
A Deferred Concentration Inequalities

Theorem A.1 (Chernoff bound). Let the random variables X1, . . . , Xm be independent random variables such
that for every i, Xi ∈ [−1, 1] almost surely. Let X =

∑m
i=1Xi and let σ2 = VX. Then, for any t > 0,

Pr {|X − EX| > t} 6 exp
(
− t2

4σ2

)
.

The next lemma follows from standard concentration properties of the Gaussian distribution.
Lemma A.2. Let U ∈ Rd×k be a matrix with orthonormal columns. Let G1, . . . , GL ∼ N(0, σ2)d×p with
k 6 p 6 d and assume that L 6 d. Then, with probability 1− 10−4,

max
`∈[L]

‖U>G`‖ 6 O
(
σ
√
p+ logL

)
.

Proof. By rotational invariance of G` the spectral norm
∥∥U>G`∥∥ is distributed like largest singular value of a

random draw from k×p gaussian matrix N(0, σ2)k×p. Since p > k, the largest singular value strongly concentrates
around O(σ

√
p) with a gaussian tail. By the gaussian concentration of Lipschitz functions of gaussians, taking the

maximum over L gaussian matrices introduces an additive O(σ
√

logL) term. �

We also have an analogue of the previous lemma for the Laplacian distribution.
Lemma A.3. Let U ∈ Rn×k be a matrix with orthonormal columns. Let G1, . . . , GL ∼ Lap(0, λ)d×p with
k 6 p 6 d and assume that L 6 d. Then, with probability 1− 10−4,

max
`∈[L]

‖U>G`‖ 6 O
(
λ
√
pk log(Lpk)

)
.

Proof. We claim that with probability 1 − 10−4 for every ` ∈ [L], every entry of U>G` is bounded by
O(λ log(Lpk)) in absolute value. This follows because each entry has variance λ2 and is a weighted sum
of n independent Laplacian random variables Lap(0, λ). Assuming this event occurs, we have

max
`∈[L]

‖U>G`‖ 6 max
`∈[L]

‖U>G`‖F 6 O
(
λ
√
pk log(Lpk)

)
. �

Lemma A.4 (Matrix Chernoff). Let X1, . . . , Xn ∼ X be i.i.d. random matrices of maximum dimension d and
mean µ, uniformly bounded by ‖X‖ 6 R. Then for all t 6 1,

Pr
{∥∥ 1

n

∑
iXi − EX1

∥∥ > tR} 6 de−Ω(mt2)

B Reduction to symmetric matrices

For all our purposes it suffices to consider symmetric n× n matrices. Given a non-symmetric m× n matrix B
we may always consider the (m+ n)× (m+ n) matrix A = [ 0B |B> 0 ]. This transformation preserves all the
parameters that we are interested in as was argued in [HR13] more formally. This allows us to discuss symmetric
eigendecompositions rather than singular vector decompositions and therefore simplify our presentation below.

C Proof for Convergence of Noisy Power Method

We will make use of a non-recursive expression for the principal angles, defined in terms of the set Pk of p× p
projection matrices Π from p dimensions to k dimensional subspaces:
Claim C.1. Let U ∈ Rd×k have orthonormal columns and X ∈ Rd×p have independent columns, for p > k.
Then

cos θk(U,X) = min
Π∈Pk

min
x∈range(XΠ)
‖x‖2=1

‖U>x‖ = min
Π∈Pk

min
‖w‖2=1
Πw=w

‖U>Xw‖
‖Xw‖

.

For V = U⊥, we have

tan θk(U,X) = min
Π∈Pk

max
x∈range(XΠ)

‖V >x‖
‖U>x‖

= min
Π∈Pk

max
‖w‖2=1
Πw=w

‖V >Xw‖
‖U>Xw‖

.
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Proof of Lemma 2.2. Let Π∗ be the matrix projecting onto the smallest k principal angles of X , so that

tan θk(U,X) = max
‖w‖2=1
Π∗w=w

‖V >Xw‖
‖U>Xw‖

.

