
Just-In-Time Learning for Fast and Flexible Inference

S. M. Ali Eslami, Daniel Tarlow, Pushmeet Kohli and John Winn
Microsoft Research

{alie,dtarlow,pkohli,jwinn}@microsoft.com

Abstract

Much of research in machine learning has centered around the search for inference
algorithms that are both general-purpose and efficient. The problem is extremely
challenging and general inference remains computationally expensive. We seek to
address this problem by observing that in most specific applications of a model,
we typically only need to perform a small subset of all possible inference com-
putations. Motivated by this, we introduce just-in-time learning, a framework for
fast and flexible inference that learns to speed up inference at run-time. Through
a series of experiments, we show how this framework can allow us to combine the
flexibility of sampling with the efficiency of deterministic message-passing.

1 Introduction

We would like to live in a world where we can define a probabilistic model, press a button, and
get accurate inference results within a matter of seconds or minutes. Probabilistic programming
languages allow for the rapid definition of rich probabilistic models to this end, but they also raise a
crucial question: what algorithms can we use to efficiently perform inference for the largest possible
set of programs in the language? Much of recent research in machine learning has centered around
the search for inference algorithms that are both flexible and efficient.

The general inference problem is extremely challenging and remains computationally expensive.
Sampling based approaches (e.g. [5, 19]) can require many evaluations of the probabilistic program
to obtain accurate inference results. Message-passing based approaches (e.g. [12]) are typically
faster, but require the program to be expressed in terms of functions for which efficient message-
passing operators have been implemented. However, implementing a message-passing operator for
a new function either requires technical expertise, or is computationally expensive, or both.

In this paper we propose a solution to this problem that is automatic (it doesn’t require the user
to build message passing operators) and efficient (it learns from past experience to make future
computations faster). The approach is motivated by the observation that general algorithms are
solving problems that are harder than they need to be: in most specific inference problems, we only
ever need to perform a small subset of all possible message-passing computations. For example,
in Expectation Propagation (EP) the range of input messages to a logistic factor, for which it needs
to compute output messages, is highly problem specific (see Fig. 1a). This observation raises the
central question of our work: can we automatically speed up the computations required for general
message-passing, at run-time, by learning about the statistics of the specific problems at hand?

Our proposed framework, which we call just-in-time learning (JIT learning), initially uses highly
general algorithms for inference. It does so by computing messages in a message-passing algorithm
using Monte Carlo sampling, freeing us from having to implement hand-crafted message update
operators. However, it also gradually learns to increase the speed of these computations by regress-
ing from input to output messages (in a similar way to [7]) at run-time. JIT learning enables us
to combine the flexibility of sampling (by allowing arbitrary factors) and the speed of hand-crafted
message-passing operators (by using regressors), without having to do any pre-training. This con-
stitutes our main contribution and we describe the details of our approach in Sec. 3.

1



−40 −30 −20 −10 0 10

−4

−2

0

2

4

6

8

Mean

L
o
g
 p

re
c
is

io
n

 

 

banknote_authentication

blood_transfusion

ionosphere

fertility_diagnosis

(a) Problem-specific variation

−10 −5 0 5 10
−0.5

0

0.5

1

 

 

 

Training datapoints

Forest predictions

(b) Random forest uncertainty
yavg
i

yi

ymax
i

ai

topt
i

ti

xi f seedf soil

Yield Noise

Eval

+

Eval

GPGP

(c)

Figure 1: (a) Parameters of Gaussian messages input to a logistic factor in logistic regression vary
significantly in four random UCI datasets. (b) Figure for Sec. 4: A regression forest performs
1D regression (1,000 trees, 2 feature samples per node, maximum depth 4, regressor polynomial
degree 2). The red shaded area indicates one standard deviation of the predictions made by the
different trees in the forest, indicating its uncertainty. (c) Figure for Sec. 6: The yield factor relates
temperatures and yields recorded at farms to the optimal temperatures of their planted grain. JIT
learning enables us to incorporate arbitrary factors with ease, whilst maintaining inference speed.

Our implementation relies heavily on the use of regressors that are aware of their own uncertainty.
Their awareness about the limits of their knowledge allows them to decide when to trust their pre-
dictions and when to fall back to computationally intensive Monte Carlo sampling (similar to [8]
and [9]). We show that random regression forests [4] form a natural and efficient basis for this
class of ‘uncertainty aware’ regressors and we describe how they can be modified for this purpose in
Sec. 4. To the best of our knowledge this is the first application of regression forests to the self-aware
learning setting and it constitutes our second contribution.

