
Greedy Subspace Clustering

Dohyung Park
Dept. of Electrical and Computer Engineering

The University of Texas at Austin
dhpark@utexas.edu

Constantine Caramanis
Dept. of Electrical and Computer Engineering

The University of Texas at Austin
constantine@utexas.edu

Sujay Sanghavi
Dept. of Electrical and Computer Engineering

The University of Texas at Austin
sanghavi@mail.utexas.edu

Abstract

We consider the problem of subspace clustering: given points that lie on or near
the union of many low-dimensional linear subspaces, recover the subspaces. To
this end, one first identifies sets of points close to the same subspace and uses the
sets to estimate the subspaces. As the geometric structure of the clusters (linear
subspaces) forbids proper performance of general distance based approaches such
as K-means, many model-specific methods have been proposed. In this paper,
we provide new simple and efficient algorithms for this problem. Our statistical
analysis shows that the algorithms are guaranteed exact (perfect) clustering perfor-
mance under certain conditions on the number of points and the affinity between
subspaces. These conditions are weaker than those considered in the standard
statistical literature. Experimental results on synthetic data generated from the
standard unions of subspaces model demonstrate our theory. We also show that
our algorithm performs competitively against state-of-the-art algorithms on real-
world applications such as motion segmentation and face clustering, with much
simpler implementation and lower computational cost.

1 Introduction

Subspace clustering is a classic problem where one is given points in a high-dimensional ambient
space and would like to approximate them by a union of lower-dimensional linear subspaces. In
particular, each subspace contains a subset of the points. This problem is hard because one needs to
jointly find the subspaces, and the points corresponding to each; the data we are given are unlabeled.
The unions of subspaces model naturally arises in settings where data from multiple latent phenom-
ena are mixed together and need to be separated. Applications of subspace clustering include motion
segmentation [23], face clustering [8], gene expression analysis [10], and system identification [22].
In these applications, data points with the same label (e.g., face images of a person under varying
illumination conditions, feature points of a moving rigid object in a video sequence) lie on a low-
dimensional subspace, and the mixed dataset can be modeled by unions of subspaces. For detailed
description of the applications, we refer the readers to the reviews [10, 20] and references therein.

There is now a sizable literature on empirical methods for this particular problem and some statis-
tical analysis as well. Many recently proposed methods, which perform remarkably well and have
theoretical guarantees on their performances, can be characterized as involving two steps: (a) find-
ing a “neighborhood” for each data point, and (b) finding the subspaces and/or clustering the points
given these neighborhoods. Here, neighbors of a point are other points that the algorithm estimates
to lie on the same subspace as the point (and not necessarily just closest in Euclidean distance).

1

Subspace Conditions for:
Algorithm What is guaranteed condition Fully random model Semi-random model

SSC [4, 16] Correct neighborhoods None d

p

= O(

log(n/d)

log(nL)

) max a↵ = O(

p
log(n/d)

log(nL)

)

LRR [14] Exact clustering No intersection - -
SSC-OMP [3] Correct neighborhoods No intersection - -

TSC [6, 7] Exact clustering None d

p

= O(

1

log(nL)

) max a↵ = O(

1

log(nL)

)

LRSSC [24] Correct neighborhoods None d

p

= O(

1

log(nL)

) -

NSN+GSR Exact clustering None d

p

= O(

log n

log(ndL)

) max a↵ = O(

q
log n

(log dL)·log(ndL)

)

NSN+Spectral Exact clustering None d

p

= O(

log n

log(ndL)

) -

Table 1: Subspace clustering algorithms with theoretical guarantees. LRR and SSC-OMP have only
deterministic guarantees, not statistical ones. In the two standard statistical models, there are n data
points on each of L d-dimensional subspaces in Rp. For the definition of max a↵ , we refer the
readers to Section 3.1.

