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Appendix

A Proof of Theorem 2.1

Proof. Observe that the permutation invariant operator which associates to (α0, β0) the values

(α1, β1) = (α0 + β0, |α0 − β0|)
satisfies

α2
1 + β2

1 = 2(α2
0 + β2

0).

Moreover, if (α′1, β
′
1) = (α′0 + β′0, |α′0 − β′0|) then

(α1 − α′1)2 + (β1 − β′1)2 ≤ 2
(

(α0 − α′0)2 + (β0 − β′0)2
)
.

Since Sj+1x is computed by applying this operator to pairs of values of Sjx, we derive that

‖Sj+1x‖2 = 2‖Sj+1x‖2 and ‖Sj+1x− Sj+1x
′‖2 ≤ 2 ‖Sjx− Sjx′‖2 .

Since S0x = x and S0x
′ = x′, iterating on these two equations proves Theorem 2.1.

B Haar Scattering from Haar Wavelets

The following proposition proves that order m+ 1 scattering coefficients are computed by applying
an orthogonal Haar wavelet transform to orderm scattering coefficients. We also prove by induction
on m that a scattering coefficient Sjx(n, q) is of order m if and only if q = 2jκ with

κ =

m∑
k=1

2−jk

for some 0 < j1 < ... < jm ≤ J . This property is valid for m = 0 and the following proposition
shows that if it is valid form then it is also valid form+1 in the sense that an orderm+1 coefficient
is indexed by κ+ 2−jm+1 , and it is computed by applying an orthogonal Haar transform to order m
scattering coefficients indexed by κ.
Proposition B.1. For any v ∈ V and 0 ≤ q < 2j we write

Sjx(v, q) =

2−jd−1∑
n=0

Sjx(n, q) 1Vj,n
(v).

For any κ =
∑m
k=1 2−jk , any jm+1 > jm and 0 ≤ n < 2−jd,

Sjx(n, 2j(κ+ 2−jm+1)) =
∑

p
Vjm+1,p⊂Vj,n

|〈Sjmx(·, 2jmκ), ψjm+1,p〉|. (B.1)

Proof. We derive from the definition of a scattering transform in equations (3,4) in the text that

Sj+1x(n, 2q) = Sjx(an, q) + Sjx(bn, q) = 〈Sjx(·, q), 1Vj+1,n〉,
Sj+1x(n, 2q + 1) = |Sjx(an, q)− Sjx(bn, q)| = |〈Sjx(·, q), ψj+1,n〉|.
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where Vj+1,n = Vj,an ∪ Vj,bn . Observe that

2jm+1(κ+ 2−jm+1) = 2jm+1κ+ 1 = 2(2jm+1−1κ) + 1,

thus Sjm+1
x(n, 2jm+1(κ+ 2−jm+1)) is calculated from the coefficients Sjm+1−1x(n, 2jm+1−1κ) of

the previous layer with
Sjm+1x(n, 2jm+1(κ+ 2−jm+1)) = |〈Sjm+1−1x(·, 2jm+1−1κ), ψjm+1,n〉|. (B.2)

Since 2j+1κ = 2 · 2jκ, the coefficient Sjm+1−1x(n, 2jm+1−1κ) is calculated from Sjmx(n, 2jmκ)
by (jm+1 − 1− jm) times additions, and thus

Sjm+1−1x(n, 2jm+1−1κ) = 〈Sjmx(·, 2jmκ), 1Vjm+1−1,n
〉. (B.3)

Combining equations (??) and (??) gives
Sjm+1

x(n, 2jm+1(κ+ 2−jm+1)) = |〈Sjmx(·, 2jmκ), ψjm+1,n〉|. (B.4)
We go from the depth jm+1 to the depth j ≥ jm+1 by computing

Sjx(n, 2j(κ+ 2−jm+1)) = 〈Sjm+1
x(·, 2jm+1(κ+ 2−jm+1)), 1Vj,n

〉.
Together with (??) it proves the equation (??) of the proposition. The summation over p, Vjm+1,p ⊂
Vj,n comes from the inner product 〈1Vjm+1,p , 1Vj,n〉. This also proves that κ+ 2−jm+1 is the index
of a coefficient of order m+ 1.

Since S0x(n, 0) = x(n), the proposition inductively proves that the coefficients at j-th level
Sjx(n, 2jκ) for jm ≤ j ≤ J are of order m. The expression in the proposition shows that an
m+1 order scattering coefficient at scale 2J is obtained by computing the Haar wavelet coefficients
of several order m coefficients at the scale 2jm+1 , taking an absolute value, and then averaging their
amplitudes over VJ,n. It thus measures the averaged variations at the scale 2jm+1 of the m-th order
scattering coefficients.

C Proof of Theorem 2.2

To prove Theorem 2.2, we first define an “interlaced pairings”. We say that two pairings of V =
{1, ..., d}

πε = {aεn, bεn}0≤n<d/2
are interlaced for ε = 0, 1 if there exists no strict subset Ω of V such that π0 and π1 are pairing
elements within Ω. The following lemma shows that a single-layer scattering operator is invertible
with two interlaced pairings.
Lemma C.1. Suppose that x ∈ Rd takes more than 2 different values, and two pairings π0 and π1

of V = {1, ..., d} are interlaced, then x can be recovered from
S1x(n, 0) = x(an) + x(bn), S1x(n, 1) = |x(an)− x(bn)|, 0 ≤ n < d/2.

Proof. By Eq. (2), for a triplet n1, n2, n3 if (n1, n2) is a pair in π0 and (n1, n3) a pair in π1 then
the pair of values {x(n1), x(n2)} are determined (with a possible switch of the two) from

x(n1) + x(n2), |x(n1)− x(n2)|
and those of {x(n1), x(n3)} are determined similarly. Then unless x(n1) 6= x(n2) and
x(n2) = x(n3) the three values x(n1), x(n2), x(n3) are recovered. The interlacing condition
implies that π1 pairs n2 to an index n4 which can not be n3 or n1. Thus, the four values of
x(n1), x(n2), x(n3), x(x4) are specified unless x(n4) = x(n1) 6= x(n2) = x(n3). This inter-
lacing argument can be used to extend to {1, . . . , d} the set of all indices ni for which x(ni) is
specified, unless x takes only two values.

Proof of Theorem 2.2. Suppose that the 2J multiresolution approximations are associated to the J
hierarchical pairings (πε11 , ..., π

εJ
J ) where εj ∈ {0, 1}, where for each j, π0

j and π1
j are two interlaced

pairings of d2−j elements. The sequence (ε1, ..., εJ) is a binary vector taking 2J different values.

The constraint on the signal x is that each of the intermediate scattering coefficients takes more than
2 distinct values, which holds for x ∈ Rd except for a union of hyperplanes which has zero measure.
Thus for almost every x ∈ Rd, the theorem follows from applying Lemma ?? recursively to the j-th
level scattering coefficients for J − 1 ≥ j ≥ 0.
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