
Appendix

A Proof Details

A.1 Convergence Rate

We first provide specific bounds and detailed proofs for the two error terms appeared in Theorem 4 and Theorem
5.

A.1.1 Error due to random features

Lemma 7 We have

(i) For any x ∈ X , EDt,ωt [|ft+1(x)− ht+1(x)|2] 6 B2
1,t+1 := 4M2(κ+ φ)2

∑t
i=1 |a

i
t|2.

(ii) For any x ∈ X , with probability at least 1− δ over (Dt,ωt),

|ft+1(x)− ht+1(x)|2 6 B2
2,t+1 := 2M2(κ+ φ)2 ln

(
2

δ

) t∑
i=1

|ait|2

Proof Let Vi(x) = Vi(x;Di,ωi) := ait (ζi(x)− ξi(x)). Since Vi(x) is a function of (Di,ωi) and

EDi,ωi

[
Vi(x)|ωi−1

]
= aitEDi,ωi

[
ζi(x)− ξi(x)|ωi−1

]
= aitEDi,ωi−1

[
Eωi

[
ζi(x)− ξi(x)|ωi−1

]]
= 0,

we have that {Vi(x)} is a martingal difference sequence. Further note that

|Vi(x)| 6 ci = 2M(φ+ κ)|ait|.

Then by Azuma’s Inequality, for any ε > 0,

Pr
Dt,ωt

{
|
t∑
i=1

Vi(x)| > ε

}
6 2 exp

{
− 2ε2∑t

i=1 c
2
i

}
which is equivalent as

Pr
Dt,ωt


(

t∑
i=1

Vi(x)

)2

> ln(2/δ)

t∑
i=1

c2i /2

 6 δ.

Moreover,

EDt,ωt

( t∑
i=1

Vi(x)

)2
 =

∫ ∞
0

Pr
Dt,ωt


(

t∑
i=1

Vi(x)

)2

> ε

 dε =

∫ ∞
0

2 exp

{
− 2ε∑t

i=1 c
2
i

}
dε =

t∑
i=1

c2i

Since ft+1(x)− ht+1(x) =
∑t
i=1 Vi(x), we immediately obtain the two parts of the lemma.

Lemma 8 Suppose γi = θ
i
(1 6 i 6 t) and θν ∈ (1, 2) ∪ Z+. Then we have

(1) |ait| 6 θ
t
. Consequently,

∑t
i=1(ait)

2 6 θ2

t
.

(2)
∑t
i=1 γi|a

i
t| 6

{
θ2(ln(t)+1)

t
, if θν ∈ [1, 2),

θ2

t
, if θν ∈ [2,+∞) ∩ Z+

.

Proof (1) follows by induction on i. |att| 6 θ
t

is trivially true. We have

|ait| = |ai+1
t

γi
γi+1

(1− νγi+1)| = i+ 1

i
|1− νθ

i+ 1
| · |ai+1

t | = |
i+ 1− νθ

i
| · |ai+1

t |.

When νθ ∈ (1, 2), i−1 < i+1−νθ < i for any i > 1, so |ait| < |ai+1
t | 6 θ

t
. When νθ ∈ Z+, if i > νθ−1,

then |ait| < |ai+1
t | 6 θ

t
; if i 6 νθ − 1, then |ait| = 0. For (2), when θν ∈ [1, 2),

t∑
i=1

γt|ait| =
t∑
i=1

θ2

i2
· i+ 1− θν

i+ 1
· · · t− θν

t
6

t∑
i=1

θ2

i2
· i

i+ 1
· · · t− 1

t
6

t∑
i=1

θ2

it
6
θ2(ln(t) + 1)

t
.
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When θν ∈ Z+ and 2 6 θν 6 t,

t∑
i=1

γt|ait| =
t∑
i=2

θ2

i2
· i+ 1− θν

i+ 1
· · · t− θν

t
6

t∑
i=1

θ2

i2
· i− 1

i+ 1
· · · t− 2

t
6

t∑
i=2

θ2(i− 1)

it(t− 1)
6
θ2

t
.

A.1.2 Error due to random data

Lemma 9 Assume l′(u, y) is L-Lipschitz continous in terms of u ∈ R. Let f∗ be the optimal solution to our
target problem. Then

(i) If we set γt = θ
t

with θ such that θν ∈ (1, 2) ∪ Z+, then

EDt,ωt

[
‖ht+1 − f∗‖2H

]
6
Q2

1

t
,

where

Q1 = max

{
‖f∗‖H ,

Q0 +
√
Q2

0 + (2θν − 1)(1 + θν)2θ2κM2

2νθ − 1

}
, Q0 = 2

√
2κ1/2(κ+φ)LMθ2.

