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Abstract

Low-rank tensor estimation has been frequently applied in many real-world prob-
lems. Despite successful applications, existing Schatten 1-norm minimization
(SNM) methods may become very slow or even not applicable for large-scale
problems. To address this difficulty, we therefore propose an efficient and scal-
able core tensor Schatten 1-norm minimization method for simultaneous tensor
decomposition and completion, with a much lower computational complexity. We
first induce the equivalence relation of Schatten 1-norm of a low-rank tensor and
its core tensor. Then the Schatten 1-norm of the core tensor is used to replace
that of the whole tensor, which leads to a much smaller-scale matrix SNM prob-
lem. Finally, an efficient algorithm with a rank-increasing scheme is developed to
solve the proposed problem with a convergence guarantee. Extensive experimen-
tal results show that our method is usually more accurate than the state-of-the-art
methods, and is orders of magnitude faster.

1 Introduction

There are numerous applications of higher-order tensors in machine learning [22, 29], signal pro-
cessing [10, 9], computer vision [16, 17], data mining [1, 2], and numerical linear algebra [14, 21].
Especially with the rapid development of modern computing technology in recent years, tensors are
becoming ubiquitous such as multi-channel images and videos, and have become increasingly popu-
lar [10]. Meanwhile, some values of their entries may be missing due to the problems in acquisition
process, loss of information or costly experiments [1]. Low-rank tensor completion (LRTC) has
been successfully applied to a wide range of real-world problems, such as visual data [16, 17], EEG
data [9] and hyperspectral data analysis [9], and link prediction [29].

Recently, sparse vector recovery and low-rank matrix completion (LRMC) has been intensively
studied [6, 5]. Especially, the convex relaxation (the Schatten 1-norm, also known as the trace norm
or the nuclear norm [7]) has been used to approximate the rank of matrices and leads to a convex
optimization problem. Compared with matrices, tensor can be used to express more complicated
intrinsic structures of higher-order data. Liu et al. [16] indicated that LRTC methods utilize all
information along each dimension, while LRMC methods only consider the constraints along two
particular dimensions. As the generalization of LRMC, LRTC problems have drawn lots of attention
from researchers in past several years [10]. To address the observed tensor with missing data, some
weighted least-squares methods [1, 8] have been successfully applied to EEG data analysis, nature
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and hyperspectral images inpainting. However, they are usually sensitive to the given ranks due to
their least-squares formulations [17].

Liu et al. [16] and Signorette et al. [23] first extended the Schatten 1-norm regularization for the
estimation of partially observed low-rank tensors. In other words, the LRTC problem is converted
into a convex combination of the Schatten 1-norm minimization (SNM) of the unfolding along
each mode. Some similar algorithms can also be found in [17, 22, 25]. Besides these approaches
described above, a number of variations [18] and alternatives [20, 28] have been discussed in the
literature. In addition, there are some theoretical developments that guarantee the reconstruction of
a low-rank tensor from partial measurements by solving the SNM problem under some reasonable
conditions [24, 25, 11]. Although those SNM algorithms have been successfully applied in many
real-world applications, them suffer from high computational cost of multiple SVDs as O(NIN+1),
where the assumed size of an N -th order tensor is I × I × · · · × I .

We focus on two major challenges faced by existing LRTC methods, the robustness of the given
ranks and the computational efficiency. We propose an efficient and scalable core tensor Schatten
1-norm minimization method for simultaneous tensor decomposition and completion, which has a
much lower computational complexity than existing SNM methods. In other words, our method
only involves some much smaller unfoldings of the core tensor replacing that of the whole tensor.
Moreover, we design a generalized Higher-order Orthogonal Iteration (gHOI) algorithm with a rank-
increasing scheme to solve our model. Finally, we analyze the convergence of our algorithm and
bound the gap between the resulting solution and the ground truth in terms of root mean square error.

2 Notations and Background

The mode-n unfolding of an N th-order tensor X ∈ RI1×···×IN is a matrix denoted by X(n) ∈
RIn×Πj ̸=nIj that is obtained by arranging the mode-n fibers to be the columns of X(n). The Kro-
necker product of two matrices A ∈ Rm×n and B ∈ Rp×q is an mp × nq matrix given by
A⊗B = [aijB]mp×nq . The mode-n product of a tensor X ∈ RI1×···×IN with a matrix U ∈ RJ×In

is defined as (X ×n U)i1···in−1jin+1···iN =
∑In

in=1 xi1i2···iNujin .