We have that

tan θk(U,AX +G) = min
Π∈Pk

max
‖w‖2=1
Πw=w

‖V >(AX +G)w‖
‖U>(AX +G)w‖

6 max
‖w‖2=1
Π∗w=w

‖V >AXw‖+ ‖V >Gw‖
‖U>AXw‖ − ‖U>Gw‖

6 max
‖w‖2=1
Π∗w=w

1

‖U>Xw‖
· σk+1‖V >Xw‖+ ‖V >Gw‖
σk − ‖U>Gw‖/‖U>Xw‖

(2)

Define ∆ = (σk − σk+1)/4. By the assumption on G,

max
‖w‖2=1
Π∗w=w

‖U>Gw‖
‖U>Xw‖

6 ‖U>G‖/ cos θk(U,X) 6 (σk − σk+1)/4 = ∆.

Similarly, and using that 1/ cos θ 6 1 + tan θ for any angle θ,

max
‖w‖2=1
Π∗w=w

‖V >Gw‖
‖U>Xw‖

6 ‖G‖/ cos θk(U,X) 6 ε∆(1 + tan θk(U,X)).

Plugging back into (2) and using σk = σk+1 + 4∆,

tan θk(U,AX +G) 6 max
‖w‖2=1
Π∗w=w

‖V >Xw‖
‖U>Xw‖

· σk+1

σk+1 + 3∆
+
ε∆(1 + tan θk(U,X))

σk+1 + 3∆
.

=
σk+1 + ε∆

σk+1 + 3∆
tan θk(U,X) +

ε∆

σk+1 + 3∆

= (1− ∆

σk+1 + 3∆
)
σk+1 + ε∆

σk+1 + 2∆
tan θk(U,X) +

∆

σk+1 + 3∆
ε

6 max(ε,
σk+1 + ε∆

σk+1 + 2∆
tan θk(U,X))

where the last inequality uses that the weighted mean of two terms is less than their maximum. Finally, we have
that

σk+1 + ε∆

σk+1 + 2∆
6 max(

σk+1

σk+1 + ∆
, ε)

because the left hand side is a weighted mean of the components on the right. Since σk+1

σk+1+∆ 6 ( σk+1

σk+1+4∆ )1/4 =

(σk+1/σk)1/4, this gives the result. �

Proof of Theorem 2.3. We will see that at every stage ` of the algorithm,

tan θk(U,X`) 6 max(ε, tan θk(U,X0))

which implies for ε 6 1/2 that

cos θk(U,X`) > min(1− ε2/2, cos θk(U,X0)) >
7

8
cos θk(U,X0)

so Lemma 2.2 applies at every stage. This means that

tan θk(U,X`+1) = tan θk(U,AX` +G) 6 max(ε, δ tan θk(U,X`))

11



for δ = max(ε, (σk+1/σk)1/4). After

L = log1/δ

tan θk(U,X0)

ε

iterations the tangent will reach ε and remain there. Observing that

log(1/δ) & min(log(1/ε), log(σk/σk+1)) > min(1, log
1

1− γ
) > min(1, γ) = γ

gives the result. �

C.1 Random initialization

Proof of Lemma 2.4. Consider the singular value decomposition U>X = AΣB> of U>X . Setting Π to be
matrix projecting onto the first k columns of B, we have that

tan θk(U,X) 6 max
‖w‖2=1
Πw=w

‖V >Xw‖
‖U>Xw‖

6 ‖V >X‖ max
‖w‖2=1
Πw=w

1

‖ΣB>w‖
= ‖V >X‖ max

‖w‖2=1
supp(w)∈[k]

1

‖Σw‖
=
‖V >X‖
σk(U>X)

.

Let X ∼ N(0, Id×p) represent the random subspace. Then Y := U>X ∼ N(0, Ik×p). By [RV09], for any ε, the
smallest singular value of Y is at least (

√
p−
√
k − 1)/τ with all but τ−Ω(p+1−k) + e−Ω(p) probability. On the

other hand, ‖X‖ .
√
d with all but e−Ω(d) probability. Hence

tan θk(U,X) . τ

√
d

√
p−
√
k − 1

with the desired probability. Rescaling τ gets the result. �

D Error term analysis for Streaming PCA

Fix an orthonormal basis X ∈ Rd×k. Let z1, . . . , zn ∼ D be samples from a distribution D with covariance
matrix A and consider the matrix

G =
(
A− Â

)
X ,

where Â = 1
n

∑n
i=1 ziz

>
i is the empirical covariance matrix on n samples. Then, we have that ÂX = AX +G.