Particularly, if θν = 1, we have Q1 6 max
{
‖f∗‖H , 4

√
2((κ+ φ)L+ ν) · κ

1/2M
ν2

}
.

(ii) If we set γt = θ
t

with θ such that θν ∈ Z+ and t > θν, then with probability at least 1 − 2δ over
(Dt,ωt),

‖ht+1 − f∗‖2H 6 Q2
2

ln(2t/δ) ln(t)

t
.

where

Q2 = max

{
‖f∗‖H , Q0 +

√
Q2

0 + κM2(1 + θν)2(θ2 + 16θ/ν)

}
, Q0 = 4

√
2κ1/2Mθ(8+(κ+φ)θL).

Particularly, if θν = 1, we have Q2 6 max
{
‖f∗‖H , 8

√
2((κ+ φ)L+ 9ν) · κ

1/2M
ν2

}
.

Proof For the sake of simple notations, let us first denote the following three different gradient terms, which
are

gt = ξt + νht = l′(ft(xt), yt)k(xt, ·) + νht,

ĝt = ξ̂t + νht = l′(ht(xt), yt)k(xt, ·) + νht,

ḡt = EDt [ĝt] = EDt

[
l′(ht(xt), yt)k(xt, ·)

]
+ νht.

Note that by our previous definition, we have ht+1 = ht − γtgt,∀t > 1.

Denote At = ‖ht − f∗‖2H. Then we have

At+1 = ‖ht − f∗ − γtgt‖2H
= At + γ2

t ‖gt‖2H − 2γt〈ht − f∗, gt〉H
= At + γ2

t ‖gt‖2H − 2γt〈ht − f∗, ḡt〉H + 2γt〈ht − f∗, ḡt − ĝt〉H + 2γt〈ht − f∗, ĝt − gt〉H
Because of the strongly convexity of (1) and optimality condition, we have

〈ht − f∗, ḡt〉H > ν ‖ht − f∗‖2H
Hence, we have

At+1 6 (1− 2γtν)At + γ2
t ‖gt‖2H + 2γt〈ht − f∗, ḡt − ĝt〉H + 2γt〈ht − f∗, ĝt − gt〉H,∀t > 1 (8)

Proof for (i): Let us denoteMt = ‖gt‖2H, Nt = 〈ht − f∗, ḡt − ĝt〉H, Rt = 〈ht − f∗, ĝt − gt〉H. We first
show thatMt,Nt,Rt are bounded. Specifically, we have for t > 1,

(1) Mt 6 κM2(1 + νct)
2, where ct =

√∑t−1
i,j=1 |ait−1| · |a

j
t−1| for t > 2 and c1 = 0;
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(2) EDt,ωt [Nt] = 0;

(3) EDt,ωt [Rt] 6 κ1/2LB1,t

√
EDt−1,ωt−1 [At], whereB2

1,t := 4M2(κ+φ)2
∑t−1
i=1 |a

i
t−1|2 for t > 2

and B1,1 = 0;

We prove these results separately in Lemma 10 below. Let us denote et = EDt−1,ωt−1 [At], given the above
bounds, we arrive at the following recursion,

et+1 6 (1− 2γtν)et + κM2γ2
t (1 + νct)

2 + 2κ1/2LγtB1,t
√
et. (9)

When γt = θ/t with θ such that θν ∈ (1, 2) ∪ Z+, from Lemma 8, we have |ait| 6 θ
t
, ∀1 6 i 6 t.

Consequently, ct 6 θ and B2
1,t 6 4M2(κ + φ) θ2

t−1
. Applying these bounds leads to the refined recursion as

follows

et+1 6

(
1− 2νθ

t

)
et + κM2 θ

2

t2
(1 + νθ)2 + 2κ1/2L

θ

t

√
4M2(κ+ φ)2

θ2

t− 1

√
et

that can be further written as

et+1 6

(
1− 2νθ

t

)
et +

β1
t

√
et
t

+
β2
t2
,

where β1 = 4
√

2κ1/2LM(k+φ)θ2 and β2 = κM2(1 + νθ)2θ2. Invoking Lemma 14 with η = 2θν > 1, we
obtain

et 6
Q2

1

t
,

where Q1 = max

{
‖f∗‖H ,

Q0+
√
Q2

0+(2θν−1)(1+θν)2θ2κM2

2νθ−1

}
, and Q0 = 2

√
2κ1/2(κ+ φ)LMθ2.