Our contributions: In this paper we devise new algorithms for each of the two steps above; (a) we
develop a new method, Nearest Subspace Neighbor (NSN), to determine a neighborhood set for each
point, and (b) a new method, Greedy Subspace Recovery (GSR), to recover subspaces from given
neighborhoods. Each of these two methods can be used in conjunction with other methods for the
corresponding other step; however, in this paper we focus on two algorithms that use NSN followed
by GSR and Spectral clustering, respectively. Our main result is establishing statistical guarantees
for exact clustering with general subspace conditions, in the standard models considered in recent
analytical literature on subspace clustering. Our condition for exact recovery is weaker than the
conditions of other existing algorithms that only guarantee correct neighborhoods1, which do not
always lead to correct clustering. We provide numerical results which demonstrate our theory. We
also show that for the real-world applications our algorithm performs competitively against those
of state-of-the-art algorithms, but the computational cost is much lower than them. Moreover, our
algorithms are much simpler to implement.

1.1 Related work

The problem was first formulated in the data mining community [10]. Most of the related work in
this field assumes that an underlying subspace is parallel to some canonical axes. Subspace cluster-
ing for unions of arbitrary subspaces is considered mostly in the machine learning and the computer
vision communities [20]. Most of the results from those communities are based on empirical justi-
fication. They provided algorithms derived from theoretical intuition and showed that they perform
empirically well with practical dataset. To name a few, GPCA [21], Spectral curvature clustering
(SCC) [2], and many iterative methods [1, 19, 26] show their good empirical performance for sub-
space clustering. However, they lack theoretical analysis that guarantees exact clustering.

As described above, several algorithms with a common structure are recently proposed with both
theoretical guarantees and remarkable empirical performance. Elhamifar and Vidal [4] proposed an
algorithm called Sparse Subspace Clustering (SSC), which uses `

1

-minimization for neighborhood
construction. They proved that if the subspaces have no intersection2, SSC always finds a correct
neighborhood matrix. Later, Soltanolkotabi and Candes [16] provided a statistical guarantee of the
algorithm for subspaces with intersection. Dyer et al. [3] proposed another algorithm called SSC-
OMP, which uses Orthogonal Matching Pursuit (OMP) instead of `

1

-minimization in SSC. Another
algorithm called Low-Rank Representation (LRR) which uses nuclear norm minimization is pro-
posed by Liu et al. [14]. Wang et al. [24] proposed an hybrid algorithm, Low-Rank and Sparse Sub-
space Clustering (LRSSC), which involves both `

1

-norm and nuclear norm. Heckel and Bölcskei [6]
presented Thresholding based Subspace Clustering (TSC), which constructs neighborhoods based
on the inner products between data points. All of these algorithms use spectral clustering for the
clustering step.

The analysis in those papers focuses on neither exact recovery of the subspaces nor exact clustering
in general subspace conditions. SSC, SSC-OMP, and LRSSC only guarantee correct neighbor-
hoods which do not always lead to exact clustering. LRR guarantees exact clustering only when

1By correct neighborhood, we mean that for each point every neighbor point lies on the same subspace.
2By no intersection between subspaces, we mean that they share only the null point.

2

the subspaces have no intersections. In this paper, we provide novel algorithms that guarantee exact
clustering in general subspace conditions. When we were preparing this manuscript, it is proved
that TSC guarantees exact clustering under certain conditions [7], but the conditions are stricter than
ours. (See Table 1)

1.2 Notation

There is a set of N data points in Rp, denoted by Y = {y
1

, . . . , yN}. The data points are lying on
or near a union of L subspaces D = [Li=1

Di. Each subspace Di is of dimension di which is smaller
than p. For each point yj , wj denotes the index of the nearest subspace. Let Ni denote the number
of points whose nearest subspace is Di, i.e., Ni =

PN
j=1

Iw
j

=i. Throughout this paper, sets and
subspaces are denoted by calligraphic letters. Matrices and key parameters are denoted by letters
in upper case, and vectors and scalars are denoted by letters in lower case. We frequently denote
the set of n indices by [n] = {1, 2, . . . , n}. As usual, span{·} denotes a subspace spanned by a
set of vectors. For example, span{v

1

, . . . , vn} = {v : v =

Pn
i=1

↵ivi,↵1

, . . . ,↵n 2 R}. ProjUy
is defined as the projection of y onto subspace U . That is, ProjUy = argminu2U ky � uk

2

. I{·}
denotes the indicator function which is one if the statement is true and zero otherwise. Finally,

L

denotes the direct sum.