2.1 Tensor Decompositions and Ranks

The CP decomposition approximates X by
∑R

i=1 a1i ◦ a2i ◦ · · · ◦ aNi , where R > 0 is a given integer,
ani ∈ RIn , and ◦ denotes the outer product of vectors. The rank of X is defined as the smallest
value of R such that the approximation holds with equality. Computing the rank of the given tensor
is NP-hard in general [13]. Fortunately, the n-rank of a tensor X is efficient to compute, and it
consists of the matrix ranks of all mode unfoldings of the tensor. Given the n-rank(X ), the Tucker
decomposition decomposes a tensor X into a core tensor multiplied by a factor matrix along each
mode as follows: X = G ×1 U1 ×2 · · · ×N UN . Since the ranks Rn (n = 1, · · · , N) are in general
much smaller than In, the storage of the Tucker decomposition form can be significantly smaller
than that of the original tensor. In [8], the weighted Tucker decomposition model for LRTC is

min
G, {Un}

∥W ⊙ (T − G ×1 U1 ×2 · · · ×N UN )∥2F , (1)

where the symbol⊙ denotes the Hadamard (elementwise) product,W is a nonnegative weight tensor
with the same size as T : wi1,i2,··· ,iN = 1 if (i1, i2, · · · , iN ) ∈ Ω and wi1,i2,··· ,iN = 0 otherwise,
and the elements of T in the set Ω are given while the remaining entries are missing.

2.2 Low-Rank Tensor Completion

For the LRTC problem, Liu et al. [16] and Signoretto et al. [23] proposed an extension of LRMC
concept to tensor data as follows:

min
X

N∑
n=1

αn∥X(n)∥∗, s.t., PΩ(X ) = PΩ(T ), (2)

where ∥X(n)∥∗ denotes the Schatten 1-norm of the unfolding X(n), i.e., the sum of its singular
values, αn’s are pre-specified weights, and PΩ keeps the entries in Ω and zeros out others. Gandy
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et al. [9] presented an unweighted model, i.e., αn = 1, n = 1, . . . , N . In addition, Tomioka and
Suzuki [24] proposed a latent approach for LRTC problems:

min
{Xn}

N∑
n=1

∥(Xn)(n)∥∗ +
λ

2
∥PΩ(

N∑
n=1

Xn)− PΩ(T )∥2F . (3)

In fact, each mode-n unfolding X(n) shares the same entries and cannot be optimized independently.
Therefore, we need to apply variable splitting and introduce a separate variable to each unfolding
of the tensor X or Xn. However, all algorithms have to be solved iteratively and involve multiple
SVDs of very large matrices in each iteration. Hence, they suffer from high computational cost and
are even not applicable for large-scale problems.

3 Core Tensor Schatten 1-Norm Minimization

The existing SNM algorithms for solving the problems (2) and (3) suffer high computational cost,
thus they have a bad scalability. Moreover, current tensor decomposition methods require explicit
knowledge of the rank to gain a reliable performance. Motivated by these, we propose a scalable
model and then achieve a smaller-scale matrix Schatten 1-norm minimization problem.

3.1 Formulation

Definition 1. The Schatten 1-norm of an Nth-order tensorX ∈ RI1×···×IN is the sum of the Schatten
1-norms of its different unfoldings X(n), i.e.,

∥X∥∗ =
N∑

n=1

∥X(n)∥∗, (4)

where ∥X(n)∥∗ denotes the Schatten 1-norm of the unfolding X(n).

For the imbalance LRTC problems, the Schatten 1-norm of the tensor can be incorporated by some
pre-specified weights, αn, n = 1, . . . N . Furthermore, we have the following theorem.
Theorem 1. Let X ∈ RI1×···×IN with n-rank=(R1, · · · , RN ) and G ∈ RR1×···×RN satisfy X =
G ×1 U1 ×2 · · · ×N UN , and Un ∈ St(In, Rn), n = 1, 2, · · · , N , then

∥X∥∗ = ∥G∥∗, (5)
where ∥X∥∗ denotes the Schatten 1-norm of the tensor X and St(In, Rn) = {U ∈ RIn×Rn :
UTU = IRn} denotes the Stiefel manifold.