To demonstrate the efficacy of the JIT framework, we employ it for inference in a variety of graphical
models. Experimental results in Sec. 6 show that for general graphical models, our approach leads
to significant improvements in inference speed (often several orders of magnitude) over importance
sampling whilst maintaining overall accuracy, even boosting performance for models where hand
designed EP message-passing operators are available. Although we demonstrate JIT learning in the
context of expectation propagation, the underlying ideas are general and the framework can be used
for arbitrary inference problems.

2 Background

A wide class of probabilistic models can be represented using the framework of factor graphs. In this
context a factor graph represents the factorization of the joint distribution over a set of random vari-
ables x = {x1, ..., xV } via non-negative factors ψ1, ..., ψF given by p(x) =

∏
f ψf (xne(ψf ))/Z,

where xne(ψf ) is the set of variables that factor ψf is defined over. We will focus on directed factors
of the form ψ(xout|xin) which directly specify the conditional density over the output variables xout
as a function of the inputs xin, although our approach can be extended to factors of arbitrary form.

Belief propagation (or sum-product) is a message-passing algorithm for performing inference in fac-
tor graphs with discrete and real-valued variables, and it includes sub-routines that compute variable-
to-factor and factor-to-variable messages. The bottleneck is mainly in computing the latter kind, as
they often involve intractable integrals. The message from factor ψ to variable i is:

mψ→i(xi) =

∫
x−i

ψ(xout|xin)
∏

k∈ne(ψ)\i

mk→ψ(xk), (1)

where x−i denotes all random variables in xne(ψ) except i. To further complicate matters, the
messages are often not even representable in a compact form. Expectation Propagation [11] extends
the applicability of message-passing algorithms by projecting messages back to a pre-determined,
tractable family distribution:

mψ→i(xi) =
proj

[∫
x−i

ψ(xout|xin)
∏
k∈ne(ψ)mk→ψ(xk)

]
mi→ψ(xi)

. (2)

2



The proj[·] operator ensures that the message is a distribution of the correct type and only has an
effect if its argument is outside the approximating family used for the target message.

The integral in the numerator of Eq. 2 can be computed using Monte Carlo methods [2, 7], e.g. by
using the generally applicable technique of importance sampling. After multiplying and dividing by
a proposal distribution q(xin) we get:

mψ→i(xi) ≡ proj

[∫
x−i

v(xin,xout) · w(xin,xout)

]
/mi→ψ(xi), (3)

where v(xin,xout) = q(xin)ψ(xout|xin) and w(xin,xout) =
∏
k∈ne(ψ)mk→ψ(xk)/q(xin). Therefore

mψ→i(xi) ' proj
[∑

s w(x
s
in,x

s
out)δ(xi)∑

s w(x
s
in,x

s
out)

]
/mi→ψ(xi), (4)

where xsin and xsout are samples from v(xin,xout). To sample from v, we first draw values xsin from q
then pass them through the forward-sampling procedure defined by ψ to get a value for xsout.

Crucially, note that we require no knowledge of ψ other than the ability to sample from ψ(xout|xin).
This allows the model designer to incorporate arbitrary factors simply by providing an implemen-
tation of this forward sampler, which could be anything from a single line of deterministic code to
a large stochastic image renderer. However, drawing a single sample from ψ can itself be a time-
consuming operation, and the complexity of ψ and the arity of xin can both have a dramatic effect
on the number of samples required to compute messages accurately.

3 Just-in-time learning of message mappings

Monte Carlo methods (as defined above) are computationally expensive and can lead to slow infer-
ence. In this paper, we adopt an approach in which we learn a direct mapping, parameterized by θ,
from variable-to-factor messages {mk→ψ}k∈ne(ψ) to a factor-to-variable message mψ→i:

mψ→i(xi) ≡ f({mk→ψ}k∈ne(ψ)|θ). (5)

Using this direct mapping function f , factor-to-variable messages can be computed in a fraction
of the time required to perform full Monte Carlo estimation. Heess et al. [7] recently used neural
networks to learn this mapping offline for a broad range of input message combinations.