2 Algorithms

We propose two algorithms for subspace clustering as follows.

• NSN+GSR : Run Nearest Subspace Neighbor (NSN) to construct a neighborhood matrix
W 2 {0, 1}N⇥N , and then run Greedy Subspace Recovery (GSR) for W .

• NSN+Spectral : Run Nearest Subspace Neighbor (NSN) to construct a neighborhood ma-
trix W 2 {0, 1}N⇥N , and then run spectral clustering for Z = W +W>.

2.1 Nearest Subspace Neighbor (NSN)

NSN approaches the problem of finding neighbor points most likely to be on the same subspace in
a greedy fashion. At first, given a point y without any other knowledge, the one single point that is
most likely to be a neighbor of y is the nearest point of the line span{y}. In the following steps, if
we have found a few correct neighbor points (lying on the same true subspace) and have no other
knowledge about the true subspace and the rest of the points, then the most potentially correct point
is the one closest to the subspace spanned by the correct neighbors we have. This motivates us to
propose NSN described in the following.

Algorithm 1 Nearest Subspace Neighbor (NSN)

Input: A set of N samples Y = {y
1

, . . . , yN}, The number of required neighbors K, Maximum
subspace dimension k

max

.
Output: A neighborhood matrix W 2 {0, 1}N⇥N

yi yi/kyik2, 8i 2 [N] . Normalize magnitudes
for i = 1, . . . , N do . Run NSN for each data point

Ii {i}
for k = 1, . . . ,K do . Iteratively add the closest point to the current subspace

if k k
max

then
U span{yj : j 2 Ii}

end if
j⇤ argmaxj2[N]\I

i

kProjUyjk2
Ii Ii [{j⇤}

end for
Wij Ij2I

i

or y
j

2U , 8j 2 [N] . Construct the neighborhood matrix
end for

NSN collects K neighbors sequentially for each point. At each step k, a k-dimensional subspace U
spanned by the point and its k � 1 neighbors is constructed, and the point closest to the subspace is

3

newly collected. After k � k
max

, the subspace U constructed at the k
max

th step is used for collect-
ing neighbors. At last, if there are more points lying on U , they are also counted as neighbors. The
subspace U can be stored in the form of a matrix U 2 Rp⇥dim(U) whose columns form an orthonor-
mal basis of U . Then kProjUyjk2 can be computed easily because it is equal to kU>yjk2. While
a naive implementation requires O(K2pN2

) computational cost, this can be reduced to O(KpN2

),
and the faster implementation is described in Section A.1. We note that this computational cost is
much lower than that of the convex optimization based methods (e.g., SSC [4] and LRR [14]) which
solve a convex program with N2 variables and pN constraints.

NSN for subspace clustering shares the same philosophy with Orthogonal Matching Pursuit (OMP)
for sparse recovery in the sense that it incrementally picks the point (dictionary element) that is
the most likely to be correct, assuming that the algorithms have found the correct ones. In subspace
clustering, that point is the one closest to the subspace spanned by the currently selected points, while
in sparse recovery it is the one closest to the residual of linear regression by the selected points. In
the sparse recovery literature, the performance of OMP is shown to be comparable to that of Basis
Pursuit (`

1

-minimization) both theoretically and empirically [18, 11]. One of the contributions of
this work is to show that this high-level intuition is indeed born out, provable, as we show that NSN
also performs well in collecting neighbors lying on the same subspace.

2.2 Greedy Subspace Recovery (GSR)

Suppose that NSN has found correct neighbors for a data point. How can we check if they are
indeed correct, that is, lying on the same true subspace? One natural way is to count the number
of points close to the subspace spanned by the neighbors. If they span one of the true subspaces,
then many other points will be lying on the span. If they do not span any true subspaces, few points
will be close to it. This fact motivates us to use a greedy algorithm to recover the subspaces. Using
the neighborhood constructed by NSN (or some other algorithm), we recover the L subspaces. If
there is a neighborhood set containing only the points on the same subspace for each subspace, the
algorithm successfully recovers the unions of the true subspaces exactly.