Proof for (ii): Cumulating equations (8) with i = 1, . . . t, we end up with the following inequality

At+1 6
∏t
i=1(1− 2γiν)A1 + 2

∑t
i=1 γi

∏t
j=i+1(1− 2νγj)〈hi − f∗, ḡi − ĝi〉H

+2
∑t
i=1 γi

∏t
j=i+1(1− 2νγj)〈hi − f∗, ĝi − gi〉H +

∑t
i=1 γ

2
i

∏t
j=i+1(1− 2νγj) ‖gi‖2H

(10)

Let us denote bit = γi
∏t
j=i+1(1− 2νγj), 1 6 i 6 t, the above inequality is equivalent as

At+1 6
t∏
i=1

(1− 2γiν)A1 +

t∑
i=1

γib
i
tMi + 2

t∑
i=1

bitNi + 2

t∑
i=1

bitRi

We first show that

(4) for any 0 < δ < 1/e and t > 4, with probability 1− δ over (Dt,ωt),

∑t
i=1 b

i
tNi 6 2 max

{
4κ1/2M

√∑t
i=1(bit)

2Ai, maxi |bit| · C0

√
ln(ln(t)/δ)

}√
ln(ln(t)/δ),

where C0 =
4max16i6tMi

ν
.

(5) for any δ > 0, with probability 1− δ over (Dt,ωt),∑t
i=1 b

i
tRi 6

∑t
i=1 b

i
tκ

1/2LB̂2,i

√
Ai,

where B̂2
2,i = 2M2(κ+ φ)2 ln

(
2t
δ

)∑i−1
j=1 |a

j
i−1|

2.

Again, the proofs of these results are given separately in Lemma 10. Applying the above bounds leads to the
refined recursion as follows,

At+1 6
t∏
i=1

(1− 2γiν)A1 +

t∑
i=1

γib
i
tMi + 2

t∑
i=1

bitκ
1/2LB2,i

√
Ai

+4 max

4κ1/2M

√√√√ t∑
i=1

(bit)
2Ai, max

i
|bit| · C0

√
ln(ln(t)/δ)

√ln(ln(t)/δ)
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with probability 1− 2δ. When γt = θ/t with θ such that θν ∈ Z+, with similar reasons in Lemma 8, we have
|bit| 6 θ

t
, 1 6 i 6 t and also we have

∏t
i=1(1−2γiν) =

∏θν−1
i=1 (1−2 θν

i
)
∏t
i=θν+1(1−2 θν

i
)(1−2 θν

θν
) = 0,

and
∑t
i=1 γib

i
t 6

θ2

t
. Therefore, we can rewrite the above recursion as

At+1 6
β1
t

+ β2
√

ln(2t/δ) ·
t∑
i=1

√
Ai

t
√
i

+ β3
√

ln(ln(t)/δ)

√∑t
i=1Ai

t
+ β4 ln(ln(t/δ))

1

t
(11)

where β1 = κM2(1 + νθ)2θ2, β2 = 2
√

2κ1/2LM(κ+φ)θ2, β3 = 16κ1/2Mθ, β4 = 16κM2(1 + θν)2θ/ν.
Invoking Lemma 15, we obtain

At+1 6
Q2

2 ln(2t/δ) ln2(t)

t
,

with the specified Q2.

Lemma 10 In this lemma, we prove the inequalities (1)–(5) in Lemma 9.

Proof Given the definitions ofMt,Nt,Rt in Lemma 9, we have

(1) Mt 6 κM2(1 + ν
√∑t−1

i,j=1 |ait−1| · |a
j
t−1|)2;

This is because
Mt = ‖gt‖2H = ‖ξt + νht‖2H 6 (‖ξt‖H + ν‖ht‖H)2.

We have
‖ξt‖H = ‖l′(ft(xt), yt)k(xt, ·)‖H 6 κ1/2M,

and

‖ht‖2H =

t−1∑
i=1

t−1∑
j=1

ait−1a
j
t−1l

′(fi(xi), yi)l
′(fj(xj), yj)k(xi, xj)

6 κM2
t−1∑
i=1

t−1∑
j=1

|ait−1| · |ajt−1|.

(2) EDt,ωt [Nt] = 0;
This is becauseNt = 〈ht − f∗, ḡt − ĝt〉H,

EDt,ωt [Nt] = EDt−1,ωt

[
EDt

[
〈ht − f∗, ḡt − ĝt〉H|Dt−1,ωt

]]
= EDt−1,ωt [〈ht − f∗,EDt [ḡt − ĝt]〉H]

= 0.

