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Abstract

We present a theoretical analysis of F -measures for binary, multiclass and mul-
tilabel classification. These performance measures are non-linear, but in many
scenarios they are pseudo-linear functions of the per-class false negative/false
positive rate. Based on this observation, we present a general reduction of F -
measure maximization to cost-sensitive classification with unknown costs. We
then propose an algorithm with provable guarantees to obtain an approximately
optimal classifier for the F -measure by solving a series of cost-sensitive classi-
fication problems. The strength of our analysis is to be valid on any dataset and
any class of classifiers, extending the existing theoretical results on F -measures,
which are asymptotic in nature. We present numerical experiments to illustrate
the relative importance of cost asymmetry and thresholding when learning linear
classifiers on various F -measure optimization tasks.

1 Introduction

The F1-measure, defined as the harmonic mean of the precision and recall of a binary decision
rule [20], is a traditional way of assessing the performance of classifiers. As it favors high and bal-
anced values of precision and recall, this performance metric is usually preferred to (label-dependent
weighted) classification accuracy when classes are highly imbalanced and when the cost of a false
positive relatively to a false negative is not naturally given for the problem at hand. The design of
methods to optimize F1-measure and its variants for multilabel classification (the micro-, macro-,
per-instance-F1-measures, see [23] and Section 2), and the theoretical analysis of the optimal clas-
sifiers for such metrics have received considerable interest in the last 3-4 years [6, 15, 4, 18, 5, 13],
especially because rare classes appear naturally on most multilabel datasets with many labels.

The most usual way of optimizing F1-measure is to perform a two-step approach in which first a
classifier which output scores (e.g. a margin-based classifier) is learnt, and then the decision thresh-
old is tuned a posteriori. Such an approach is theoretically grounded in binary classification [15] and
for micro- or macro-F1-measures of multilabel classification [13] in that a Bayes-optimal classifier
for the corresponding F1-measure can be obtained by thresholding posterior probabilities of classes
(the threshold, however, depends on properties of the whole distribution and cannot be known in ad-
vance). Thus, such arguments are essentially asymptotic since the validity of the procedure is bound
to the ability to accurately estimate all the level sets of the posterior probabilities; in particular, the
proof does not hold if one wants to find the optimal classifier for the F1-measure over an arbitrary
set of classifiers (e.g. thresholded linear functions).

In this paper, we show that optimizing the F1-measure in binary classification over any (possibly
restricted) class of functions and over any data distribution (population-level or on a finite sample)
can be reduced to solving an (infinite) series of cost-sensitive classification problems, but the cost
space can be discretized to obtain approximately optimal solutions. For binary classification, as
well as for multilabel classification (micro-F1-measure in general and the macro-F1-measure when
training independent classifiers per class), the discretization can be made along a single real-valued
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variable in [0, 1] with approximation guarantees. Asymptotically, our result is, in essence, equivalent
to prior results since Bayes-optimal classifiers for cost-sensitive classification are precisely given by
thresholding the posterior probabilities, and we recover the relationship between the optimal F1-
measure and the optimal threshold given by Lipton et al. [13]. Our reduction to cost-sensitive
classification, however, is strictly more general. Our analysis is based on the pseudo-linearity of
the F1-scores (the level sets, as function of the false negative rate and the false positive rate are
linear) and holds in any asymptotic or non-asymptotic regime, with any arbitrary set of classifiers
(without the requirement to output scores or accurate posterior probability estimates). Our formal
framework and the definition of pseudo-linearity is presented in the next section, and the reduction
to cost-sensitive classification is presented in Section 2.

While our main contribution is the theoretical part, we also turn out to the practical suggestions of our
results. In particular, they suggest that, for binary classification, learning cost-sensitive classifiers
may be more effective than thresholding probabilities. This is in-line with Musicant et al. [14],
although their argument only applies to SVM and does not consider the F1-measure itself but a
continuous, non-convex approximation of it. Some experimental results are presented in Section 4,
before the conclusion of the paper.

2 Pseudo-Linearity and F -Measures

Our results are mainly motivated by the maximization of F -measures for binary and multilabel
classification. They are based on a general property of these performance metrics, namely their
pseudo-linearity with respect to the false negative/false positive probabilities.

For binary classification, the results we prove in Section 3 are that in order to optimize the F -
measure, it is sufficient to solve a binary classification problem with different costs allocated to false
positive and false negative errors (Proposition 4). However, these costs are not known a priori, so in
practice we need to learn several classifiers with different costs, and choose the best one (according
to the F -score) in a second step. Propositions 5 and 6 provide approximation guarantees on the
F -score we can obtain by following this principle depending on the granularity of the search in the
cost space.