Algorithm 2 Greedy Subspace Recovery (GSR)

Input: N points Y = {y
1

, . . . , yN}, A neighborhood matrix W 2 {0, 1}N⇥N , Error bound ✏

Output: Estimated subspaces ˆD = [Ll=1

ˆDl. Estimated labels ŵ
1

, . . . , ŵN

yi yi/kyik2, 8i 2 [N] . Normalize magnitudes
Wi Top-d{yj : Wij = 1}, 8i 2 [N] . Estimate a subspace using the neighbors for each point
I [N]

while I 6= ; do . Iteratively pick the best subspace estimates
i⇤ argmaxi2I

PN
j=1

I{kProjW
i

yjk2 � 1� ✏}
ˆDl ˆWi⇤

I I \ {j : kProjW
i

⇤ yjk2 � 1� ✏}
end while
ŵi argmaxl2[L]

kProj
ˆD
l

yik2, 8i 2 [N] . Label the points using the subspace estimates

Recall that the matrix W contains the labelings of the points, so that Wij = 1 if point i is assigned
to subspace j. Top-d{yj : Wij = 1} denotes the d-dimensional principal subspace of the set of
vectors {yj : Wij = 1}. This can be obtained by taking the first d left singular vectors of the
matrix whose columns are the vector in the set. If there are only d vectors in the set, Gram-Schmidt
orthogonalization will give us the subspace. As in NSN, it is efficient to store a subspace Wi in
the form of its orthogonal basis because we can easily compute the norm of a projection onto the
subspace.

Testing a candidate subspace by counting the number of near points has already been considered in
the subspace clustering literature. In [25], the authors proposed to run RANdom SAmple Consensus
(RANSAC) iteratively. RANSAC randomly selects a few points and checks if there are many other
points near the subspace spanned by the collected points. Instead of randomly choosing sample
points, GSR receives some candidate subspaces (in the form of sets of points) from NSN (or possibly
some other algorithm) and selects subspaces in a greedy way as specified in the algorithm above.

4

3 Theoretical results

We analyze our algorithms in two standard noiseless models. The main theorems present sufficient
conditions under which the algorithms cluster the points exactly with high probability. For simplicity
of analysis, we assume that every subspace is of the same dimension, and the number of data points
on each subspace is the same, i.e., d , d

1

= · · · = dL, n , N
1

= · · · = NL. We assume that d
is known to the algorithm. Nonetheless, our analysis can extend to the general case.

3.1 Statistical models

We consider two models which have been used in the subspace clustering literature:

• Fully random model: The subspaces are drawn iid uniformly at random, and the points are
also iid randomly generated.

• Semi-random model: The subspaces are arbitrarily determined, but the points are iid ran-
domly generated.

Let Di 2 Rp⇥d, i 2 [L] be a matrix whose columns form an orthonormal basis of Di. An important
measure that we use in the analysis is the affinity between two subspaces, defined as

a↵(i, j) , kD
>
i DjkFp

d
=

s

Pd
k=1

cos

2 ✓i,jk

d
2 [0, 1],

where ✓i,jk is the kth principal angle between Di and Dj . Two subspaces Di and Dj are identical if
and only if a↵(i, j) = 1. If a↵(i, j) = 0, every vector on Di is orthogonal to any vectors on Dj . We
also define the maximum affinity as

max a↵ , max

i,j2[L],i 6=j
a↵(i, j) 2 [0, 1].

There are N = nL points, and there are n points exactly lying on each subspace. We assume that
each data point yi is drawn iid uniformly at random from Sp�1 \Dw

i

where Sp�1 is the unit sphere
in Rp. Equivalently,

yi = Dw
i

xi, xi ⇠ Unif(Sd�1

), 8i 2 [N].