(3) EDt,ωt [Rt] 6 κ1/2LB1,t

√
EDt−1,ωt−1 [At], where B2

1,t := 4M2(κ+ φ)2
∑t−1
i=1 |a

i
t−1|2;

This is becauseRt = 〈ht − f∗, ĝt − gt〉H,

EDt,ωt [Rt] = EDt,ωt [〈ht − f∗, ĝt − gt〉H]

= EDt,ωt

[
〈ht − f∗, [l′(ft(xt), yt)− l′(ht(xt), yt)]k(xt, ·)〉H

]
6 EDt,ωt

[
|l′(ft(xt), yt)− l′(ht(xt), yt)| · ‖k(xt, ·)‖H · ‖ht − f∗‖H

]
6 κ1/2L · EDt,ωt

[
|ft(xt)− ht(xt)| ‖ht − f∗‖H

]
6 κ1/2L

√
EDt,ωt |ft(xt)− ht(xt)|2

√
EDt,ωt ‖ht − f∗‖2H

6 κ1/2LB1,t

√
EDt−1,ωt−1 [At]

where the first and third inequalities are due to Cauchy–Schwarz Inequality and the second inequality
is due to L-Lipschitz continuity of l′(·, ·) in the first parameter, and the last step is due to Lemma 7
and the definition of At.
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(4) for any 0 < δ < 1/e and t > 4, with probability at least 1− δ over (Dt,ωt),

∑t
i=1 b

i
tNi 6 2 max

{
4κ1/2M

√∑t
i=1(bit)

2Ai, maxi |bit| · C0

√
ln(ln(t)/δ)

}√
ln(ln(t)/δ),

where C0 =
4max16i6tMi

ν
.

This result follows directly from Lemma 3 in [29]. Let us define di = di(Di,ωi) := bitNi =
bit〈hi − f∗, ḡi − ĝi〉H, 1 6 i 6 t, we have

• {di}ti=1 is martingale difference sequence since EDi,ωi

[
Ni|Di−1,ωi−1

]
= 0.

• |di| 6 maxi |bit| · C0, with C0 =
4max16i6tMi

ν
, ∀1 6 i 6 t.

• V ar(di|Di−1,ωi−1) 6 4κM2|bit|2Ai, ∀1 6 i 6 t.

Plugging in these specific bounds in Lemma 3 in [Alexander et.al., 2012], which is,

Pr
(∑t

i=1 dt > 2 max{2σt, dmax
√

ln(1/δ)}
√

ln(1/δ)
)
6 ln(t)δ.

where σ2
t =

∑t
i=1 V ari−1(di) and dmax = max16i6t |di|, we immediately obtain the above

inequality as desired.

(5) for any δ > 0, with probability at least 1− δ over (Dt,ωt),∑t
i=1 b

i
tRi 6

∑t
i=1 |b

i
t|κ1/2LB̂2,i

√
Ai,

where B̂2
2,i = 2M2(κ+ φ)2 ln

(
2t
δ

)∑i−1
j=1 |a

j
i−1|

2.

This is because, for any 1 6 i 6 t, recall that from analysis in (3), we have Ri 6 κ1/2L|ft(xt) −
ht(xt)| · ‖ht − f∗‖H, therefore from Lemma 9,

Pr(bitRi 6 κ1/2L|bit|B̂2,i

√
Ai) > Pr(|fi(xi)− hi(xi)|2 6 B̂2

2,i) > 1− δ/t.

Taking the sum over i, we therefore get

Pr(
∑t
i=1 b

i
tRi 6

∑t
i=1 |b

i
t|κ1/2LB2,i

√
Ai) > 1− δ.

Applying these lemmas immediately gives us Theorem 4 and Theorem 5, which implies pointwise distance
between the solution ft+1(·) and f∗(·). Now we prove similar bounds in the sense of L∞ and L2 distance.

A.2 L∞ distance, L2 distance, and generalization bound

Corollary 11 (L∞ distance) Theorem 4 also implies a bound in L∞ sense, namely,

EDt,ωt ‖ft+1 − f∗‖2∞ 6
2C2 + 2κQ2

1

t
.

Consequently, for the average solution f̂t+1(·) := 1
t

∑t
i=1 fi(·), we also have

EDt,ωt‖f̂t+1 − f∗‖2∞ 6
(2C2 + 2κQ2

1)(ln(t) + 1)

t
.

This is because ‖ft+1 − f∗‖∞ = maxx∈X |ft+1(x)− f∗(x)| = |ft+1(x∗)− f∗(x∗)|, where x∗ ∈ X always
exists since X is closed and bounded. Note that the result for average solution can be improved without log
factor using more sophisticated analysis (see also reference in [29]).