In other words, one update step of the power method executed on Â can be expressed as an update step on A with
noise matrix G. This simple observation allows us to apply our analysis of the noisy power method to this setting
after obtaining suitable bounds on ‖G‖ and ‖U>G‖.
Lemma D.1. Let D be a (B, p)-round distribution with covariance matrix M . Then with all but O(1/n2)
probability,

‖G‖ .

√
Bp log4 n log d

dn
+

1

n2
and ‖U>G‖ .

√
B2p2 log4 n log d

d2n
+

1

n2

Proof. We will use a matrix Chernoff bound to show that

1. Pr
{
‖G‖ > Ct log(n)2

√
Bp/d+O(1/n2)

}
6 d exp(−t2n) + 1/n2

2. Pr
{
‖U>G‖ > Ct log(n)2Bp/d+O(1/n2)

}
6 d exp(−t2n) + 1/n2

setting t =
√

2
n log d gives the result. However, matrix Chernoff inequality requires the distribution to satisfy a

norm bound with probability 1. We will therefore create a closely related distribution D̃ that satisfies such a norm
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constraint and is statistically indistinguishable up to small error on n samples. We can then work with D̃ instead
of D. This truncation step is standard and works because of the concentration properties of D.

Indeed, let D̃ be the distribution obtained from D be replacing a sample z with 0 if

‖z‖ > C log(n) or ‖U>z‖ > C log(n)
√
Bp/d or ‖z>X‖ > C log(n)

√
Bp/d .

For sufficiently large constant C, it follows from the definition of (B, p)-round that the probability that one or
more of n samples from D get zeroed out is at most 1/n2. In particular, the two product distributions D(n) and
D̃(n) have total variation distance at most 1/n2. Furthermore, we claim that the covariance matrices of the two
distributions are at most O(1/n2) apart in spectral norm. Formally,∥∥∥∥ E

z∼D
zz> − E

z̃∼D̃
z̃z̃>

∥∥∥∥ 6 1

n2
·O
(∫

t>1

C2t2 log2(n) exp(−t)dt
)
6 O(1/n2) .

In the first inequality we use the fact that z only gets zeroed out with probability 1/n2. Conditional on this event,
the norm of z is larger than tC log(n) with probability at most n2 exp(− 1

2 tC log n) 6 exp(−t). Assuming the
norm is at most tC log(n) we have

∥∥zz>∥∥ 6 t2C2 log2(n) and this bounds the contribution to the spectral norm
of the difference.

Now let G̃ be the error matrix defined as G except that we replace the samples z1, . . . , zn by n samples z̃1, . . . , z̃n
from the truncated distribution D̃. By our preceding discussion, it now suffices to show that

1. Pr
{
‖G̃‖ > Ct log2(n)

√
Bp/d

}
6 d exp(−t2n)

2. Pr
{
‖U>G̃‖ > Ct log2(n)Bp/d

}
6 d exp(−t2n)

To see this, let Si = z̃iz̃
>
i X. We have

‖Si‖ 6 ‖z̃i‖ ·
∥∥z̃>i X∥∥ 6 C2 log2(n) ·

√
Bp/d

Similarly, ∥∥U>Si∥∥ 6 ‖U>z̃i‖ · ∥∥z̃>i X∥∥ 6 C2 log2(n) · Bp
d
.

The claims now follow directly from the matrix Chernoff bound stated in Lemma A.4. �

D.1 Proof of Theorem 3.2

Given Lemma D.1 we will choose n such that the error term in each iteration satisfies the assumptions of
Theorem 2.3. Let G` denote the instance of the error term G arising in the `-th iteration of the algorithm. We can
find an n satisfying

n

log(n)4
= O

(
Bpmax

{
1/ε2, Bp/(

√
p−
√
k − 1)2

}
log d

(σk − σk+1)2d

)
such that by Lemma D.1 we have that with probability 1−O(1/n2),

‖G`‖ 6
ε(σk − σk+1)

5
and ‖U>G`‖ 6

σk − σk+1

5

√
p−
√
k − 1

√
d

.

Here we used that by definition 1/n� ε and 1/n� σk − σk+1 and so the 1/n2 term in Lemma D.1 is of lower
order.