Please see Appendix A of the supplementary material for the detailed proof of the theorem. The core
tensor G with size (R1, R2, · · · , RN ) has much smaller size than the observed tensor T (usually
Rn ≪ In, n = 1, 2, · · · , N ). According to Theorem 1, our Schatten 1-norm minimization problem
is formulated into the following form:

min
G,{Un},X

N∑
n=1

∥G(n)∥∗ +
λ

2
∥X − G ×1 U1 · · · ×N UN∥2F ,

s.t., PΩ(X ) = PΩ(T ), Un ∈ St(In, Rn), n = 1, · · · , N.

(6)

Our tensor decomposition model (6) alleviates the SVD computation burden of much larger unfolded
matrices in (2) and (3). Furthermore, we use the Schatten 1-norm regularization term in (6) to
promote the robustness of the rank while the Tucker decomposition model (1) is usually sensitive to
the given rank-(r1, r2, · · · , rN ) [17]. In addition, several works [12, 27] have provided some matrix
rank estimation strategies to compute some values (r1, r2, · · · , rN ) for the n-rank of the involved
tensor. In this paper, we only set some relatively large integers (R1, R2, · · · , RN ) such that Rn ≥ rn
for all n = 1, · · · , N . Different from (2) and (3), some smaller matrices Vn ∈ RRn×Πj ̸=nRj (n =
1, · · · , N) are introduced into (6) as the auxiliary variables, and then our model (6) is reformulated
into the following equivalent form:

min
G,{Un},{Vn},X

N∑
n=1

∥Vn∥∗ +
λ

2
∥X − G ×1 U1 · · · ×N UN∥2F ,

s.t., PΩ(X ) = PΩ(T ), Vn = G(n), Un ∈ St(In, Rn), n = 1, · · · , N.

(7)
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In the following, we will propose an efficient gHOI algorithm based on alternating direction method
of multipliers (ADMM) to solve the problem (7). ADMM decomposes a large problem into a se-
ries of smaller subproblems, and coordinates the solutions of subproblems to compute the optimal
solution. In recent years, it has been shown in [3] that ADMM is very efficient for some convex or
non-convex optimization problems in various applications.

3.2 A gHOI Algorithm with Rank-Increasing Scheme

The proposed problem (7) can be solved by ADMM. Its partial augmented Lagrangian function is

Lµ =

N∑
n=1

(∥Vn∥∗+ ⟨Yn,G(n)−Vn⟩+
µ

2
∥G(n)−Vn∥2F )+

λ

2
∥X −G ×1 U1×2 · · ·×N UN∥2F , (8)

where Yn, n = 1, · · · , N , are the matrices of Lagrange multipliers, and µ > 0 is a penalty parame-
ter. ADMM solves the proposed problem (7) by successively minimizing the Lagrange function Lµ

over {G, U1, · · · , UN , V1, · · · , VN ,X}, and then updating {Y1, · · · , YN}.

Updating {Uk+1
1 , · · · , Uk+1

N ,Gk+1}: The optimization problem with respect to {U1, · · · , UN} and
G is formulated as follows:

min
G, {Un∈St(In,rn)}

N∑
n=1

µk

2
∥G(n) − V k

n + Y k
n /µk∥2F +

λ

2
∥X k − G ×1 U1 · · · ×N UN∥2F , (9)

where rn is an underestimated rank (rn ≤ Rn), and is dynamically adjusted by using the following
rank-increasing scheme. Different from HOOI in [14], we will propose a generalized higher-order
orthogonal iteration scheme to solve the problem (9) in Section 3.3.

Updating {V k+1
1 , · · · , V k+1

N }: With keeping all the other variables fixed, V k+1
n is updated by

solving the following problem:

min
Vn

∥Vn∥∗ +
µk

2
∥Gk+1

(n) − Vn + Y k
n /µk∥2F . (10)

For solving the problem (10), the spectral soft-thresholding operation [4] is considered as a shrinkage
operation on the singular values and is defined as follows:

V k+1
n = prox1/µk(Mn) := Udiag(max{σ − 1

µk
, 0})V T , (11)

where Mn = Gk+1
(n) + Y k

n /µk, max{·, ·} should be understood element-wise, and Mn =

Udiag(σ)V T is the SVD of Mn. Here, only some matrices Mn of smaller size in (11) need
to perform SVD. Thus, this updating step has a significantly lower computational complexity
O(

∑
n R

2
n×Πj ̸=nRj) at worst while the computational complexity of the convex SNM algorithms

for both problems (2) and (3) is O(
∑

n I
2
n ×Πj ̸=nIj) at each iteration.

