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1 Structured SVMs with nonnegativity constraint

In this section, we will show that SSVMs have no natural origin, and that parameters learnt with
non-negativity constraints achieve exactly the same hinge loss as achieved without the nonnegativity
constraint.
For a set of ` training instances (xn,yn) ∈ X × Y, n = 1, . . . , ` from a sample space X and label
space Y , the structured SVM minimizes the following regularized risk function.

min
w

‖w‖2 + C
∑̀
n=1

max
y∈Y

(∆(yn,y) +w′Ψ(xn,y)−w′Ψ(xn,yn)) (1)

The function ∆ : Y × Y → R+ measures a distance in label space and is an arbitrary function
satisfying ∆(y,y′) ≥ 0 and ∆(y,y) = 0 ∀y,y′ ∈ Y . The function Ψ : X × Y → Rd is a feature
function, extracting some feature vector from a given sample and label.

Because the regularized risk function above is non-differentiable, it is often reformulated in terms
of a quadratic program by introducing one slack variable ξn for each sample, each representing the
value of the maximum. The standard structured SVM primal formulation is given as follows.

min
w,ξ

‖w‖2 + C
∑`
n=1 ξn

s.t. w′Ψ(xn,yn)−w′Ψ(xn,y) + ξn ≥ ∆(yn,y), n = 1, . . . , `, ∀y ∈ Y
(2)

We will refer to the primal objective in Equation 2 as P1 and the optimal solution as w1, ξ1.

Next, consider the following augmented formulation, where ŵ =

[
w
b

]
, Ψ̂(xn,yn) =

[
Ψ(xn,yn)

1

]
:

min
ŵ,ξ

‖w‖2 + C
∑`
n=1 ξn

s.t. ŵ′Ψ̂(xn,yn)− ŵ′Ψ̂(xn,y) + ξn ≥ ∆(yn,y), n = 1, . . . , `, ∀y ∈ Y
(3)

We will refer to the primal objective in Equation 3 asP2 and the optimal solution as ŵ2 =

[
w2

b2

]
, ξ2.

Note: We do not regularize b.

Claim 1. P1(w1, ξ1) = P2(ŵ2, ξ2)
Proof. Adding a bias feature (b) doesn’t affect the objective function and every constraint is invariant
of it. Hence, the two problems are equivalent.
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Next, consider the formulation, where we extend P2 to enforce non-negativity of scores.

min
ŵ,ξ

‖w‖2 + C
∑`
n=1 ξn

s.t. ŵ′Ψ̂(xn,yn)− ŵ′Ψ̂(xn,y) + ξn ≥ ∆(yn,y), n = 1, . . . , `, ∀y ∈ Y
ŵ′Ψ̂(xn,y) ≥ 0 n = 1, . . . , `, ∀y ∈ Y

(4)

We will refer to the primal objective in Equation 4 asP3 and the optimal solution as ŵ3 =

[
w3

b3

]
, ξ3.

Claim 2. P2(ŵ2, ξ2) = P3(ŵ3, ξ3)
Proof. It is easy to see that P2(ŵ2, ξ2) ≤ P3(ŵ3, ξ3) as (ŵ2, ξ2) is the optimal solution for P2 and
(ŵ3, ξ3) is also a feasible solution for P2.

Consider the vector ŵ∗2 =

[
w2

−min
n

min
y

w′2Ψ(xn,y)

]
, Since the bias term doesn’t occur in the

objective function, hence P3(ŵ∗2 , ξ2) = P2(ŵ2, ξ2).

Also, (ŵ∗2 , ξ2) is a feasible solution to P3, hence, P3(ŵ3, ξ3) ≤ P3(ŵ∗2 , ξ2) = P2(ŵ2, ξ2).
Therefore, P2(ŵ2, ξ2) = P3(ŵ3, ξ3).

Therefore, even after adding the nonnegativity constraints, the solutions achieve the same values for
the regularised risk function and hence are expected to have the same generalization guarantees. In
practice, the non-negativity constraints can be added in a cutting-plane procedure via a MAP call.

2 Label Transitions

Groups and Motivating Scenario. In this section, we generalize the label cost diversity function
to reward not just the presence of certain labels, but the presence of certain label transitions. For
instance, if the highest scoring segmentation contains a “cow” on “grass”, this diversity function will
reward other segmentations for containing novel label transitions, such as “sheep-grass” or “cow-
ground” or “sheep-sky”. Formally, we define one group G`,`′ per label pair `, `′, and an item a
belongs to G`,`′ if y = φ(a) contains two adjacent variables yi, yj with labels yi = `, yj = `′.