As the points are generated randomly on their corresponding subspaces, there are no points lying on
an intersection of two subspaces, almost surely. This implies that with probability one the points are
clustered correctly provided that the true subspaces are recovered exactly.

3.2 Main theorems

The first theorem gives a statistical guarantee for the fully random model.

Theorem 1 Suppose L d-dimensional subspaces and n points on each subspace are generated in
the fully random model with n polynomial in d. There are constants C

1

, C
2

> 0 such that if

n

d
> C

1

⇣

log

ne

d�

⌘

2

,
d

p
<

C
2

log n

log(ndL��1

)

, (1)

then with probability at least 1 � 3L�
1�� , NSN+GSR3 clusters the points exactly. Also, there are

other constants C 0
1

, C 0
2

> 0 such that if (1) with C
1

and C
2

replaced by C 0
1

and C 0
2

holds then
NSN+Spectral4 clusters the points exactly with probability at least 1 � 3L�

1�� . e is the exponential
constant.

3NSN with K = k
max

= d followed by GSR with arbitrarily small ✏.
4NSN with K = k

max

= d.

5

Our sufficient conditions for exact clustering explain when subspace clustering becomes easy or
difficult, and they are consistent with our intuition. For NSN to find correct neighbors, the points on
the same subspace should be many enough so that they look like lying on a subspace. This condition
is spelled out in the first inequality of (1). We note that the condition holds even when n/d is a
constant, i.e., n is linear in d. The second inequality implies that the dimension of the subspaces
should not be too high for subspaces to be distinguishable. If d is high, the random subspaces are
more likely to be close to each other, and hence they become more difficult to be distinguished.
However, as n increases, the points become dense on the subspaces, and hence it becomes easier to
identify different subspaces.

Let us compare our result with the conditions required for success in the fully random model in the
existing literature. In [16], it is required for SSC to have correct neighborhoods that n should be
superlinear in d when d/p fixed. In [6, 24], the conditions on d/p becomes worse as we have more
points. On the other hand, our algorithms are guaranteed exact clustering of the points, and the
sufficient condition is order-wise at least as good as the conditions for correct neighborhoods by the
existing algorithms (See Table 1). Moreover, exact clustering is guaranteed even when n is linear in
d, and d/p fixed.

For the semi-random model, we have the following general theorem.

Theorem 2 Suppose L d-dimensional subspaces are arbitrarily chosen, and n points on each
subspace are generated in the semi-random model with n polynomial in d. There are constants
C

1

, C
2

> 0 such that if

n

d
> C

1

⇣

log

ne

d�

⌘

2

, max a↵ <

s

C
2

log n

log(dL��1

) · log(ndL��1

)

. (2)

then with probability at least 1� 3L�
1�� , NSN+GSR5 clusters the points exactly.

In the semi-random model, the sufficient condition does not depend on the ambient dimension p.
When the affinities between subspaces are fixed, and the points are exactly lying on the subspaces,
the difficulty of the problem does not depend on the ambient dimension. It rather depends on
max a↵ , which measures how close the subspaces are. As they become closer to each other, it
becomes more difficult to distinguish the subspaces. The second inequality of (2) explains this in-
tuition. The inequality also shows that if we have more data points, the problem becomes easier to
identify different subspaces.

Compared with other algorithms, NSN+GSR is guaranteed exact clustering, and more importantly,
the condition on max a↵ improves as n grows. This remark is consistent with the practical per-
formance of the algorithm which improves as the number of data points increases, while the ex-
isting guarantees of other algorithms are not. In [16], correct neighborhoods in SSC are guar-
anteed if max a↵ = O(

p

log(n/d)/ log(nL)). In [6], exact clustering of TSC is guaranteed if
max a↵ = O(1/ log(nL)). However, these algorithms perform empirically better as the number of
data points increases.