With this bound, it follows from Theorem 2.3 that after L = O(log(d/ε)/(1− σk+1/σk)) iterations we have with
probability 1−max{1, L/n2} that tan θ(U,XL) 6 ε. The over all sample complexity is therefore

Ln = Õ

(
Bpσk max

{
1/ε2, Bp/(

√
p−
√
k − 1)2

}
log2 d

(σk − σk+1)3d

)
.

Here we used that 1− σk+1/σk = (σk − σk+1)/σk. This concludes the proof of Theorem 3.2.
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D.2 Proof of Lemma D.2 and Corollary 3.4

Lemma D.2. The spiked covariance model D(U,Λ) is (B, k)-round for B = O(
λ2
1+σ2

tr(Λ)/d+σ2 ).

Proof. Note that an example z ∼ D(U,Λ) is distributed as UΛg + g′ where g ∼ N(0, 1/D)k is a standard
gaussian and g′ ∼ N(0, σ2/D)d. is a noise term. Recall, that D is the normalization term. Let P be any projection
operator onto a k-dimensional space. Then,

‖Pz‖ = ‖PUΛg + Pg′‖ 6 ‖PUΛg‖+ ‖Pg′‖ 6 ‖Λg‖+ ‖Pg′‖ 6 λ1‖g‖+ ‖Pg′‖ .

By rotational invariance of g′, we may assume that P is the projection onto the first k coordinates. Hence, ‖Pg′‖
is distributed like the norm of N(0, σ2/D)k. Using standard tail bounds for the norm of a gaussian random
variables, we can see that ‖Pz‖2 = O(t(kλ2

1 + kσ2)/D) with probability 1 − exp(−t). On the other hand,
D = Θ(

∑k
i=1 λ

2
i + dσ2). We can now solve for B by setting

Θ(
kλ2

1 + kσ2∑k
i=1 λ

2
i + dσ2

) =
Bk

d
⇔ B = Θ(

λ2
1 + σ2

1
d

∑k
i=1 λ

2
i + σ2

) .

�

Corollary 3.4 follows by plugging in the bound on B and the eigenvalues of the covariance matrix into our main
theorem.

Proof of Corollary 3.4. In the spiked covariance model D(U,Λ) we have

B =
λ2

1 + σ2

D
, σk =

λ2
k + σ2

D
, σk+1 =

σ2

D
, D = O(tr(Λ2) + dσ2) .

Hence,
B2σk

(σk − σk+1)3d
=

(λ2
1 + σ2)2(λ2

k + σ2)

λ6
kd

6
(λ2

1 + σ2)3

λ6
kd

Plugging this bound into Theorem 3.2 gives Corollary 3.4. �

E Privacy-preserving singular vector computation

In this section we prove our results about privacy-preserving singular vector computation. We begin with a
standard definition of differential privacy, sometimes referred to as entry-level differential privacy, as it hides the
presence or absence of a single entry.

Definition E.1 (Differential Privacy). A randomized algorithm M : Rd×d′ → R (where R is some arbitrary
abstract range) is (ε, δ)-differentially private if for all pairs of matrices A,A′ ∈ Rd×d′ differing in only one
entry by at most 1 in absolute value, we have that for all subsets of the range S ⊆ R, the algorithm satisfies:
Pr {M(A) ∈ S} 6 exp(ε)Pr {M(A′) ∈ S}+ δ .

The definition is most meaningful when A has entries in [0, 1] so that the above definition allows for a single entry
to change arbitrarily within this range. However, this is not a requirement for us. The privacy guarantee can be
strengthened by decreasing ε > 0.

For our choice of σ in Figure 3 the algorithm satisfies (ε, δ)-differential privacy as follows easily from properties
of the Gaussian distribution. See, for example, [HR13] for a proof.

Claim E.2. PPM satisfies (ε, δ)-differential privacy.

It is straightforward to prove Theorem 1.3 by invoking our convergence analysis of the noisy power method
together with suitable error bounds. The error bounds are readily available as the noise term is just gaussian.

Proof of Theorem 1.3. Letm = max ‖X`‖∞. By Lemma A.2 the following bounds hold with probability 99/100:
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1. maxL`=1 ‖G`‖ . σm
√
d logL

2. maxL`=1 ‖U>G`‖ . σm
√
k logL

Let

ε′ =
σm
√
d logL

σk − σk+1
&

5 maxL`=1 ‖G`‖
σk − σk+1

.