Updating X k+1: The optimization problem with respect to X is formulated as follows:

min
X
∥X − Gk+1 ×1 U

k+1
1 · · · ×N Uk+1

N ∥2F , s.t., PΩ(X ) = PΩ(T ). (12)

By deriving simply the KKT conditions for (12), the optimal solution X is given by

X k+1 = PΩ(T ) + PΩc(Gk+1 ×1 U
k+1
1 · · · ×N Uk+1

N ), (13)

where Ωc is the complement of Ω, i.e., the set of indexes of the unobserved entries.

Rank-increasing scheme: The idea of interlacing fixed-rank optimization with adaptive
rank-adjusting schemes has appeared recently in the particular context of matrix comple-
tion [27, 28]. It is here extended to our algorithm for solving the proposed prob-
lem. Let U k+1 = (Uk+1

1 , Uk+1
2 , . . . , Uk+1

N ), V k+1 = (V k+1
1 , V k+1

2 , . . . , V k+1
N ), and

Y k+1 = (Y k+1
1 , Y k+1

2 , . . . , Y k+1
N ). Considering the fact Lµk(X k+1,Gk+1,U k+1,V k+1,Y k) ≤

Lµk(X k,Gk,U k,V k,Y k), our rank-increasing scheme starts rn such that rn ≤ Rn. We increase
rn to min(rn +△rn, Rn) at iteration k + 1 if∣∣∣∣1− Lµk(X k+1,Gk+1,U k+1,V k+1,Y k)

Lµk(X k,Gk,U k,V k,Y k)

∣∣∣∣ ≤ ϵ, (14)
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Algorithm 1 Solving problem (7) via gHOI
Input: PΩ(T ), (R1, · · · , RN ), λ and tol.

1: while not converged do
2: Update Uk+1

n , Gk+1, V k+1
n and X k+1 by (18), (20), (11) and (13), respectively.

3: Apply the rank-increasing scheme.
4: Update the multiplier Y k+1

n by Y k+1
n = Y k

n + µk(Gk+1
(n) − V k+1

n ), n = 1, . . . , N .
5: Update the parameter µk+1 by µk+1 = min(ρµk, µmax).
6: Check the convergence condition, max(∥Gk+1

(n) − V k+1
n ∥2F , n = 1, . . . , N) < tol.

7: end while
Output: X , G, and Un, n = 1, · · · , N .

which△rn is a positive integer and ϵ is a small constant. Moreover, we augment Uk+1
n ← [Uk

n , Ûn]

where Ĥn has△rn randomly generated columns, Ûn = (I −Uk
n(U

k
n)

T )Ĥn, and then orthonormal-
ize Ûn. Let Vn = refold(V k

n ) ∈ Rr1×···×rN , andWn ∈ R(r1+△r1)×···×(rN+△rN ) be augmented as
follows: (Wn)i1,··· ,iN = (Vn)i1,··· ,iN for all it ≤ rt and t ∈ [1, N ], and (Wn)i1,··· ,iN = 0 other-
wise, where refold(·) denotes the refolding of the matrix into a tensor and unfold(·) is the unfolding
operator. Hence, we set V k

n = unfold(Wn) and update Y k
n by the same way. We then update the

involved variables Gk+1, V k+1
n and X k+1 by (20), (11) and (13), respectively.

Summarizing the analysis above, we develop an efficient gHOI algorithm for solving the tensor de-
composition and completion problem (7), as outlined in Algorithm 1. Our algorithm in essence is
the Gauss-Seidel version of ADMM. The update strategy of Jacobi ADMM can easily be imple-
mented, thus our gHOI algorithm is well suited for parallel and distributed computing and hence is
particularly attractive for solving certain large-scale problems [21]. Algorithm 1 can be accelerated
by adaptively changing µ as in [15].