4 Experimental results

In this section, we empirically compare our algorithms with the existing algorithms in terms of
clustering performance and computational time (on a single desktop). For NSN, we used the fast
implementation described in Section A.1. The compared algorithms are K-means, K-flats6, SSC,
LRR, SCC, TSC7, and SSC-OMP8. The numbers of replicates in K-means, K-flats, and the K-

5NSN with K = d� 1 and k
max

= d2 log de followed by GSR with arbitrarily small ✏.
6K-flats is similar to K-means. At each iteration, it computes top-d principal subspaces of the points with

the same label, and then labels every point based on its distances to those subspaces.
7The MATLAB codes for SSC, LRR, SCC, and TSC are obtained from http://www.cis.

jhu.edu/

˜

ehsan/code.htm, https://sites.google.com/site/guangcanliu, and
http://www.math.duke.edu/

˜

glchen/scc.html, http://www.nari.ee.ethz.ch/

commth/research/downloads/sc.html, respectively.
8For each data point, OMP constructs a neighborhood for each point by regressing the point on the other

points up to 10

�4 accuracy.

6

SSC

Am
bi

en
t d

im
en

sio
n

(p
)

2 4 6 8 10

50

35

20

10

5

SSC−OMP

2 4 6 8 10

50

35

20

10

5

LRR

2 4 6 8 10

50

35

20

10

5

TSC

Number of points per dimension for each subspace (n/d)
2 4 6 8 10

50

35

20

10

5

NSN+Spectral

2 4 6 8 10

50

35

20

10

5

NSN+GSR

2 4 6 8 10

50

35

20

10

5
0

0.2

0.4

0.6

0.8

1

Figure 1: CE of algorithms on 5 random d-dimensional subspaces and n random points on each
subspace. The figures shows CE for different numbers of n/d and ambient dimension p. d/p is
fixed to be 3/5. Brighter cells represent that less data points are clustered incorrectly.

l1−minimization (SSC)

Am
bi

en
t d

im
en

sio
n

(p
)

2 4 6 8 10

50

35

20

10

5

OMP (SSC−OMP)

2 4 6 8 10

50

35

20

10

5

Nuclear norm min. (LRR)

Number of points per dimension for each subspace (n/d)
2 4 6 8 10

50

35

20

10

5

Nearest neighbor (TSC)

2 4 6 8 10

50

35

20

10

5

NSN

2 4 6 8 10

50

35

20

10

5
0

0.2

0.4

0.6

0.8

1

Figure 2: NSE for the same model parameters as those in Figure 1. Brighter cells represent that
more data points have all correct neighbors.

20 40 60 80 100
0

1

2

3

4

5

Number of data points per subspace (n)

Ti
m

e
(s

ec
)

100−dim ambient space, five 10−dim subspaces

l1−minimization (SSC)
OMP (SSC−OMP)
Nuclear norm min. (LRR)
Thresholding (TSC)
NSN

5 10 15 20 25
0

1

2

3

4

5

Number of subspaces (L)

Ti
m

e
(s

ec
)

100−dim ambient space, 10−dim subspaces, 20 points/subspace

Figure 3: Average computational time of the neighborhood selection algorithms

means used in the spectral clustering are all fixed to 10. The algorithms are compared in terms of
Clustering error (CE) and Neighborhood selection error (NSE), defined as

(CE) = min

⇡2⇧

L

1

N

N
X

i=1

I(wi 6= ⇡(ŵi)), (NSE) =
1

N

N
X

i=1

I(9j : Wij 6= 0, wi 6= wj)

where ⇧L is the permutation space of [L]. CE is the proportion of incorrectly labeled data points.
Since clustering is invariant up to permutation of label indices, the error is equal to the minimum
disagreement over the permutation of label indices. NSE measures the proportion of the points
which do not have all correct neighbors.9

4.1 Synthetic data

We compare the performances on synthetic data generated from the fully random model. In Rp,
five d-dimensional subspaces are generated uniformly at random. Then for each subspace n unit-
norm points are generated iid uniformly at random on the subspace. To see the agreement with the
theoretical result, we ran the algorithms under fixed d/p and varied n and d. We set d/p = 3/5 so
that each pair of subspaces has intersection. Figures 1 and 2 show CE and NSE, respectively. Each
error value is averaged over 100 trials. Figure 1 indicates that our algorithm clusters the data points
better than the other algorithms. As predicted in the theorems, the clustering performance improves

9For the neighborhood matrices from SSC, LRR, and SSC-OMP, the d points with the maximum weights
are regarded as neighbors for each point. For TSC, the d nearest neighbors are collected for each point.