Structured Representation of Marginal Gains. For diversity of label transitions, the marginal
gain D(a | S) becomes a HOP called cooperative cuts [1]. Let Cuty(`, `′) = {(yi, yj) ∈ E | yi =
`, yj = `′} be the cut set for a specific label transition (`, `′). Further, let #CutS(`, `′) count the
number of items a ∈ S that contain at least one (`, `′) label transition: #CutS(`, `′) = |{a ∈ S |
Cutφ(a)(`, `

′) 6= ∅}| = |S ∩G`,`′ |. The marginal gains for this diversity function are:

d(y | S) = D(φ−1(y) | S) (5a)

=
∑
`,`′

h(#CutS∪φ−1(y)(`, `
′))− h(#CutS(`, `′)) (5b)

=
∑
`,`′

Cuty(`,`
′) 6=∅

h(1 + #CutS(`, `′))− h(#CutS(`, `′)) (5c)

Similar to single label groups, the gain for a label pair (`, `′) decreases as #CutS(`, `′) grows.
Thus, d(y | S) rewards the presence of pair (`, `′) by an amount proportional to how rare it is
in the segmentations in S. Analogously to the label costs, the parsimony factor in this setting
is p(y) =

∑
Cuty(`,`′)6=∅ c(`, `

′) encouraging each individual y to have a small number of label
transitions. Specifically, when using a count coverage and parsimony term with c(`, `′) = −1,we
eventually maximize

r(y) + p(y) + d(y) (6a)

= r(y)−
∑

`,`′:S∈G`,`′

min{#Cuty(`, `′), 1}, (6b)
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Figure 1: Color map for reading VOC segmentation results.

which is a supermodular function on the set of cut edges for each label transition. Thus, the multi-
label cooperative cut inference algorithm by Kohli et al. [2] applies. The construction for general h
looks similar, with a degrading cost in front of the min.

3 Experiments

For the sake of completeness and to show the difference in sets of solutions generated by different
diversity functions, we show sample sets of solutions generated for a given image (Fig. 2, 3 and 4).
These results help in understanding the behavior of different diversity functions.

Figure 2: Sets of solutions generated with different diversity functions.
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Figure 3: Sets of solutions generated with different diversity functions.
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Figure 4: Sets of solutions generated with different diversity functions.

4 Proof of Lemma 1

Lemma 1. Let S be a sample of size M taken uniformly at random. There exist monotone submod-
ular functions where E[F (S)] ≤ (M/N + ε/M) max|S|≤M F (S) for any ε ≥ 0.
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The bound in the main paper follows with ε = 0.

Proof. To prove this statement, we consider a specific worst-case function. Let R ⊆ V be a fixed
set of size M , and let

F (S) = |S ∩R|+ εmin{|S \R|, 1}. (7)

The function F is obviously nondecreasing and it is also submodular. For this function, the
cardinality-constrained optimum is

max
|S|≤M

F (S) = F (R) = M. (8)

The expected value of an M -sized sample is the expectation of a hypergeometric distribution plus
a correction taking into account that every set except R will have value at least 1 (using the second
part of F ):

ES [F (S)] =

(
N

M

)−1 ∑
S⊆V,|S|=M

|S ∩R|+
(
N

M

)
ε− ε

 (9)

=

(
N

M

)−1( M∑
r=1

(
M

r

)(
N −M
M − r

)
r − ε

)
+ ε (10)

=
M2

N
+ ε−

(
N

M

)−1
ε (11)

< (M/N + ε/M)F (R). (12)

This is also a fairly tight bound: if we sample each element with probability M/N , then, using
Lemma 2.2 in [3] and the monotonicity of F , it holds that ES [F (S)] ≥ M

N F (V ) ≥ M
N F (S∗).

5 Proof of Lemma 2

Lemma 2. Let F ≥ 0 be monotone submodular. If each step of the greedy algorithm uses an
approximate gain maximizer bi+1 with F (bi+1 | Si) ≥ αmaxa∈V F (a | Si)− εi+1, then

F (SM ) ≥ (1− 1

eα
) max
|S|≤M

F (S)−
M∑
i=1

εi.

To prove Lemma 2, we employ a helpful intermediate observation. We will denote the optimal
solution by S∗ ∈ arg max|S|≤M F (S).

Lemma 3. If F (bi+1 | Si) ≥ αmaxa∈V F (a | Si)− εi+1, then

F (bi+1 | Si) ≥ α

M
(F (S∗)− F (Si))− εi+1.

Proof. (Lemma 3). Define T i = S∗ \ Si to be the set of all elements that are in S∗ but have not yet
been selected. Order the elements in T i in an arbitrary order as t1, . . . th (note that h ≤M because
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|S∗| ≤M . By monotonicity of F and the fact that S∗ ⊆ Si ∪ T i, it holds that

F (S∗)− F (Si) ≤ F (T i ∪ Si)− F (Si) (13)

=

h∑
j=1

F (tj | Si ∪ {t1, . . . , tj−1) (14)

≤
h∑
j=1

F (tj | Si) (15)

≤M max
a∈V \Si

F (a | Si) (16)

≤ M

α
(F (bi+1 | Si) + εi+1) (17)

In Equation (15), we use diminishing marginal returns. In the end, we use the assumption of the
lemma, which implies that

max
a

F (a | S) ≤ 1

α
(F (bi+1 | Si) + εi+1). (18)

Rearranging yields the result of the lemma.