Motivated by the observation that the distribution of input messages that a factor sees is often prob-
lem specific (Fig. 1a), we consider learning the direct mapping just-in-time in the context of a spe-
cific model. For this we employ ‘uncertainty aware’ regressors. Along with each prediction m, the
regressor produces a scalar measure u of its uncertainty about that prediction:

uψ→i ≡ u({mk→ψ}k∈ne(ψ)|θ). (6)

We adopt a framework similar to that of uncertainty sampling [8] (also [9]) and use these uncertain-
ties at run-time to choose between the regressor’s estimate and slower ‘oracle’ computations:

mψ→i(xi) =

{
mψ→i(xi) uψ→i < umax

moracle
ψ→i (xi) otherwise

(7)

where umax is the maximum tolerated uncertainty for a prediction. In this paper we consider impor-
tance sampling or hand-implemented Infer.NET operators as oracles however other methods such as
MCMC-based samplers could be used. The regressor is updated after every oracle consultation in
order to incorporate the newly acquired information.

An appropriate value for umax can be found by collecting a small number of Monte Carlo mes-
sages for the target model offline: the uncertainty aware regressor is trained on some portion of the
collected messages, and evaluated on the held out portion, producing predictions mψ→i and confi-
dences uψ→i for every held out message. We then set umax such that no held out prediction has an
error above a user-specified, problem-specific maximum tolerated value Dmax.

A natural choice for this error measure is mean squared error of the parameters of the messages (e.g.
natural parameters for the exponential family), however this is sensitive to the particular parameteri-
zation chosen for the target distribution type. Instead, for each pair of predicted and oracle messages

3



from factor ψ to variable i, we calculate the marginals bi and boracle
i they each induce on the target

random variable, and compute the Kullback-Leibler (KL) divergence between the two:

Dmar
KL (mψ→i‖moracle

ψ→i ) ≡ DKL(bi‖boracle
i ), (8)

where bi = mψ→i ·mi→ψ and boracle
i = moracle

ψ→i ·mi→ψ , using the fact that beliefs can be computed
as the product of incoming and outgoing messages on any edge. We refer to the error measure Dmar

KL
as marginal KL and use it throughout the JIT framework, as it encourages the system to focus efforts
on the quantity that is ultimately of interest: the accuracy of the posterior marginals.

4 Random decision forests for JIT learning

We wish to learn a mapping from a set of incoming messages {mk→ψ}k∈ne(ψ) to the outgoing
message mψ→i. Note that separate regressors are trained for each outgoing message. We require
that the regressor: 1) trains and predicts efficiently, 2) can model arbitrarily complex mappings,
3) can adapt dynamically, and 4) produces uncertainty estimates. Here we describe how decision
forests can be modified to satisfy these requirements. For a review of decision forests see [4].

In EP, each incoming and outgoing message can be represented using only a few numbers, e.g. a
Gaussian message can be represented by its natural parameters. We refer to the outgoing message by
mout and to the set of incoming messages by min. Each set of incoming messages min is represented
in two ways: the first, a concatenation of the parameters of its constituent messages which we call the
‘regression parameterization’ and denote by rin; and the second, a vector of features computed on the
set which we call the ‘tree parameterization’ and denote by tin. This tree parametrization typically
contains values for a larger number of properties of each constituent message (e.g. parameters and
moments), and also properties of the set as a whole (e.g. ψ evaluated at the mode of min). We
represent the outgoing message mout by a vector of real valued numbers rout. Note that din and dout,
the number of elements in rin and rout respectively, need not be equal.

Weak learner model. Data arriving at a split node j is separated into the node’s two children
according to a binary weak learner h(tin, τ j) ∈ {0, 1}, where τ j parameterizes the split criterion.
We use weak learners of the generic oriented hyperplane type throughout (see [4] for details).

Prediction model. Each leaf node is associated with a subset of the labelled training data. During
testing, a previously unseen set of incoming messages traverses the tree until it reaches a leaf which
by construction is likely to contain similar training examples. We therefore use the statistics of the
data gathered in that leaf to predict outgoing messages with a multivariate polynomial regression
model of the form: rtrain

out = W · φn(rtrain
in ) + ε, where φn(·) is the n-th degree polynomial basis

function, and ε is the dout-dimensional vector of normal error terms. We use the learned dout × din-
dimensional matrix of coefficients W at test time to make predictions rout for each rin. To recap, tin
is used to traverse message sets down to leaves, and rin is used by the linear regressor to predict rout.

Training objective function. The optimization of the split functions proceeds in a greedy man-
ner. At each node j, depending on the subset of the incoming training set Sj we learn the
function that ‘best’ splits Sj into the training sets corresponding to each child, SL

j and SR
j , i.e.