By Corollary 1.1, if we also have that maxL`=1 ‖U>G`‖ 6 (σk − σk+1)
√
p−
√
k−1

τ
√
d

for a sufficiently large constant
τ , then we will have that

‖(I −XLX
>
L )U‖ 6 ε′ 6 σm

√
d logL

σk − σk+1

after the desired number of iterations, giving the theorem. Otherwise,

(σk − σk+1)

√
p−
√
k − 1

τ
√
d

6
L

max
`=1
‖U>G`‖ . ε′(σk − σk+1)

√
k/d,

so it is trivially true that

σm
√
d logL

σk − σk+1

√
p

√
p−
√
k − 1

> ε′
√
k

√
p−
√
k − 1

& 1 > ‖(I −XLX
>
L )U‖.

�

E.1 Low-rank approximation

Our results readily imply that we can compute accurate differentially private low-rank approximations. The main
observation is that, assuming XL and U have the same dimension, tan θ(U,XL) 6 α implies that the matrix XL

also leads to a good low-rank approximation for A in the spectral norm. In particular

‖(I −XLX
>
L )A‖ 6 σk+1 + ασ1 . (3)

Moreover the projection step of computing XLX
>
LA can be carried out easily in a privacy-preserving manner.

It is again the `∞-norm of the columns of XL that determine the magnitude of noise that is needed. Since A is
symmetric, we have X>A = (AX)>. Hence, to obtain a good low-rank approximation it suffices to compute the
product AXL privately as AXL +GL. This leads to the following corollary.
Corollary E.3. Let A ∈ Rd×d be a symmetric matrix with singular values σ1 > . . . > σd and let γ =
1− σk+1/σk. There is an (ε, δ)-differentially private algorithm that given A and k, outputs a rank 2k matrix B
such that with probability 9/10,

‖A−B‖ 6 σk+1 + Õ

(
σ1

√
(k/γ)d log d log(1/δ)

ε(σk − σk+1)

)
.

The Õ-notation hides the factor O
(√

log(log(d)/γ)
)
.

Proof. Apply Theorem 1.3 with p = 2k and run the algorithm for L+ 1 steps with L = O(γ−1 log d). This gives
the bound

α = ‖(I −XLX
>
L )A‖ 6 O

(√
(k/γ)d log d log(log(d)/γ) log(1/δ)

ε(σk − σk+1)

)
.

Moreover, the algorithm has computed YL+1 = AXL +GL and we have B = XLY
>
L+1 = XLX

>
LA+XLG

>
L .

Therefore
‖A−B‖ 6 σk+1 + ασ1 +

∥∥XLG
>
L

∥∥
where

∥∥XLG
>
L

∥∥ 6 ‖GL‖ . By definition of the algorithm and Lemma A.2, we have

‖GL‖ 6 O
(√

σ2d
)

= O

(
1

ε

√
(k/γ)d log(d) log(1/δ)

)
.

Given that the α-term gets multiplied by σ1, this bound on ‖GL‖ is of lower order and the corollary follows. �
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E.2 Principal Component Analysis

Here we illustrate that our bounds directly imply results for the privacy notion studied by Kapralov and Tal-
war [KT13]. The notion is particularly relevant in a setting where we think of A as a sum of rank 1 matrices each
of bounded spectral norm.

Definition E.4. A randomized algorithm M : Rd×d′ → R (where R is some arbitrary abstract range) is (ε, δ)-
differentially private under unit spectral norm changes if for all pairs of matrices A,A′ ∈ Rd×d′ satisfying
‖A − A′‖2 6 1, we have that for all subsets of the range S ⊆ R, the algorithm satisfies: Pr {M(A) ∈ S} 6
exp(ε)Pr {M(A′) ∈ S}+ δ .

Lemma E.5. If PPM is executed with each G` sampled independently as G` ∼ N(0, σ2)d×p with σ =

ε−1
√

4pL log(1/δ), then PPM satisfies (ε, δ)-differential privacy under unit spectral norm changes.