7

L Algorithms K-means K-flats SSC LRR SCC SSC-OMP(8) TSC(10) NSN+Spectral(5)
Mean CE (%) 19.80 13.62 1.52 2.13 2.06 16.92 18.44 3.62

2 Median CE (%) 17.92 10.65 0.00 0.00 0.00 12.77 16.92 0.00
Avg. Time (sec) - 0.80 3.03 3.42 1.28 0.50 0.50 0.25

Mean CE (%) 26.10 14.07 4.40 4.03 6.37 27.96 28.58 8.28
3 Median CE (%) 20.48 14.18 0.56 1.43 0.21 30.98 29.67 2.76

Avg. Time (sec) - 1.89 5.39 4.05 2.16 0.82 1.15 0.51

Table 2: CE and computational time of algorithms on Hopkins155 dataset. L is the number of
clusters (motions). The numbers in the parentheses represent the number of neighbors for each
point collected in the corresponding algorithms.

L Algorithms K-means K-flats SSC SSC-OMP TSC NSN+Spectral
Mean CE (%) 45.98 37.62 1.77 4.45 11.84 1.71

2 Median CE (%) 47.66 39.06 0.00 1.17 1.56 0.78
Avg. Time (sec) - 15.78 37.72 0.45 0.33 0.78

Mean CE (%) 62.55 45.81 5.77 6.35 20.02 3.63
3 Median CE (%) 63.54 47.92 1.56 2.86 15.62 3.12

Avg. Time (sec) - 27.91 49.45 0.76 0.60 3.37
Mean CE (%) 73.77 55.51 4.79 8.93 11.90 5.81

5 Median CE (%) 74.06 56.25 2.97 5.00 33.91 4.69
Avg. Time (sec) - 52.90 74.91 1.41 1.17 5.62

Mean CE (%) 82.68 62.72 9.43 15.32 39.48 9.82
10 Median CE (%) 82.97 62.89 8.75 17.11 39.45 9.06

Avg. Time (sec) - 134.0 157.5 5.26 3.17 14.73

Table 3: CE and computational time of algorithms on Extended Yale B dataset. For each number of
clusters (faces) L, the algorithms ran over 100 random subsets drawn from the overall 38 clusters.

as the number of points increases. However, it also improves as the dimension of subspaces grows in
contrast to the theoretical analysis. We believe that this is because our analysis on GSR is not tight.
In Figure 2, we can see that more data points obtain correct neighbors as n increases or d decreases,
which conforms the theoretical analysis.

We also compare the computational time of the neighborhood selection algorithms for different
numbers of subspaces and data points. As shown in Figure 3, the greedy algorithms (OMP, Thresh-
olding, and NSN) are significantly more scalable than the convex optimization based algorithms
(`

1

-minimization and nuclear norm minimization).

4.2 Real-world data : motion segmentation and face clustering

We compare our algorithm with the existing ones in the applications of motion segmentation and
face clustering. For the motion segmentation, we used Hopkins155 dataset [17], which contains
155 video sequences of 2 or 3 motions. For the face clustering, we used Extended Yale B dataset
with cropped images from [5, 13]. The dataset contains 64 images for each of 38 individuals in
frontal view and different illumination conditions. To compare with the existing algorithms, we
used the set of 48 ⇥ 42 resized raw images provided by the authors of [4]. The parameters of the
existing algorithms were set as provided in their source codes.10 Tables 2 and 3 show CE and average
computational time.11 We can see that NSN+Spectral performs competitively with the methods with
the lowest errors, but much faster. Compared to the other greedy neighborhood construction based
algorithms, SSC-OMP and TSC, our algorithm performs significantly better.