3.3 Generalized Higher-Order Orthogonal Iteration

We propose a generalized HOOI scheme for solving the problem (9), where the conventional HOOI
model in [14] can be seen as a special case of the problem (9) when µk = 0. Therefore, we extend
Theorem 4.2 in [14] to solve the problem (9) as follows.
Theorem 2. Assume a real N th-order tensorX , then the minimization of the following cost function

f(G, U1, . . . , UN ) =
N∑

n=1

µk

2
∥G(n) − V k

n + Y k
n /µk∥2F +

λ

2
∥X k − G ×1 U1 · · · ×N UN∥2F

is equivalent to the maximization, over the matrices U1, U2, . . . , UN having orthonormal columns,
of the function

g(U1, U2, . . . , UN ) = ∥λM+ µkN∥2F , (15)

whereM = X k ×1 (U1)
T · · · ×N (UN )T and N =

∑N
n=1 refold(V k

n − Y k
n /µk).

Please see Appendix B of the supplementary material for the detailed proof of the theorem.

Updating {Uk+1
1 , · · · , Uk+1

N }: According to Theorem 2, our generalized HOOI scheme succes-
sively solves Un, n = 1, . . . , N with fixing other variables Uj , j ̸= n. Imagine that the matrices
{U1, . . . , Un−1, Un+1, . . . , UN} are fixed and that the optimization problem (15) is thought of as a
quadratic expression in the components of the matrix Un that is being optimized. Considering that
the matrix has orthonormal columns, we have

max
Un∈St(In,rn)

∥λMn ×n UT
n + µkN∥2F , (16)

where
Mn = X k ×1 (U

k+1
1 )T · · · ×n−1 (U

k+1
n−1)

T ×n+1 (U
k
n+1)

T · · · ×N (Uk
N )T . (17)

This is actually the well-known orthogonal procrustes problem [19], whose optimal solution is given
by the singular value decomposition of (Mn)(n)N T

(n), i.e.,

Uk+1
n = U (n)(V (n))T , (18)
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where U (n) and V (n) are obtained by the skinny SVD of (Mn)(n)N T
(n). Repeating the procedure

above for different modes leads to an alternating orthogonal procrustes scheme for solving the max-
imization of the problem (16). For any estimate of those factor matrices Un, n = 1, . . . , N , the
optimal solution to the problem (9) with respect to G is updated in the following.

Updating Gk+1: The optimization problem (9) with respect to G can be rewritten as follows:

min
G

N∑
n=1

µk

2
∥G(n) − V k

n + Y k
n /µk∥2F +

λ

2
∥X k − G ×1 U

k+1
1 · · · ×N Uk+1

N ∥2F . (19)

(19) is a smooth convex optimization problem, thus we can obtain a closed-form solution,

Gk+1 =
λ

λ+Nµk
X k ×1 (U

k+1
1 )T · · · ×N (Uk+1

N )T +
µk

λ+Nµk

N∑
n=1

refold(V k
n − Y k

n /µk). (20)

4 Theoretical Analysis

In the following we first present the convergence analysis of Algorithm 1.

4.1 Convergence Analysis

Theorem 3. Let (Gk, {Uk
1 , . . . , U

k
N}, {V k

1 , . . . , V k
N},X k) be a sequence generated by Algorithm 1,

then we have the following conclusions:
(I) (Gk, {Uk

1 , . . . , U
k
N}, {V k

1 , . . . , V k
N},X k) are Cauchy sequences, respectively.

(II) If limk→∞ µk(V k+1
n − V k

n ) = 0, n = 1, · · · , N , then (Gk, {Uk
1 , . . . , U

k
N},X k) converges to a

KKT point of the problem (6).

The proof of the theorem can be found in Appendix C of the supplementary material.

4.2 Recovery Guarantee

We will show that when sufficiently many entries are sampled, the KKT point of Algorithm 1 is
stable, i.e., it recovers a tensor “close to” the ground-truth one. We assume that the observed tensor
T ∈ RI1×I2···×IN can be decomposed as a true tensor D with rank-(r1, r2, . . . , rN ) and a random
gaussian noise E whose entries are independently drawn from N (0, σ2), i.e., T = D + E . For
convenience, we suppose I1 = · · · = IN = I and r1 = . . . = rN = r. Let the recovered tensor
A = G×1U1× . . .×N UN , the root mean square error (RMSE) is a frequently used measure of the
difference between the recovered tensor and the true one: RMSE := 1√

IN
∥D −A∥F .