If G` is sampled with i.i.d. Laplacian entries G` ∼ Lap(0, λ)n×k where λ = 10ε−1pL
√
d, then PPM satisfies

(ε, 0)-differential privacy under unit spectral norm changes.

Proof. The first claim follows from the privacy proof in [HR12]. We sketch the argument here for completeness.
Let D be any matrix with ‖D‖2 6 1 (thought of as A − A′ in Definition E.4) and let ‖x‖ = 1 be any unit
vector which we think of as one of the columns of X = X`−1. Then, we have ‖Dx‖ 6 ‖D‖ · ‖x‖ 6 1, by
definition of the spectral norm. This shows that the “`2-sensitivity” of one matrix-vector multiplication in our
algorithm is bounded by 1. It is well-known that it suffices to add Gaussian noise scaled to the `2-sensitivity of the
matrix-vector product in order to achieve differential privacy. Since there are kL matrix-vector multiplications in
total we need to scale the noise by a factor of

√
kL.

The second claim follows analogously. Here however we need to scale the noise magnitude to the “`1-sensitivity”
of the matrix-vector product which be bound by

√
n using Cauchy-Schwarz. The claim then follows using

standard properties of the Laplacian mechanism. �

Given the previous lemma it is straightforward to derive the following corollaries.
Corollary E.6. Let A ∈ Rd×d be a symmetric matrix with singular values σ1 > . . . > σd and let γ =
1− σk+1/σk. There is an algorithm that given a A and parameter k, preserves (ε, δ)-differentially privacy under
unit spectral norm changes and outputs a rank 2k matrix B such that with probability 9/10,

‖A−B‖ 6 σk+1 + Õ

(
σ1

√
(k/γ)d log d log(1/δ)

ε(σk − σk+1)

)
.

The Õ-notation hides the factor O
(√

log(log(d)/γ)
)
.

Proof. The proof is analogous to the proof of Corollary E.3. �

A similar corollary applies to (ε, 0)-differential privacy.
Corollary E.7. Let A ∈ Rd×d be a symmetric matrix with singular values σ1 > . . . > σd and let γ =
1− σk+1/σk. There is an algorithm that given a A and parameter k, preserves (ε, δ)-differentially privacy under
unit spectral norm changes and outputs a rank 2k matrix B such that with probability 9/10,

‖A−B‖ 6 σk+1 + Õ

(
σ1k

1.5d log(d) log(d/γ)

εγ(σk − σk+1)

)
.

Proof. We invoke PPM with p = 2k and Laplacian noise with the scaling given by Lemma E.5 so that the algo-
rithm satisfies (ε, 0)-differential privacy. Specifically, G` ∼ Lap(0, λ)d×p where λ = 10ε−1pL

√
d. Lemma A.3.

Indeed, with probability 99/100, we have

1. maxL`=1 ‖G`‖ 6 O
(
λ
√
kd log(kdL)

)
= O

(
(1/εγ)k1.5d log(d) log(kdL)

)
2. maxL`=1 ‖U>G`‖ 6 O (λk log(kL)) = O

(
(1/εγ)k2

√
d log(d) log(kL)

)
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We can now plug these error bounds into Corollary 1.1 to obtain the bound∥∥(I −XLX
>
L )U

∥∥ 6 O(k1.5d log(d) log(d/γ)

εγ(σk − σk+1)

)
Repeating the argument from the proof of Corollary E.3 gives the stated guarantee for low-rank approximation. �

The bound above matches a lower bound shown by Kapralov and Talwar [KT13] up to a factor of Õ(
√
k). We

believe that this factor can be eliminated from our bounds by using a quantitatively stronger version of Lemma A.3.
Compared to the upper bound of [KT13] our algorithm is faster by a more than a quadratic factor in d. Moreover,
previously only bounds for (ε, 0)-differential privacy were known for the spectral norm privacy notion, whereas
our bounds strongly improve when going to (ε, δ)-differential privacy.

E.3 Dimension-free bounds for incoherent matrices

The guarantee in Theorem 1.3 depends on the quantity ‖X`‖∞ which could in principle be as small as
√

1/d. Yet,
in the above theorems, we use the trivial upper bound 1. This in turn resulted in a dependence on the dimensions
of A in our theorems. Here, we show that the dependence on the dimension can be replaced by an essentially tight
dependence on the coherence of the input matrix. In doing so, we resolve the main open problem left open by
Hardt and Roth [HR13]. The definition of coherence that we will use is formally defined as follows.