Acknowledgments

The authors would like to acknowledge NSF grants 1302435, 0954059, 1017525, 1056028 and
DTRA grant HDTRA1-13-1-0024 for supporting this research. This research was also partially
supported by the U.S. Department of Transportation through the Data-Supported Transportation
Operations and Planning (D-STOP) Tier 1 University Transportation Center.

10As SSC-OMP and TSC do not have proposed number of parameters for motion segmentation, we found
the numbers minimizing the mean CE. The numbers are given in the table.

11The LRR code provided by the author did not perform properly with the face clustering dataset that we
used. We did not run NSN+GSR since the data points are not well distributed in its corresponding subspaces.

8

References
[1] P. S. Bradley and O. L. Mangasarian. K-plane clustering. Journal of Global Optimization, 16(1):23–32,

2000.
[2] G. Chen and G. Lerman. Spectral curvature clustering. International Journal of Computer Vision, 81(3):

317–330, 2009.
[3] E. L. Dyer, A. C. Sankaranarayanan, and R. G. Baraniuk. Greedy feature selection for subspace clustering.

The Journal of Machine Learning Research (JMLR), 14(1):2487–2517, 2013.
[4] E. Elhamifar and R. Vidal. Sparse subspace clustering: Algorithm, theory, and applications. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 35(11):2765–2781, 2013.
[5] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman. From few to many: Illumination cone models

for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23
(6):643–660, 2001.

[6] R. Heckel and H. Bölcskei. Subspace clustering via thresholding and spectral clustering. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013.

[7] R. Heckel and H. Bölcskei. Robust subspace clustering via thresholding. arXiv preprint
arXiv:1307.4891v2, 2014.

[8] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering appearances of objects under varying
illumination conditions. In IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2003.

[9] T. Inglot. Inequalities for quantiles of the chi-square distribution. Probability and Mathematical Statistics,
30(2):339–351, 2010.

[10] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clus-
tering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery
from Data (TKDD), 3(1):1, 2009.

[11] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials, ii. orthogonal matching
pursuit versus basis pursuit. Foundations of Computational Mathematics, 8(6):737–763, 2008.

[12] M. Ledoux. The concentration of measure phenomenon, volume 89. AMS Bookstore, 2005.
[13] K. C. Lee, J. Ho, and D. Kriegman. Acquiring linear subspaces for face recognition under variable

lighting. IEEE Trans. Pattern Anal. Mach. Intelligence, 27(5):684–698, 2005.
[14] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by low-rank

representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(1):171–184, 2013.
[15] V. D. Milman and G. Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperi-

metric Inequalities in Riemannian Manifolds. Lecture Notes in Mathematics. Springer, 1986.
[16] M. Soltanolkotabi and E. J. Candes. A geometric analysis of subspace clustering with outliers. The Annals

of Statistics, 40(4):2195–2238, 2012.
[17] R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms. In IEEE

conference on Computer Vision and Pattern Recognition (CVPR), 2007.
[18] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching

pursuit. Information Theory, IEEE Transactions on, 53(12):4655–4666, 2007.
[19] P. Tseng. Nearest q-flat to m points. Journal of Optimization Theory and Applications, 105(1):249–252,

2000.
[20] R. Vidal. Subspace clustering. Signal Processing Magazine, IEEE, 28(2):52–68, 2011.
[21] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis. In IEEE conference on Com-

puter Vision and Pattern Recognition (CVPR), 2003.
[22] R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to the identification of a

class of linear hybrid systems. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on,
volume 1, pages 167–172. IEEE, 2003.

[23] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with missing data using power
factorization and GPCA. International Journal of Computer Vision, 79(1):85–105, 2008.

[24] Y.-X. Wang, H. Xu, and C. Leng. Provable subspace clustering: When LRR meets SSC. In Advances in
Neural Information Processing Systems (NIPS), December 2013.

[25] A. Y. Yang, S. R. Rao, and Y. Ma. Robust statistical estimation and segmentation of multiple subspaces.
In IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2006.

[26] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid linear modeling via local best-fit flats. International
journal of computer vision, 100(3):217–240, 2012.

9