τ j = argmaxτ∈Tj I(Sj , τ ). This optimization is performed as a search over a discrete set Tj of a
random sample of possible parameter settings. The number of elements in Tj is typically kept small,
introducing random variation in the different trees in the forest. The objective function I is:

I(Sj , τ ) = −E(SL
j ,W

L)− E(SR
j ,W

R), (9)

where WL and WR are the parameters of the polynomial regression models corresponding to the
left and right training sets SL

j and SR
j , and the ‘fit residual’ E is:

E(S,W) =
1

2

∑
min∈S

Dmar
KL (m

W
min
‖moracle

min
) +Dmar

KL (m
oracle
min
‖mW

min
). (10)

Here min is a set of incoming messages in S, moracle
min

is the oracle outgoing message, mW
min

is the
estimate produced by the regression model specified by W and Dmar

KL is the marginal KL. In simple
terms, this objective function splits the training data at each node in a way that the relationship
between the incoming and outgoing messages is well captured by the polynomial regression in each
child, as measured by symmetrized marginal KL.

4



Ensemble model. A key aspect of forests is that their trees are randomly different from each other.
This is due to the relatively small number of weak learner candidates considered in the optimization
of the weak learners. During testing, each test point min simultaneously traverses all trees from
their roots until it reaches their leaves. Combining the predictions into a single forest prediction
may be done by averaging the parameters rtout of the predicted outgoing messages mt

out by each
tree t, however again this would be sensitive to the parameterizations of the output distribution
types. Instead, we compute the moment average mout of the distributions {mt

out} by averaging
the first few moments of each predicted distribution across trees, and solving for the distribution
parameters which match the averaged moments. Grosse et al. [6] study the characteristics of the
moment average in detail, and have showed that it can be interpreted as minimizing an objective
function mout = argminm U({mt

out},m) where U({mt
out},m) =

∑
tDKL(m

t
out‖m).

Intuitively, the level of agreement between the predictions of the different trees can be used as a
proxy of the forest’s uncertainty about that prediction (we choose not to use uncertainty within
leaves in order to maintain high prediction speed). If all the trees in the forest predict the same output
distribution, it means that their knowledge about the function f is similar despite the randomness in
their structures. We therefore set uout ≡ U({mt

out},mout). A similar notion is used for classification
forests, where the entropy of the aggregate output histogram is used as a proxy of the classification’s
uncertainty [4]. We illustrate how this idea extends to simple regression forests in Fig. 1b, and in
Sec. 6 we also show empirically that this uncertainty measure works well in practice.

Online training. During learning, the trees periodically obtain new information in the form of
(min,m

oracle
out ) pairs. The forest makes use of this by pushing min down a portion 0 < ρ ≤ 1 of the

trees to their leaf nodes and retraining the regressors at those leaves. Typically ρ = 1, however we
use values smaller than 1 when the trees are shallow (due to the mapping function being captured
well by the regressors at the leaves) and the forest’s randomness is too low to produce reliable
uncertainty estimates. If the regressor’s fit residual E at a leaf (Eq. 10) is above a user-specified
threshold value Emax

leaf , a split is triggered on that node. Note that no depth limit is ever specified.

5 Related work

There are a number of works in the literature that consider using regressors to speed up general
purpose inference algorithms. For example, the Inverse MCMC algorithm [20] uses discriminative
estimates of local conditional distributions to make proposals for a Metropolis-Hastings sampler,
however these predictors are not aware of their own uncertainty. Therefore the decision of when the
sampler can start to rely on them needs to be made manually and the user has to explicitly separate
offline training and test-time inference computations.

A related line of work is that of inference machines [14, 15, 17, 13]. Here, message-passing is
performed by a sequence of predictions, where the sequence itself is defined by the graphical model.
The predictors are jointly trained to ensure that the system produces correct labellings, however the
resulting inference procedure no longer corresponds to the original (or perhaps to any) graphical
model and therefore the method is unsuitable if we care about querying the model’s latent variables.

The closest work to ours is [7], in which Heess et al. use neural networks to learn to pass EP
messages. However, their method requires the user to anticipate the set of messages that will ever be
sent by the factor ahead of time (itself a highly non-trivial task), and it has no notion of confidence in
its predictions and therefore it will silently fail when it sees unfamiliar input messages. In contrast
the JIT learner trains in the context of a specific model thereby allocating resources more efficiently,
and because it knows what it knows, it buys generality without having to do extensive pre-training.