Definition E.8 (Matrix Coherence). We say that a matrix A ∈ Rd×d′ with singular value decomposition A =
UΣV > has coherence

µ(A)
def
=
{
d‖U‖2∞, d′‖V ‖2∞

}
.

Here ‖U‖∞ = maxij |Uij | denotes the largest entry of U in absolute value.

Our goal is to show that the `∞-norm of the vectors arising in PPM is closely related to the coherence of the input
matrix. We obtain a nearly tight connection between the coherence of the matrix and the `∞-norm of the vectors
that PPM computes.
Theorem E.9. Let A ∈ Rd×d be symmetric. Suppose NPM is invoked on A, and L 6 n, with each G` sampled
from N(0, σ2

` )d×p for some σ` > 0. Then, with probability 1− 1/n,

L
max
`=1
‖X`‖2∞ 6 O

(
µ(A) log(d)

d

)
.

Proof. Fix ` ∈ [L]. Let A =
∑n
i=1 σiuiu

>
i be given in its eigendecomposition. Note that

B =
d

max
i=1
‖ui‖∞ 6

√
µ(A)

d
.

We may write any column x of X` as x =
∑d
i=1 siαiui where αi are non-negative scalars such that∑d

i=1 α
2
i = 1, and si ∈ {−1, 1} where si = sign(〈x, ui〉). Hence, by Lemma E.13 (shown below), the

signs (s1, . . . , sd) are distributed uniformly at random in {−1, 1}d. Hence, by Lemma E.14 (shown below),
it follows that Pr

{
‖x‖∞ > 4B

√
log d

}
6 1/n3 . By a union bound over all p 6 d columns it follows that

Pr
{
‖X`‖∞ > 4B

√
log d

}
6 1/d2 . Another union bound over all L 6 d steps completes the proof. �

The previous theorem states that no matter what the scaling of the Gaussian noise is in each step of the algorithm,
so long as it is Gaussian the algorithm will maintain that X` has small coordinates. We cannot hope to have
coordinates smaller than

√
µ(A)/d, since eventually the algorithm will ideally converge to U. This result directly

implies the theorem we stated in the introduction.

Proof of Theorem 1.4. The claim follows directly from Theorem 1.3 after applying Theorem E.9 which shows
that with probability 1− 1/n,

L
max
`=1
‖X`‖2∞ 6 O

(
µ(A) log(d)

d

)
. �
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E.4 Proofs of supporting lemmas

We will now establish Lemma E.13 and Lemma E.14 that were needed in the proof of the previous theorem. For
that purpose we need some basic symmetry properties of the QR-factorization. To establish these properties we
recall the Gram-Schmidt algorithm for computing the QR-factorization.

Definition E.10 (Gram-Schmidt). The Gram-Schmidt orthonormalization algorithm, denoted GS, is given an
input matrix V ∈ Rd×p with columns v1, . . . , vp and outputs an orthonormal matrix Q ∈ Rd×p with the same
range as V. The columns q1, . . . , qp of Q are computed as follows:

For i = 1 to p do:

– rii ← ‖vi‖
– qi ← vi/rii
– For j = i+ 1 to p do:

– rij ← 〈qi, vj〉
– vj ← vj − rijqi

The first states that the Gram-Schmidt operation commutes with an orthonormal transformation of the input.

Lemma E.11. Let V ∈ Rd×p and let O ∈ Rd×d be an orthonormal matrix. Then, GS(OV ) = O ×GS(V ).

Proof. Let {rij}ij∈[p] denote the scalars computed by the Gram-Schmidt algorithm as specified in Definition E.10.
Notice that each of the numbers {rij}ij∈[p] is invariant under an orthonormal transformation of the vectors
v1, . . . , vp. This is because ‖Ovi‖ = ‖vi‖ and 〈Ovi, Ovj〉 = 〈vi, vj〉. Moreover, The output Q of Gram-Schmidt
on input of V satisfies Q = V R, where R is an upper right triangular matrix which only depends on the numbers
{rij}i,j∈[p]. Hence, the matrix R is identical when the input is OV. Thus, GS(OV ) = OV R = O×GS(V ). �

Given i.i.d. Gaussian matrices G0, G1, . . . , GL ∼ N(0, 1)d×p, we can describe the behavior of our algorithm by
a deterministic function f(G0, G1, . . . , GL) which executes subspace iteration starting with G0 and then suitably
scales G` in each step. The next lemma shows that this function is distributive with respect to orthonormal
transformations.