Corollary 12 (L2 distance) With the choices of γt in Lemma 9, we have

(i) EDt,ωt‖ft+1 − f∗‖22 6 2C2+2κQ2
1

t
,

(ii) ‖ft+1 − f∗‖22 6 C2 ln(8
√
et/δ)+2κQ2

2 ln(2t/δ) ln2(t)

t
, with probability at least 1− 3δ over (Dt,ωt).
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Proof (i) follows directly from Theorem 4. (ii) can be proved as follows. First, we have

‖ft+1 − f ∗ ‖22 = Ex|ft+1(x)− f∗(x)|2 6 2Ex|ft+1(x)− ht+1(x)|2 + 2κ‖ht+1 − f∗‖H.

From Lemma 9, with probability at least 1− 2δ, we have

‖ht+1 − f∗‖2H 6
Q2

2 ln(2t/δ) ln2(t)

t
. (12)

From Lemma 7, for any x ∈ X , we have

Pr
Dt,ωt

{
|ft+1(x)− ht+1(x)|2 >

2(κ+ φ)2M2 ln( 2
ε
)θ2

t

}
6 ε.

Since C2 = 4(κ+ φ)2M2θ2, the above inequality can be writen as

Pr
Dt,ωt

{
|ft+1(x)− ht+1(x)|2 >

C2 ln( 2
ε
)

2t

}
6 ε.

which leads to

Pr
x∼P(x)

Pr
Dt,ωt

{
|ft+1(x)− ht+1(x)|2 >

C2 ln( 2
ε
)

2t

}
6 ε.

By Fubini’s theorem and Markov’s inequality, we have

Pr
Dt,ωt

{
Pr

x∼P(x)

{
|ft+1(x)− ht+1(x)|2 >

C2 ln( 2
ε
)

2t

}
>
ε

δ

}
6 δ.

From the analysis in Lemma 7, we also have that |ft+1(x) − ht+1(x)| 6 C2. Therefore, with probability at
least 1− δ over (Dt,ωt), we have

Ex∼P(x)[|ft+1(x)− ht+1(x)|2] 6
C2 ln( 2

ε
)

2t
(1− ε

δ
) + C2 ε

δ

Let ε = δ
4t

, we have

Ex∼P(x)[|ft+1(x)− ht+1(x)|2] 6
C2

2t
(ln(8t/δ) +

1

2
) =

C2 ln(8
√
et/δ)

2t
. (13)

Summing up equation (13) and (12), we have

‖ft+1 − f∗‖22 6
C2 ln(8

√
et/δ) + 2κQ2

2 ln(2t/δ) ln2(t)

t

as desired.

From the bound on L2 distance, we can immediately get the generalization bound.
Theorem 6 (Generalization bound) Let the true risk beRtrue(f) = E(x,y) [l(f(x), y)]. Then with probability
at least 1− 3δ over (Dt,ωt), and C and Q2 defined as previously

Rtrue(ft+1)−Rtrue(f∗) 6
(C
√

ln(8
√
et/δ) +

√
2κQ2

√
ln(2t/δ) ln(t))L√

t
.

Proof By the Lipschitz continuity of l(·, y) and Jensen’s Inequality, we have

Rtrue(ft+1)−Rtrue(f∗) 6 LEx|ft+1(x)− f∗(x)| 6 L
√

Ex|ft+1(x)− f∗(x)|2 = L‖ft+1 − f∗‖2.

Then the theorem follows from Corollary 12.
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A.3 Suboptimality

For comprehensive purposes, we also provide the O(1/t) bound for suboptimality.

Corollary 13 If we set γt = θ
t

with θν = 1, then the average solution f̂t+1 := 1
t

∑t
i=1 fi satisfies

R(EDt,ωt [f̂t+1])−R(f∗) 6
Q(ln(t) + 1)

t
.

where Q = (4κM2 + 2
√

2κ1/2LM(κ+ φ)Q1)/ν, with Q1 defined as in Lemma 9.

Proof From the anallysis in Lemma 9,we have

〈ht − f∗, ḡt〉H =
1

2γt
At −

1

2γt
At+1 + γtMt +Nt +Rt

Invoking strongly convexity of R(f), we have 〈ht − f∗, ḡt〉 > R(ht) − R(f∗) + ν
2
‖ht − f∗‖2H. Taking

expectaion on both size and use the bounds in last lemma, we have

EDt,ωt [R(ht)−R(f∗)] 6 (
1

2γt
− ν

2
)et −

1

2γt
et+1 + γtκM

2(1 + νct)
2 + κ1/2LB1,t

√
et

Assume γt = θ
t

with θ = 1
ν

, then cumulating the above inequalities leads to
t∑
i=1

EDt,ωt [R(hi)−R(f∗)] 6
t∑
i=1

γiκM
2(1 + νci)