6 Experiments

We first analyze the behaviour of JIT learning with diagnostic experiments on two factors: logistic
and compound gamma, which were also considered by [7]. We then demonstrate its application to
a challenging model of US corn yield data. The experiments were performed using the extensible
factor API in Infer.NET [12]. Unless stated otherwise, we use default Infer.NET settings (e.g. for
message schedules and other factor implementations). We set the number of trees in each forest to
64 and use quadratic regressors. Message parameterizations and graphical models, experiments on
a product factor and a quantitative comparison with [7] can be found in the supplementary material.

5



−20 −18 −16 −14 −12 −10 −8
0

5

10

15

20

25

Log marginal KL

C
o

u
n

t

(a) Inference error

−10 0 10
0

0.2

0.4

0.6

Hold out worst 1

Groundtruth − µ: −3.4, σ
2
: 6.8

Predicted − µ: −3.3, σ
2
: 6.5

Log marginal KL: −8.2
Log uncertainty: −7.8

−10 0 10
0

0.2

0.4

0.6

Hold out worst 2

Groundtruth − µ: −3.4, σ
2
: 6.8

Predicted − µ: −3.3, σ
2
: 6.6

Log marginal KL: −8.6
Log uncertainty: −8.2

(b) Worst predicted messages

−25 −20 −15 −10 −5
−18

−16

−14

−12

−10

−8

−6

Log marginal KL

L
o

g
 u

n
c
e

rt
a

in
ty

 

 

Train

Hold out

(c) Awareness of uncertainty

Figure 2: Uncertainty aware regression. All plots for the Gaussian forest. (a) Histogram of
marginal KLs of outgoing messages, which are typically very small. (b) The forest’s most inaccurate
predictions (black: moracle, red: m, dashed black: boracle, purple: b). (c) The regressor’s uncertainty
increases in tandem with marginal KL, i.e. it does not make confident but inaccurate predictions.

50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Problems seen

O
ra

c
le

 c
o
n
s
u
lt
a
ti
o
n
 r

a
te

 

 

Infer.NET + KNN

Infer.NET + JIT

Sampling + KNN

Sampling + JIT

(a) Oracle consultation rate

50 100 150 200 250 300 350 400 450 500

6

7

8

9

10

11

12

Problems seen

L
o

g
 t

im
e

 (
m

s
)

 

 

Infer.NET

Infer.NET + KNN

Infer.NET + JIT

Sampling

Sampling + KNN

Sampling + JIT

(b) Inference time

50 100 150 200 250 300 350 400 450 500
−18

−16

−14

−12

−10

Problems seen

L
o

g
 K

L
 o

f 
in

fe
rr

e
d

 w
e

ig
h

t 
p

o
s
te

ri
o

r

 

 

Infer.NET + KNN

Infer.NET + JIT

Sampling

Sampling + KNN

Sampling + JIT

(c) Inference error

Figure 3: Logistic JIT learning. (a) The factor consults the oracle for only a fraction of messages,
(b) leading to significant savings in time, (c) whilst maintaining (or even decreasing) inference error.

Logistic. We have access to a hand-crafted EP implementation of this factor, allowing us to perform
quantitative analysis of the JIT framework’s performance. The logistic deterministically computes
xout = σ(xin) = 1/(1+exp{−xin}). Sensible choices for the incoming and outgoing message types
are Gaussian and Beta respectively. We study the logistic factor in the context of Bayesian logistic
regression models, where the relationship between an input vector x and a binary output observation
y is modeled as p(y = 1) = σ(wTx). We place zero-mean, unit-variance Gaussian priors on the
entries of regression parameters w, and run EP inference for 10 iterations.

We first demonstrate that the forests described in Sec. 4 are fast and accurate uncertainty aware
regressors by applying them to five synthetic logistic regression ‘problems’ as follows: for each
problem, we sample a groundtruth w and training xs from N (0, 1) and then sample their corre-
sponding ys. We use a Bayesian logistic regression model to infer ws using the training datasets
and make predictions on the test datasets, whilst recording the messages that the factor receives and
sends during both kinds of inference. We split the observed message sets into training (70%) and
hold out (30%), and train and evaluate the random forests using the two datasets. In Fig. 2 we show
that the regressor is accurate and that it is uncertain whenever it makes predictions with higher error.

