential objectives, subgradient algorithms can be used instead.
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(a) Theoretical objective (b) Simulated objective (c) Held-out data
Figure 2: Row 1: Capped activity maximization. Row 2: Minimax activity shaping. Row 3: Least-
squares activity shaping. * means statistical significant at level of 0.01 with paired t-test between
our method and the second best

Simulated objective: We simulate 50 cascades with Ogata’s thinning algorithm [28], using the opti-
mal exogenous event intensities to each of the three activity shaping tasks, and the learned A and ω.
We then estimate empirically the overall event intensity based on the simulated cascades, by com-
puting a running average over non-overlapping time windows, and report the value of the objective
functions based on this estimated overall intensity. Appendix D provides a comparison between the
simulated and the theoretical objective.

Held-out data: The most interesting evaluation scheme would entail carrying out real interventions
in a social platform. However, since this is very challenging to do, instead, in this evaluation scheme,
we use held-out data to simulate such process, proceeding as follows. We first partition the 8-month
data into 50 five-day long contiguous intervals. Then, we use one interval for training and the
remaining 49 intervals for testing. Suppose interval 1 is used for training, the procedure is as follows:

1. We estimate A1, ω1 and λ(0)
1 using the events from interval 1. Then, we fix A1 and ω1,

and estimate λ(0)
i for all other intervals, i = 2, . . . , 49.

2. Given A1 and ω1, we find the optimal exogenous event intensities, λ(0)
opt, for each of the

three activity shaping task, by solving the associated convex program. We then sort the
estimated λ(0)

i (i = 2, . . . , 49) according to their similarity to λ(0)
opt, using the Euclidean

distance ‖λ(0)
opt − λ(0)

i ‖2.
3. We estimate the overall event intensity for each of the 49 intervals (i = 2, . . . , 49), as in the

“simulated objective” evaluation scheme, and sort these intervals according to the value of
their corresponding objective function.

4. Last, we compute and report the rank correlation score between the two orderings obtained
in step 2 and 3.2 The larger the rank correlation, the better the method.

We repeat this procedure 50 times, choosing each different interval for training once, and compute
and report the average rank correlations. More details can be found in the appendix.

2rank correlation = number of pairs with consistent ordering / total number of pairs.
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Capped activity maximization (CAM). We compare to a number of alternatives. XMU: heuristic
based on µ(t) without optimization; DEG and WEI: heuristics based on the degree of the user;
PRANK: heuristic based on page rank (refer to Appendix C for further details). The first row of
Figure 2 summarizes the results for the three different evaluation schemes. We find that our method
(CAM) consistently outperforms the alternatives. For the theoretical objective, CAM is 11 % better
than the second best, DEG. The difference in overall users’ intensity from DEG is about 0.8 which,
roughly speaking, leads to at least an increase of about 0.8× 60× 24× 30 = 34, 560 in the overall
number of events in a month. In terms of simulated objective and held-out data, the results are
similar and provide empirical evidence that, compared to other heuristics, degree is an appropriate
surrogate for influence, while, based on the poor performance of XMU, it seems that high activity
does not necessarily entail being influential. To elaborate on the interpretability of the real-world
experiment on held-out data, consider for example the difference in rank correlation between CAM
and DEG, which is almost 0.1. Then, roughly speaking, this means that incentivizing users based
on our approach accommodates with the ordering of real activity patterns in 0.1 × 50×49

2 = 122.5
more pairs of realizations.

Minimax activity shaping (MMASH). We compare to a number of alternatives. UNI: heuristic
based on equal allocation; MINMU: heuristic based on µ(t) without optimization; LP: linear pro-
gramming based heuristic; GRD: a greedy approach to leverage the activity (see Appendix C for
more details). The second row of Figure 2 summarizes the results for the three different evaluation
schemes. We find that our method (MMASH) consistently outperforms the alternatives. For the the-
oretical objective, it is about 2× better than the second best, LP. Importantly, the difference between
MMASH and LP is not trifling and the least active user carries out 2×10−4×60×24×30 = 4.3 more
actions in average over a month. As one may have expected, GRD and LP are the best among the
heuristics. The poor performance of MINMU, which is directly related to the objective of MMASH,
may be because it assigns the budget to a low active user, regardless of their influence. However,
our method, by cleverly distributing the budget to the users whom actions trigger many other users’
actions (like those ones with low activity), it benefits from the budget most. In terms of simulated
objective and held-out data, the algorithms’ performance become more similar.

Least-squares activity shaping (LSASH). We compare to two alternatives. PROP: Assigning the
budget proportionally to the desired activity; LSGRD: greedily allocating budget according the dif-
ference between current and desired activity (refer to Appendix C for more details). The third row of
Figure 2 summarizes the results for the three different evaluation schemes. We find that our method
(LSASH) consistently outperforms the alternatives. Perhaps surprisingly, PROP, despite its simplic-
ity, seems to perform slightly better than LSGRD. This is may be due to the way it allocates the
budget to users, e.g., it does not aim to strictly fulfill users’ target activity but benefit more users by
assigning budget proportionally. Refer to Appendix E for additional experiments.

Sparsity and Activity Shaping. In some applications there is a limitation on the number of users we
can incentivize. In our proposed framework, we can handle this requirement by including a sparsity
constraint on the optimization problem. In order to maintain the convexity of the optimization
problem, we consider a l1 regularization term, where a regularization parameter γ provides the
trade-off between sparsity and the activity shaping goal. Refer to Appendix F for more details and
experimental results for different values of γ.

Scalability. The most computationally demanding part of the proposed algorithm is the evaluation of
matrix exponentials, which we scale up by utilizing techniques from matrix algebra, such as GMRES
and Al-Mohy methods. As a result, we are able to run our methods in a reasonable amount of time
on the 60K dataset, specifically, in comparison with a naive implementation of matrix exponential
evaluations. Refer to Appendix G for detailed experimental results on scalability.

Appendix H discusses the limitations of our framework and future work.
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