2 +

t∑
i=1

κ1/2LB1,i
√
ei

which can be further bounded by
t∑
i=1

EDt,ωt [R(hi)−R(f∗)] 6
t∑
i=1

γiκM
2(1 + νci)

2 +

t∑
i=1

κ1/2LB1,i
√
ei

6
4κM2

ν

t∑
i=1

1

i
+

2
√

2κ1/2LM(κ+ φ)

ν

t∑
i=1

√
ei
i

6
4κM2

ν
(ln(t) + 1) +

2
√

2κ1/2LM(κ+ φ)

ν
Q1(ln(t) + 1)

=
Q(ln(t) + 1)

t

By convexity, we have EDt,ωt [R(ĥt+1)−R(f∗)] 6
Q(ln(t)+1)

t
. The corollary then follows from the fact that

EDt,ωt [f̂t+1] = EDt,ωt [ĥt+1] and R(EDt,ωt [ĥt+1]) 6 EDt,ωt [R(ĥt+1)].

A.4 Technical lemma for recursion bounds

Lemma 14 Suppose the sequence {Γt}∞t=1 satisfies Γ1 > 0, and ∀t > 1

Γt+1 6
(

1− η

t

)
Γt +

β1

t
√
t

√
Γt +

β2
t2
,

where η > 1, β1, β2 > 0. Then ∀t > 1,

Γt 6
R

t
, where R = max

{
Γ1, R

2
0

}
, R0 =

β1 +
√
β2
1 + 4(η − 1)β2

2(η − 1)
.

Proof The proof follows by induction. When t = 1, it always holds true by the definition of R. Assume the
conclusion holds true for t with t > 1, i.e., Γt 6 R

t
, then we have

Γt+1 6
(

1− η

t

)
Γt +

β1

t
√
t

√
Γt +

β2
t2

=
R

t
− ηR− β1

√
R− β2

t2

6
R

t+ 1
+

R

t(t+ 1)
− ηR− β1

√
R− β2

t2

6
R

t+ 1
− 1

t2

[
−R+ ηR− β1

√
R− β2

]
6

R

t+ 1

16



where the last step can be verified as follows.

(η − 1)R− β1
√
R− β2 = (η − 1)

[√
R− β1

2(η − 1)

]2
− β2

1

4(η − 1)
− β2

> (η − 1)

[
R0 −

β1
2(η − 1)

]2
− β2

1

4(η − 1)
− β2 > 0

where the last step follows from the defintion of R0.

Lemma 15 Suppose the sequence {Γt}∞t=1 satisfies

Γt+1 6
β1
t

+ β2
√

ln(2t/δ) ·
t∑
i=1

√
Γi

t
√
i

+ β3
√

ln(ln(t)/δ)

√∑t
i=1 Γi

t
+ β4 ln(ln(t/δ))

1

t

where β1, β2, β3, β4 > 0 and δ ∈ (0, 1/e). Then ∀1 6 j 6 t(t > 4),

Γj 6
R ln(2t/δ) ln2(t)

j
, where R = max{Γ1, R

2
0}, R0 = 2β2 + 2

√
2β3 +

√
(2β2 + 2

√
2β3)2 + β1 + β4.

Proof The proof follows by induction. When j = 1 it is trivial. Let us assume it holds true for 1 6 j 6 t− 1,
therefore,

Γj+1 6
β1
j

+ β2
√

ln(2j/δ) ·
j∑
i=1

√
Γi

j
√
i

+ β3
√

ln(ln(j)/δ)

√∑j
i=1 Γi

j
+ β4 ln(ln(j/δ))

1

j

6
β1
j

+ β2
√

ln(2j/δ)/j ·
j∑
i=1

√
R ln(2t/δ) ln2(t)

i

+β3
√

ln(ln(j)/δ)

√∑j
i=1R ln(2t/δ) ln2(t)/i

j
+ β4 ln(ln(j/δ))

1

j

6
β1
j

+ β2
√

ln(2j/δ)/j

√
R ln(2t/δ) ln2(t)(1 + ln(j))

+β3
√

ln(ln(j)/δ)/j

√
R ln(2t/δ) ln2(t)

√
ln(j) + 1 + β4 ln(ln(j/δ))

1

j

6
β1
j

+ 2β2
√
R ln(2t/δ) ln2(t)/j +

√
2β3
√
R ln(2t/δ) ln2(t)/j + β4 ln(2t/δ)

1

j

6 (2β2 +
√

2β3)
√
R

ln(2t/δ) ln2(t)

j
+ (β1 + β4 ln(2t/δ))

1

j

6
ln(2t/δ) ln2(t)

j
[(2β2 +

√
2β3)
√
R+

β1
2

+
β4
2

)

Since
√
R > 2β2 +2

√
2β3 +

√
(2β2 + 2

√
2β3)2 + β1 + β4, we have (2β2 +2

√
2β3)
√
R+ β1

2
+ β4

2
6 R/2.