One useful diagnostic for choosing the various parameters of the forests (including choice of
parametrization for rin and tin, as well leaf tolerance Emax

leaf ) is the average utilization of its leaves
during held out prediction, i.e. what fraction of leaves are visited at test time. In this experiment the
forests obtain an average utilization of 1, meaning that every leaf contributes to the predictions of the
30% held out data, thereby indicating that the forests have learned a highly compact representation
of the underlying function. As described in Sec. 3, we also use the data gathered in this experiment
to find an appropriate value of umax for use in just-in-time learning.

Next we evaluate the uncertainty aware regressor in the context of JIT learning. We present several
related regression problems to a JIT logistic factor, i.e. we keep w fixed and generate multiple new
{(x, y)} sets. This is a natural setting since often in practice we observe multiple datasets which
we believe to have been generated by the same underlying process. For each problem, using the JIT
factor we infer the regression weights and make predictions on test inputs, comparing wall-clock
time and accuracy with non-JIT implementations of the factor. We consider two kinds of oracles:

6



those that consult Infer.NET’s message operators and those that use importance sampling (Eq. 4).
As a baseline, we also implemented a K-nearest neighbour (KNN) uncertainty aware regressor.
Here, messages are represented using their natural parameters, the uncertainty associated with each
prediction is the mean distance from the K-closest points in this space, and the outgoing message’s
parameters are found by taking the average of the parameters of the K-closest output messages. We
use the same procedure as the one described in Sec. 3 to choose umax for KNN.

We observe that the JIT factor does indeed learn about the inference problem over time. Fig. 3a
shows that the rate at which the factor consults the oracle decreases over the course of the experi-
ment, reaching zero at times (i.e. for these problems the factor relies entirely on its predictions). On
average, the factor sends 97.7% of its messages without consulting the sampling oracle (a higher rate
of 99.2% when using Infer.NET as the oracle, due to lack of sampling noise), which leads to several
orders of magnitude savings in inference time (from around 8 minutes for sampling to around 800
ms for sampling + JIT), even increasing the speed of our Infer.NET implementation (from around
1300 ms to around 800 ms on average, Fig. 3b). Note that the forests are not merely memorising a
mapping from input to output messages, as evidenced by the difference in the consultation rates of
JIT and KNN, and that KNN speed deteriorates as the database grows. Surprisingly, we observe that
the JIT regressors in fact decrease the KL between the results produced by importance sampling and
Infer.NET, thereby increasing overall inference accuracy (Fig. 3c, this could be due to the fact that
the regressors at the leaves of the forests smooth out the noise of the sampled messages). Reducing
the number of importance samples to reach speed parity with JIT drastically degrades the accuracy
of the outgoing messages, increasing overall log KL error from around −11 to around −4.

Compound gamma. The second factor we investigate is the compound gamma factor. The com-
pound gamma construction is used as a heavy-tailed prior over precisions of Gaussian random vari-
ables, where first r2 is drawn from a gamma with rate r1 and shape s1 and the precision of the
Gaussian is set to be a draw from a gamma with rate r2 and shape s2. Here, we have access to
closed-form implementations of the two gamma factors in the construction, however we use the JIT
framework to collapse the two into a single factor for increased speed.

We study the compound gamma factor in the context of Gaussian fitting, where we sample a ran-
dom number of points from multiple Gaussians with a wide range of precisions, and then infer the
precision of the generating Gaussians via Bayesian inference using a compound gamma prior. The
number of samples varies between 10 and 100 and the precision varies between 10−4 and 104 in
each problem. The compound factor learns the message mapping after around 20 problems (see
Fig. 4a). Note that only a single message is sent by the factor in each episode, hence the abrupt drop
in inference time. This increase in performance comes at negligible loss of accuracy (Figs. 4b, 4c).

Yield. We also consider a more realistic application to scientific modelling. This is an example
of a scenario for which our framework is particularly suited: scientists often need to build large
models with factors that directly take knowledge about certain components of the problem into
account. We use JIT learning to implement a factor that relates agriculture yields to temperature in
the context of an ecological climate model. Ecologists have strong empirical beliefs about the form
of the relationship between temperature and yield (that yield increases gradually up to some optimal
temperature but drops sharply after that point; see Fig 5a and [16, 10]) and it is imperative that this
relationship is modelled faithfully. Deriving closed form message-operators is a non-trivial task, and
therefore current state-of-the-art is sampling-based (e.g. [3]) and highly computationally intensive.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

Problems seen

L
o
g
 t
im

e
 (

m
s
)

 

 

Infer.NET

Infer.NET + KNN

Infer.NET + JIT

Sampling

Sampling + KNN

Sampling + JIT

(a) Inference time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Distance d of inferred log precision from groundtruth