Our results are not specific to the F1-measure in binary classification, and they naturally extend to
other cases of F -measures with similar functional forms. For that reason, we present the results and
prove them directly for the general case, following the framework that we describe in this section.
We first present the machine learning framework we consider, and then give the general definition of
pseudo-convexity. Then, we provide examples of F -measures for binary, multilabel and multiclass
classification and we show how they fit into this framework.

2.1 Notation and Definitions

We are given (i) a measurable spaceX×Y , whereX is the input space and Y is the (finite) prediction
set, (ii) a probability measure µ over X × Y , and (iii) a set of (measurable) classifiers H from the
input space X to Y . We distinguish here the prediction set Y from the label space L = {1, ..., L}: in
binary or single-label multi-class classification, the prediction set Y is the label set L, but in multi-
label classification, Y = 2L is the powerset of the set of possible labels. In that framework, we
assume that we have an i.i.d. sample drawn from an underlying data distribution P on X × Y . The
empirical distribution of this finite training (or test) sample will be denoted P̂. Then, we may take
µ = P to get results at the population level (concerning expected errors), or we may take µ = P̂
to get results on a finite sample. Likewise, H can be a restricted set of functions such as linear
classifiers if X is a finite-dimensional vector space, or may be the set of all measurable classifiers
from X to Y to get results in terms of Bayes-optimal predictors. Finally, when needed, we will use
bold characters for vectors and normal font with subscript for indexing.

Throughout the paper, we need the notion of pseudo-linearity of a function, which itself is defined
from the notion of pseudo-convexity (see e.g. [3, Definition 3.2.1]): a differentiable function F :
D ⊂ Rd → R, defined on a convex open subset of Rd, is pseudo-convex if

∀e, e′ ∈ D , F (e) > F (e′) ⇒ 〈∇F (e), e′ − e〉 < 0 ,

where 〈., .〉 is the canonical dot product on Rd.
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Moreover, F is pseudo-linear if both F and −F are pseudo-convex. The important property of
pseudo-linear functions is that their level sets are hyperplanes (intersected with the domain), and that
sublevel and superlevel sets are half-spaces, all of these hyperplanes being defined by the gradient.
In practice, working with gradients of non-linear functions may be cumbersome, so we will use the
following characterization, which is a rephrasing of [3, Theorem 3.3.9]:

Theorem 1 ([3]) A non-constant function F : D → R, defined and differentiable on the open convex
set D ⊆ Rd, is pseudo-linear on D if and only if ∀e ∈ D , ∇F (e) 6= 0 , and: ∃a : R → Rd and
∃b : R→ R such that, for any t in the image of F :

F (e) ≥ t ⇔ 〈a(t), e〉+ b(t) ≤ 0 and F (e) ≤ t ⇔ 〈a(t) , e〉+ b(t) ≥ 0 .

Pseudo-linearity is the main property of fractional-linear functions (ratios of linear functions). In-
deed, let us consider F : e ∈ Rd 7→ (α+ 〈β, e〉)/(γ + 〈δ, e〉) with α, γ ∈ R and β and δ in Rd. If
we restrict the domain of F to the set {e ∈ Rd|γ + 〈δ, e〉 > 0}, then, for all t in the image of F and
all e in its domain, we have: F (e) ≤ t ⇔ 〈tδ − β, e〉 + tγ − α ≥ 0 , and the analogous equiva-
lence obtained by reversing the inequalities holds as well; the function thus satisfies the conditions
of Theorem 1. As we shall see, many F -scores can be written as fractional-linear functions.

2.2 Error Profiles and F -Measures

For all classification tasks (binary, multiclass and multilabel), the F -measures we consider are func-
tions of per-class recall and precision, which themselves are defined in terms of the marginal prob-
abilities of classes and the per-class false negative/false positive probabilities. The marginal proba-
bilities of label k will be denoted by Pk, and the per-class false negative/false positive probabilities
of a classifier h are denoted by FNk(h) and FPk(h). Their definitions are given below:

(binary/multiclass) Pk = µ({(x, y)|y = k}), FNk(h) = µ({(x, y)|y = k and h(x) 6= k}) ,
FPk(h) = µ({(x, y)|y 6= k and h(x) = k}) .

(multilabel) Pk = µ({(x, y)|y ∈ k}), FNk(h) = µ({(x, y)|k ∈ y and k 6∈ h(x)}) ,
FPk(h) = µ({(x, y)|y 6∈ k and k ∈ h(x)}) .

These probabilities of a classifier h are then summarized by the error profile E(h):

E(h) =
(
FN1(h) , FP1(h) , ..., FNL(h) , FPL(h)

)
∈ R2L ,

so that e2k−1 is the false negative probability for class k and e2k is the false positive probability.