Lemma E.12. Let f : (Rd×p)L → Rn×p denote the output of PPM on input of a matrix A ∈ Rn×n as a function
of the noise matrices used by the algorithm as described above. Let O be an orthonormal matrix with the same
eigenbasis as A. Then,

f(OG0, OG1, . . . , OGL) = O × f(G0, . . . , GL) . (4)

Proof. For ease of notation we will denote by X0, . . . , XL the iterates of the algorithm when the noise ma-
trices are G0, . . . , GL, and we denote by Y0, . . . , YL the iterates of the algorithm when the noise matrices are
OG0, . . . , OGL. In this notation, our goal is to show that YL = OXL.

We will prove the claim by induction on L. For L = 0, the base case follows from Lemma E.11. Indeed,

Y0 = GS(OG0) = O ×GS(G0) = OX0 .

Let ` > 1. We assume the claim holds for `− 1 and show that it holds for `. We have,

Y` = GS(AY`−1 +OG`)

= GS(AOX`−1 +OG`) (by induction hypothesis)
= GS(O(AX`−1 +G`)) (A and O commute)
= O ×GS(AX`−1 +G`) (Lemma E.11)
= OX` .

Note that A and O commute, since they share the same eigenbasis by the assumption of the lemma. This is what
we needed to prove. �

The previous lemmas lead to the following result characterizing the distribution of signs of inner products between
the columns of X` and the eigenvectors of A.
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Lemma E.13 (Sign Symmetry). Let A be a symmetric matrix given in its eigendecomposition as A =∑d
i=1 λiuiu

>
i . Let ` > 0 and let x be any column of X`, where X` is the iterate of PPM on input of A.

Put Si = sign(〈ui, x〉) for i ∈ [d]. Then (S1, . . . , Sd) is uniformly distributed in {−1, 1}d.

Proof. Let (z1, . . . , zd) ∈ {−1, 1}d be a uniformly random sign vector. Let O =
∑d
i=1 ziuiu

>
i . Note that O is

an orthonormal transformation. Clearly, any column Ox of OX` satisfies the conclusion of the lemma, since
〈ui, Ox〉 = zi〈ui, x〉. Since the Gaussian distribution is rotationally invariant, we have that OG` and G` follow
the same distribution. In particular, denoting by Y` the matrix computed by the algorithm if OG0, . . . , OG` were
chosen, we have that Y` and X` are identically distributed. Finally, by Lemma E.12, we have that Y` = OX`. By
our previous observation this means that Y` satisfies the conclusion of the lemma. As Y` and X` are identically
distributed, the claim also holds for X`. �

We will use the previous lemma to bound the `∞-norm of the intermediate matrices X` arising in power iteration
in terms of the coherence of the input matrix. We need the following large deviation bound.

Lemma E.14. Let α1, . . . , αd be scalars such that
∑d
i=1 α

2
i = 1 and u1, . . . , ud are unit vectors in Rn. Put

B = maxdi=1 ‖ui‖∞. Further let (s1, . . . , sd) be chosen uniformly at random in {−1, 1}d. Then,

Pr

{∥∥∥∥∥
d∑
i=1

siαiui

∥∥∥∥∥
∞

> 4B
√

log d

}
6 1/d3 .

Proof. Let X =
∑d
i=1Xi where Xi = siαiui. We will bound the deviation of X in each entry and then take

a union bound over all entries. Consider Z =
∑d
i=1 Zi where Zi is the first entry of Xi. The argument is

identical for all other entries of X. We have EZ = 0 and EZ2 =
∑d
i=1 EZ2

i 6 B
2
∑d
i=1 α

2
i = B2. Hence, by

Theorem A.1 (Chernoff bound),

Pr
{
|Z| > 4B

√
log(d)

}
6 exp

(
− 16B2 log(d)

4B2

)
6 exp(−4 log(d)) = 1

d4 .

The claim follows by taking a union bound over all d entries of X. �
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