R
a

ti
o

 o
f 

in
fe

rr
e

d
 p

re
c
is

io
n

s
 w

it
h

 e
rr

o
r 

<
 d

 

 

Infer.NET

Infer.NET + JIT

Sampling

Sampling (matching JIT speed)

Sampling + JIT

(b) Inference error

−10 −5 0 5 10
−10

−5

0

5

10

Sampling inferred log precision

S
a
m

p
lin

g
 +

 J
IT

 i
n
fe

rr
e
d
 l
o
g
 p

re
c
is

io
n

(c) Accuracy (1 dot per problem)

Figure 4: Compound gamma JIT learning. (a) JIT reduces inference time for sampling from ∼11
seconds to ∼1 ms. (b) JIT s posteriors agree highly with Infer.NET. Using fewer samples to match
JIT speed leads to degradation of accuracy. (c) Increased speed comes at negligible loss of accuracy.

7



0 5 10 tOpt 20 25 30 35 40
0

50

100

150

200

yMax

Y
ie

ld
 (

b
u
s
h
e
ls

/a
c
re

)

Temperature (celcius)

(a) The yield factor

0 2000 4000 6000 8000 10000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Message number

O
ra

c
le

 c
o

n
s
u

lt
a

ti
o

n
 r

a
te

2011︷ ︸︸ ︷ 2012︷ ︸︸ ︷ 2013︷ ︸︸ ︷

(b) Oracle consultation rate

−60 −40 −20 0 20 40
−60

−40

−20

0

20

40

Sampling inferred county ability (a
i
)

S
a

m
p

lin
g

 +
 J

IT
 i
n

fe
rr

e
d

 c
o

u
n

ty
 a

b
ili

ty
 (

a
i)

(c) Accuracy (1 dot per county)

Figure 5: A probabilistic model of corn yield. (a) Ecologists believe that yield increases gradually
up to some optimal temperature but drops sharply after that point [16, 10], and they wish to incor-
porate this knowledge into their models faithfully. (b) Average consultation rate per 1,000 messages
over the course of inference on the three datasets. Notice decrease within and across datasets. (c)
Significant savings in inference time (Table 1) come at a small cost in inference accuracy.

We obtain yield data for 10% of US counties for 2011–2013 from the USDA National Agricultural
Statistics Service [1] and corresponding temperature data using [18]. We first demonstrate that it
is possible to perform inference in a large-scale ecological model of this kind with EP (graphical
model shown in Fig. 1c; derived in collaboration with computational ecologists; see supplementary
material for a description), using importance sampling to compute messages for the yield factor
for which we lack message-passing operators. In addition to the difficulty of computing messages
for the multidimensional yield factor, inference in the model is challenging as it includes multiple
Gaussian processes, separate topt and ymax variables for each location, many copies of the yield
factor, and its graph is loopy. Results of inference are shown in the supplementary material.

We find that with around 100,000 samples the message for the yield factor can be computed ac-
curately, making these by far the slowest computations in the inference procedure. We apply JIT
learning by regressing these messages instead. The high arity of the factor makes the task particu-
larly challenging as it increases the complexity of the mapping function being learned. Despite this,
we find that when performing inference on the 2011 data the factor can learn to accurately send up
to 54% of messages without having to consult the oracle, resulting in a speedup of 195%.

IS JIT fresh JIT continued

Time FR Speedup FR Speedup

11 451s 54% 195% — —
12 449s 54% 192% 60% 288%
13 451s 54% 191% 64% 318%

Table 1: FR is fraction of regres-
sions with no oracle consultation.

A common scenario is one in which we collect more data and
wish to repeat inference. We use the forests learned at the
end of inference on 2011 data to perform inference on 2012
data, and the forests learned at the end of this to do inference
on 2013 data, and compare to JIT learning from scratch for
each dataset. The factor transfers its knowledge across the
problems, increasing inference speedup from 195% to 289%
and 317% in the latter two experiments respectively (Table 1),
whilst maintaining overall inference accuracy (Fig. 5c).

7 Discussion
The success of JIT learning depends heavily on the accuracy of the regressor and its knowledge
about its uncertainty. Random forests have shown to be adequate however alternatives may exist,
and a more sophisticated estimate of uncertainty (e.g. using Gaussian processes) is likely to lead to
an increased rate of learning. A second critical ingredient is an appropriate choice of umax, which
currently requires a certain amount of manual tuning.