Hence, Γj+1 6 R ln(2t/δ) ln2(t)
j+1

.

B Experiment Details

We have illustrated the comparison on (2) – (4) with the alternative algorithms stopping when they pass through
the entire dataset once in main text. To verify the theoretical guarantee empirically, we conduct experiment on
a 2D regression synthetic dataset (1) with 220 data points using SC1 stopping criterion. To further demonstrate
the advantages of the proposed algorithm in computational cost, we also conduct experiments on datasets (2) –
(4) running the competitors within the same time budget as the proposed algorithm (SC2).
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Table 1: Datasets
Name Model # of samples Input dim Output range Virtual

(1) Synthetic K-ridge 220 2 [−1, 1.3] no
(2) Adult K-SVM 32K 123 {−1, 1} no
(3) MNIST 8M 8 vs. 6 [25] K-SVM 1.6M 784 {−1, 1} yes
(4) Forest K-SVM 0.5M 54 {−1, 1} no
(5) MNIST 8M [25] K-logistic 8M 1568 {0, . . . , 9} yes
(6) CIFAR 10 [26] K-logistic 60K 2304 {0, . . . , 9} yes
(7) ImageNet [27] K-logistic 1.3M 9216 {0, . . . , 999} yes
(8) QuantumMachine [28] K-ridge 6K 276 [−800,−2000] yes
(9) MolecularSpace [28] K-ridge 2.3M 2850 [0, 13] no

B.1 Detailed experiment setups

Synthet In this experiment, we compared the seven algorithms listed in the table for solving the kernel ridge
regression problem. We use Gaussian RBF kernel with kernel bandwidth σ chosen to be 0.1 times the median
of pairwise distances between data points (median trick). The regularization parameter ν is set to be 10−6. The
batch size and feature block are set to be 210.

Adults In this experiment, we compared the seven algorithms listed in the table for solving the kernel support
vector machine problem. We use Gaussian RBF kernel with kernel bandwidth obtained by median trick. The
regularization parameter ν is set to be 1/(100n) where n is the number of training samples. We set the batch
size to be 26 and feature block to be 25.

MNIST 8M 8 vs. 6. We first reduce the dimension to 50 by PCA and use Gaussian RBF kernel with kernel
bandwidth σ = 9.03 obtained by median trick. The regularization parameter ν is set to be 1/n where n is the
number of training samples. We set the batch size to be 210 and feature block to be 28.

Forest. We use Gaussian RBF kernel with kernel bandwidth obtained by median trick. The regularization
parameter ν is set to be 1/n where n is the number of training samples. We set the batch size to be 210 and
feature block to be 28.

MNIST 8M. In this experiment, we compared to a variant of LeNet-5 [30], where all tanh units are replaced
with rectified linear units. We also use more convolution filters and a larger fully connected layer. Specifically,
the first two convolutions layers have 16 and 32 filters, respectively, and the fully connected layer contains
128 neurons. We used kernel logistic regression for the task. We extracted features from the last max-pooling
layer with dimension 1568, and used Gaussian RBF kernel with kernel bandwidth σ equaling to four times the
median pairwise distance. The regularization parameter ν is set to be 0.0005.

CIFAR 10 In this experiment, we compared to a neural net with two convolution layers (after contrast
normalization and max-pooling layers) and two local layers that achieves 11% test error2. The feature is
extracted from the top max-pooling layer from a trained neural net and is of dimension 2304. We used kernel
logistic regression for this problem.The kernel bandwidth σ for Gaussian RBF kernel is again four times the
median pairwise distance. The regularization parameter ν is set to be 0.0005. We also performed a PCA
(without centering) to reduce the dimension to 256 before feeding to our method.

ImageNet In this experiment, we compared our algorithm with the neural nets on the ImageNet 2012 dataset,
which contains 1.3 million color images from 1000 classes. Each image is of size 256× 256, and we randomly
crop a 240 × 240 region with random horizontal flipping. The jointly-trained neural net is Alex-net [27]. The
feature for our classifier and fixed neural net is from the last pooling layer of the jointly-trained neural net,
which is 9216 dimensional. The kernel bandwidth σ for Gaussian RBF kernel is again four times the median
pairwise distance. The regularization parameter ν is set to be 0.0005.