Now we are equipped to prove Lemma 2.

Proof. Lemma 3 implies that

F (bi+1 | Si) = F (Si+1)− F (Si) (19)

≥ α

M

(
F (S∗)− F (Si)

)
− εi+1. (20)

We rearrange this to

F (S∗)− F (Si+1) (21)

≤ (1− α

M
)F (S∗)− (1− α

M
)F (Si) + εi+1 (22)

= (1− α

M
)(F (S∗)− F (Si)) + εi+1 (23)

≤ (1− α

M
)i+1(F (S∗)− F (S0)) +

i∑
j=1

(
1− α

M

)i−j
εj (24)

≤ (1− α

M
)i+1(F (S∗)− F (S0)) +

i∑
j=1

εj (25)

With F (S0) = F (∅) = 0 we rearrange to

F (SM ) ≥ (1− (1− α

M
)M )F (S∗)−

M∑
j=1

εj (26)

≥ (1− e−α)F (S∗)−
M∑
j=1

εj . (27)

6 Relative Error

If we have a monotone but not nonnegative function, we may shift the function and obtain a relative
bound:
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Lemma 4. Let F be an arbitrary monotone submodular function, and let Fmin = minS⊆V F (S).
We can define a new, shifted monotone non-negative version of F as F+(S) , F (S)− Fmin . If we
apply the greedy algorithm to F+, we obtain a solution Ŝ that satisfies F+(Ŝ) ≥ αF+(S∗), then
the solution Ŝ has a bounded relative approximation error:

F (Ŝ)− Fmin

F (S∗)− Fmin
≥ α.

Proof. By a proof analogous to that of Lemma 2, we get, for α = (1− 1
e ),

F+(Ŝ) ≥ αF+(S∗) (28)

⇔ F (Ŝ)− Fmin ≥ α(F (S∗)− Fmin ) (29)

⇔ F (Ŝ)− Fmin

F (S∗)− Fmin
≥ α = 1− 1

e
. (30)

7 Generalization: Upper Envelope Potentials

In addition to the three specific examples given in the main document (Section 4.1, 4.1, 4.2), we can
also generalize these constructions to a broad class of HOPs called upper envelope potentials [4].

Let G1, G2, . . . , Gq, . . . , Gb be disjoint groups where b is polynomial in the size of the number of
base variables (n). We consider the group count diversity. At iteration t in the greedy algorithm,
assume without loss of generalization that we have covered G1, G2, . . . , Gk. Then for the (t+ 1)

th

iteration, the marginal gain of y is:

d(y | St) =

{
0 if y ∈ {G1, .., Gk}
1 otherwise.

(31)

We can now express d(y | St) as an upper-envelope potential, i.e. d(y | St) ≡ maxq ν
q(y) where:

νq(y) = µq +
∑
i∈[n]

∑
`∈L

wqi`δi(`) (32)

where δi(`) returns 1 if yi = `.

Each linear function νq(y) encodes two pieces of information:

1. µq encodes if Gq is uncovered at the end of the tth step, i.e.

µq =

{
0 if q ∈ {1, .., k}
1 otherwise.

(33)

2. The second part of (32) indicates whether or not y lies in the group Gq (defined below).

For general groups, it may not be possible to have linear encodings for membership. By construction,
we describe one practical example:

Region Consistency Diversity. Consider a region C in the image whose superpixels yC we want
to bias towards a homogenous or uniform labeling. Thus, when we search for diverse labelings, we
want to encourage the entire set of superpixels yc to change together. In this case, each group G`
corresponds to the set of segmentations that assign label ` to the region yc. For such a diversity
function, we define wqi` as:

wqi` =

{
0 if i ∈ [C] and ` = q

−∞ otherwise.
(34)

With this definition of wqi`, the second part of (32) indicates whether or not y lies in the group Gq
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It is known [5, 4] that maximizing any upper-envelope HOP can be reduced to the maximization of
a pairwise function with the addition of an auxiliary switching variable x that takes values from the
index set of q (in this case [L]).

max
yc

d(y | St) = max
yc,x

(φx(q) +
∑
i∈V

φxi(q, yi)) (35)

where φx(q) = µq and φxi(q, yi) = wqiyi . This pairwise function can be maximised using standard
message passing algorithms such as TRW and BP. However, for some cases, such as the region
consistency diversity defined above, the pairwise function is supermodular, and graph cuts can be
used.
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