[25] analyzes the statistical performance of the convex tensor Schatten 1-norm minimization prob-
lem with the general linear operator X : RI1×...×IN → Rm. However, our model (6) is non-convex
for the LRTC problem with the operator PΩ. Thus, we follow the sketch of the proof in [26] to
analyze the statistical performance of our model (6).
Definition 2. The operator PS is defined as follows: PS(X ) = PUN · · ·PU1(X ), where PUn(X ) =
X×n(UnU

T
n ).

Theorem 4. Let (G, U1, U2, . . . , UN ) be a KKT point of the problem (6) with given ranks R1 =
· · · = RN = R. Then there exists an absolute constant C (please see Supplementary Material),
such that with probability at least 1− 2 exp(−IN−1),

RMSE ≤ ∥E∥F√
IN

+ Cβ

(
IN−1R log(IN−1)

|Ω|

) 1
4

+
N
√
R

C1λ
√
|Ω|

, (21)

where β = maxi1,··· ,iN |Ti1,··· ,iN | and C1 = ∥PSPΩ(T −A)∥F

∥PΩ(T −A)∥F
.

The proof of the theorem and the analysis of lower-boundedness of C1 can be found in Appendix
D of the supplementary material. Furthermore, our result can also be extended to the general linear
operator X , e.g., the identity operator (i.e., tensor decomposition problems). Similar to [25], we
assume that the operator satisfies the following restricted strong convexity (RSC) condition.
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Table 1: RSE and running time (seconds) comparison on synthetic tensor data:
(a) Tensor size: 30×30×30×30×30

WTucker WCP FaLRTC Latent gHOI
SR RSE±std. Time RSE±std. Time RSE±std. Time RSE±std. Time RSE±std. Time

10% 0.4982±2.3e-2 2163.05 0.5003±3.6e-2 4359.23 0.6744±2.7e-2 1575.78 0.6268±5.0e-2 8324.17 0.2537±1.2e-2 159.43
30% 0.1562±1.7e-2 2226.67 0.3364±2.3e-2 3949.57 0.3153±1.4e-2 1779.59 0.2443±1.2e-2 8043.83 0.1206±6.0e-3 143.86
50% 0.0490±9.3e-3 2652.90 0.0769±5.0e-3 3260.86 0.0365±6.2e-4 2024.52 0.0559±7.7e-3 8263.24 0.0159±1.3e-3 135.60

(b) Tensor size: 60 × 60 × 60 × 60
WTucker WCP FaLRTC Latent gHOI

SR RSE±std. Time RSE±std. Time RSE±std. Time RSE±std. Time RSE±std. Time
10% 0.2319±3.6e-2 1437.61 0.4766±9.4e-2 1586.92 0.4927±1.6e-2 562.15 0.5061±4.4e-2 5075.82 0.1674±3.4e-3 60.53
30% 0.0143±2.8e-3 1756.95 0.1994±6.0e-3 1696.27 0.1694±2.5e-3 603.49 0.1872±7.5e-3 5559.17 0.0076±6.5e-4 57.19
50% 0.0079±6.2e-4 2534.59 0.1335±4.9e-3 1871.38 0.0602±5.8e-4 655.69 0.0583±9.7e-4 6086.63 0.0030±1.7e-4 55.62

Definition 3 (RSC). We suppose that there is a positive constant κ(X ) such that the operator
X : RI1×...×IN → Rm satisfies the inequality

1

m
∥X (△)∥22 ≥ κ(X )∥△∥2F ,

where△ ∈ RI1×...×IN is an arbitrary tensor.

Theorem 5. Assume the operator X satisfies the RSC condition with a constant κ(X ) and the
observations y = X (D) + ε. Let (G, U1, U2, . . . , UN ) be a KKT point of the following problem
with given ranks R1 = · · · = RN = R,

min
G, {Un∈St(In,Rn)}

N∑
n=1

∥G(n)∥∗ +
λ

2
∥y−X (G×1U1× · · ·×N UN )∥22. (22)

Then

RMSE ≤ ∥ε∥2√
mκ(X )IN

+
N
√
R

C2λ
√
mκ(X )IN

, (23)

where C2 = ∥PSX ∗(y−X (A))∥F

∥y−X (A)∥2
and X ∗ denotes the adjoint operator of X .