In this paper we showed that it is possible to speed up inference by combining EP, importance
sampling and JIT learning, however it will be of interest to study other inference settings where JIT
ideas might be applicable. Surprisingly, our experiments also showed that JIT learning can increase
the accuracy of sampling or accelerate hand-coded message operators, suggesting that it will be
fruitful to use JIT to remove bottlenecks even in existing, optimized inference code.

Acknowledgments

Thanks to Tom Minka and Alex Spengler for valuable discussions, and to Silvia Caldararu and Drew
Purves for introducing us to the corn yield datasets and models.

8



References

[1] National Agricultural Statistics Service, 2013. United States Department of Agriculture.
http://quickstats.nass.usda.gov/.

[2] Simon Barthelmé and Nicolas Chopin. ABC-EP: Expectation Propagation for Likelihood-
free Bayesian Computation. In Proceedings of the 28th International Conference on Machine
Learning, pages 289–296, 2011.

[3] Silvia Caldararu, Vassily Lyutsarev, Christopher McEwan, and Drew Purves. Filzbach,
2013. Microsoft Research Cambridge. Website URL: http://research.microsoft.com/en-
us/projects/filzbach/.

[4] Antonio Criminisi and Jamie Shotton. Decision Forests for Computer Vision and Medical
Image Analysis. Springer Publishing Company, Incorporated, 2013.

[5] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B. Tenen-
baum. Church: a language for generative models. In Uncertainty in Artificial Intelligence,
2008.

[6] Roger B Grosse, Chris J Maddison, and Ruslan Salakhutdinov. Annealing between distribu-
tions by averaging moments. In Advances in Neural Information Processing Systems 26, pages
2769–2777. 2013.

[7] Nicolas Heess, Daniel Tarlow, and John Winn. Learning to Pass Expectation Propagation
Messages. In Advances in Neural Information Processing Systems 26, pages 3219–3227. 2013.

[8] David D. Lewis and William A. Gale. A Sequential Algorithm for Training Text Classifiers.
In Special Interest Group on Information Retrieval, pages 3–12. Springer London, 1994.

[9] Lihong Li, Michael L. Littman, and Thomas J. Walsh. Knows what it knows: a framework for
self-aware learning. In Proceedings of the 25th International Conference on Machine learning,
pages 568–575, New York, NY, USA, 2008. ACM.

[10] David B. Lobell, Marianne Banziger, Cosmos Magorokosho, and Bindiganavile Vivek. Non-
linear heat effects on African maize as evidenced by historical yield trials. Nature Climate
Change, 1:42–45, 2011.

[11] Thomas Minka. Expectation Propagation for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

[12] Thomas Minka, John Winn, John Guiver, and David Knowles. Infer.NET 2.5, 2012. Microsoft
Research Cambridge. Website URL: http://research.microsoft.com/infernet.

[13] Daniel Munoz. Inference Machines: Parsing Scenes via Iterated Predictions. PhD thesis, The
Robotics Institute, Carnegie Mellon University, June 2013.

[14] Daniel Munoz, J. Andrew Bagnell, and Martial Hebert. Stacked Hierarchical Labeling. In
European Conference on Computer Vision, 2010.

[15] Stephane Ross, Daniel Munoz, Martial Hebert, and J. Andrew Bagnell. Learning Message-
Passing Inference Machines for Structured Prediction. In Conference on Computer Vision and
Pattern Recognition, 2011.

[16] Wolfram Schlenker and Michael J. Roberts. Nonlinear temperature effects indicate severe
damages to U.S. crop yields under climate change. Proceedings of the National Academy of
Sciences, 106(37):15594–15598, 2009.

[17] Roman Shapovalov, Dmitry Vetrov, and Pushmeet Kohli. Spatial Inference Machines. In
Conference on Computer Vision and Pattern Recognition, pages 2985–2992, 2013.

[18] Matthew J. Smith, Paul I. Palmer, Drew W. Purves, Mark C. Vanderwel, Vassily Lyutsarev,
Ben Calderhead, Lucas N. Joppa, Christopher M. Bishop, and Stephen Emmott. Changing
how Earth System Modelling is done to provide more useful information for decision making,
science and society. Bulletin of the American Meteorological Society, 2014.

[19] Stan Development Team. Stan: A C++ Library for Probability and Sampling, 2014.
[20] Andreas Stuhlmüller, Jessica Taylor, and Noah D. Goodman. Learning Stochastic Inverses. In

Advances in Neural Information Processing Systems 27, 2013.

9