QuantumMachine In this experiment, we used kernel ridge regression for this problem and compared the
performance with the neural network as presented in [28]. First of all a set of randomly sorted coulomb matrices
were generated for each molecule and then each dimension of the Coulomb matrix is broken apart into steps and
converted to the binary predicates as in [28]. For this experiment 40 set of randomly permuted matrices were
generated for each training example and 20 for each test example. Predictions were made by taking average
of all prediction made on various coulomb matrices of same molecule. Gaussian kernel with kernel bandwidth

2The specification is at https://code.google.com/p/cuda-convnet/
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Figure 2: Experimental results for kernel ridge regression on synthetic dataset.
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SC2: (1) Adult (2)MNIST 8M 8 vs. 6 (3) Forest.
Figure 3: Comparison with other kernel SVM solvers on datasets (2) – (4) with stopping criteria
SC2.

60 (obtained from median trick) is used for the experiment with 220 dimensional random features. In every
iteration 2048 dimension of the weight vector is updated with the batch size of 50,000.

MolecularSpace In this experiment, we again tried to predict the power conversion efficiency of the
molecule using kernel ridge regression. This dataset of 2.3 million molecular motifs was obtained from the
Clean Energy Project Database.We used the same feature representation as for “QuantumMachine” dataset
[28]. Step size used is 10 and we didn’t generate multiple randomly sorted coulomb matrices this time. Kernel
bandwidth used for Gaussian RBF kernel used is 290. The dimension of the random features is 220. In every
iteration 2048 dimensions of the weight vector was updated with batch of 25000.

B.2 Extra experiments

B.2.1 Regression Comparisons on Synthetic Dataset

In this section, we compare our approach with alternative algorithms for kernel ridge regression on 2D synthetic
dataset and stop the algorithms when they pass through the whole dataset once. The data are generated by

y = cos(0.5π‖x‖2) exp(−0.1π‖x‖2) + 0.1e

where x ∈ [−10, 10]2 and e ∼ N (0, 1). The results are shown in Figure 2. In Figure 2(1), we plot the
optimal functions generating the data. We justify our proof of the convergence rate in Figure 2(2). The blue
dotted line is a convergence rate of 1/t as a guide. f̂t denotes the average solution after t-iteration, i.e.,
f̂t(x) = 1

t

∑t
i=1 fi(x). It could be seen that our algorithm indeed converges in the rate of O(1/t). In Figure 2

(3), we compare the algorithms discussed in the Sec. 6 for solving the kernel ridge regression.

The comparison on synthetic dataset demonstrates the advantages of our algorithm clearly. Our algorithm
achieves comparable performance with NORMA, which uses full kernel, in similar time but only costs O(n)
memory while NORMA costs O(dn). The pegasos and SDCA using 28 random or Nyström features perform
worse.

B.3 Classification Comparisons with Kernel SVM Algorithms with SC2

We evaluate our algorithm solving kernel SVM on three datasets (2)–(4) comparing with other several algo-
rithms listed in Sec. 6 using stopping criteria SC2, i.e., running the competitors within the same time budget as
the proposed algorithm and the same experiments settings.
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Adult. The performances are illustrated in Figure 3(1). Under the same time budget, all the algorithms
perform similarly, achieving test error 15%. The reason of flat region of r-pegasos, NORMA and the proposed
method on this dataset is that Adult dataset is unbalanced. There are about 24% positive samples while 76%
negative samples.
MNIST 8M 8 vs. 6. The results are shown in Figure 3(2). Our algorithm achieves the best test error 0.26%
using similar training time.
Forest. In Figure 3(3), we shows the performances of all algorithms using SC2. NORMA achieve the best
error rate, which is about 10%, while our algorithm achieves around 15%, but still much better than all the
other alternatives.

As seen from the performance of pegasos and SDCA on Adult and MNIST, using fewer features does not deteri-
orate the classification error. This might be because there are cluster structures in these two binary classification
datasets. Thus, they prefer low rank approximation rather than full kernel. Different from these two datasets,
in the forest dataset, algorithms with full kernel, i.e., NORMA and k-SDCA, achieve best performance. With
more random features, our algorithm performs much better than pegasos and SDCA under both SC1 and SC2.
Our algorithm is preferable for this scenario, i.e., huge dataset with sophisticated decision boundary. Although
utilizing full kernel could achieve better performance, the computation and memory requirement for the kernel
on huge dataset are costly. To learn the sophisticated boundary while still considering the computational and
memory cost, we need to efficiently approximate the kernel in O( 1

ε
) with O(n) random features at least. Our

algorithm could handle so many random features efficiently in both computation and memory cost, while for
pegasos and SDCA such operation is prohibitive.
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