The proof of the theorem can be found in Appendix E of the supplementary material.

5 Experiments

5.1 Synthetic Tensor Completion

Following [17], we generated a low-n-rank tensor T ∈ RI1×I2×···×IN which we used as the ground
truth data. The order of the tensors varies from three to five, and r is set to 10. Furthermore, we
randomly sample a few entries from T and recover the whole tensor with various sampling ratios
(SRs) by our gHOI method and the state-of-the-art LRTC algorithms including WTucker [8], WCP
[1], FaLRTC [17], and Latent [24]. The relative square error (RSE) of the recovered tensor X for all
these algorithms is defined by RSE := ∥X − T ∥F /∥T ∥F .

The average results (RSE and running time) of 10 independent runs are shown in Table 1, where
the order of tensor data varies from four to five. It is clear that our gHOI method consistently
yields much more accurate solutions, and outperforms the other algorithms in terms of both RSE
and efficiency. Moreover, we present the running time of our gHOI method and the other methods
with varying sizes of third-order tensors, as shown in Fig. 1(a). We can see that the running time
of WTcuker, WCP, Latent and FaLRTC dramatically grows with the increase of tensor size whereas
that of our gHOI method only increases slightly. This shows that our gHOI method has very good
scalability and can address large-scale problems. To further evaluate the robustness of our gHOI
method with respect to the given tensor rank changes, we conduct some experiments on the synthetic
data of size 100× 100× 100, and illustrate the recovery results of all methods with 20% SR, where
the rank parameter of gHOI, WTucker and WCP is chosen from {10, 15, · · · , 40}. The average RSE
results of 10 independent runs are shown in Fig. 1(b), from which we can see that our gHOI method
performs much more robust than both WTucker and WCP.
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Figure 1: Comparison of all these methods in terms of computational time (in seconds and in log-
arithmic scale) and RSE on synthetic third-order tensors by varying tensor sizes (a) or given ranks
(b), and the BRAINIX data set: running time (c) and RSE (d).

(a) Original (b) 30% SR (c) RSE: 0.2693 (d) RSE: 0.3005 (e) RSE: 0.2858 (f) RSE: 0.2187

Figure 2: The recovery results on the BRAINIX data set with 30% SR: (c)-(e) The results of
WTucker, FaLRTC, Latent and gHOI, respectively (Best viewed zoomed in).

5.2 Medical Images Inpainting

In this part, we apply our gHOI method for medical image inpainting problems on the BRAINIX
data set1. The recovery results on one randomly chosen image with 30% SR are illustrated in Fig.
2. Moreover, we also present the recovery accuracy (RSE) and running time (seconds) with varying
SRs, as shown in Fig. 1(c) and (d). From these results, we can observe that our gHOI method
consistently performs better than the other methods in terms of both RSE and efficiency. Especially,
gHOI is about 20 times faster than WTucker and FaLRTC, and more than 90 times faster than
Latent, when the sample percentage is 10%. By increasing the sampling rate, the RSE results of
three Schatten 1-norm minimization methods including Latent, FaLRTC and gHOI, dramatically
reduce. In contrast, the RSE of WTucker decreases slightly.

6 Conclusions

We proposed a scalable core tensor Schatten 1-norm minimization method for simultaneous tensor
decomposition and completion. First, we induced the equivalence relation of the Schatten 1-norm of
a low-rank tensor and its core tensor. Then we formulated a tractable Schatten 1-norm regularized
tensor decomposition model with missing data, which is a convex combination of multiple much
smaller-scale matrix SNM. Finally, we developed an efficient gHOI algorithm to solve our problem.
Moreover, we also provided the convergence analysis and recovery guarantee of our algorithm. The
convincing experimental results verified the efficiency and effectiveness of our gHOI algorithm.
gHOI is significantly faster than the state-of-the-art LRTC methods. In the future, we will apply
our gHOI algorithm to address a variety of robust tensor recovery and completion problems, e.g.,
higher-order RPCA [10] and robust LRTC.
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