Binary Classification In binary classification, we have FN2 = FP1 and we write F -measures only
by reference to class 1. Then, for any β > 0 and any binary classifier h, the Fβ-measure is

Fβ(h) =
(1 + β2)(P1 − FN1(h))

(1 + β2)P1 − FN1(h) + FP1(h)
.

The F1-measure, which is the most widely used, corresponds to the case β = 1. We can immediately
notice that Fβ is fractional-linear, hence pseudo-convex, with respect to FN1 and FP1. Thus, with
a slight (yet convenient) abuse of notation, we write the Fβ-measure for binary classification as a
function of vectors in R4 = R2L which represent error profiles of classifiers:

(binary) ∀e ∈ R4, Fβ(e) =
(1 + β2)(P1 − e1)

(1 + β2)P1 − e1 + e2
.

Multilabel Classification In multilabel classification, there are several definitions of F -measures.
For those based on the error profiles, we first have the macro-F -measures (denoted byMFβ), which
is the average over class labels of the Fβ-measures of each binary classification problem associated
to the prediction of the presence/absence of a given class:

(multilabel–Macro) MFβ(e) =
1

L

L∑
k=1

(1 + β2)(P − e2k−1)

(1 + β2)P − e2k−1 + e2k
.
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MFβ is not a pseudo-linear function of an error profile e. However, if the multi-label classification
algorithm learns independent binary classifiers for each class (a method known as one-vs-rest or
binary relevance [23]), then each binary problem becomes independent and optimizing the macro-
F -score boils down to independently maximizing the Fβ-score for L binary classification problems,
so that optimizing MFβ is similar to optimizing Fβ in binary classification.

There are also micro-F -measures for multilabel classification. They correspond to Fβ-measures
for a new binary classification problem over X × L, in which one maps a multilabel classifier
h : X → Y (Y is here the power set of L) to the following binary classifier h̃ : X × L → {0, 1}: we
have h̃(x, k) = 1 if k ∈ h(x), and 0 otherwise. The micro-Fβ-measure, written as a function of an
error profile e and denoted by mFβ(e), is the Fβ-score of h̃ and can be written as:

(multilabel–micro) mFβ(e) =
(1 + β2)

∑L
k=1(Pk − e2k−1)

(1 + β2)
∑L
k=1 Pk +

∑L
k=1(e2k − e2k−1)

.

This function is also fractional-linear, and thus pseudo-linear as a function of e.

A third notion of Fβ-measure can be used in multilabel classification, namely the per-instance Fβ
studied e.g. by [16, 17, 6, 4, 5]. The per-instance Fβ is defined as the average, over instances x, of
the binary Fβ-measure for the problem of classifying labels given x. This corresponds to a specific
Fβ-maximization problem for each x and is not directly captured by our framework, because we
would need to solve different cost-sensitive classification problems for each instance.

Multiclass Classification The last example we take is from multiclass classification. It differs
from multilabel classification in that a single class must be predicted for each example. This restric-
tion imposes strong global constraints that make the task significantly harder. As for the multillabel
case, there are many definitions of F -measures for multiclass classification, and in fact several
definitions for the micro-F -measure itself. We will focus on the following one, which is used in in-
formation extraction (e.g. in the BioNLP challenge [12]). Given L class labels, we will assume that
label 1 corresponds to a “default” class, the prediction of which is considered as not important. In
information extraction, the “default” class corresponds to the (majority) case where no information
should be extracted. Then, a false negative is an example (x, y) such that y 6= 1 and h(x) 6= y, while
a false positive is an example (x, y) such that y = 1 and h(x) 6= y. This micro-F -measure, denoted
mcFβ can be written as:

(multiclass–micro) mcFβ(e) =
(1 + β2)(1− P1 −

∑L
k=2 e2k−1)

(1 + β2)(1− P1)−
∑L
k=2 e2k−1 + e1

.

Once again, this kind of micro-Fβ-measure is pseudo-linear with respect to e.

Remark 2 (Training and generalization performance) Our results concern a fixed distribution
µ, while the goal is to find a classifier with high generalization performance. With our notation, our
results apply to µ = P or µ = P̂, and our implicit goal is to perform empirical risk minimization-
type learning, that is, to find a classifier with high value of F P

β

(
EP(h)

)
by maximizing its empirical

counterpart F P̂
β

(
EP̂(h)

)
(the superscripts here make the underlying distribution explicit).

Remark 3 (Expected Utility Maximization (EUM) vs Decision-Theoretic Approach (DTA))
Nan et al. [15] propose two possible definitions of the generalization performance in terms of
Fβ-scores. In the first framework, called EUM, the population-level Fβ-score is defined as the
Fβ-score of the population-level error profiles. In contrast, the Decision-Theoretic approach defines
the population-level Fβ-score as the expected value of the Fβ-score over the distribution of test sets.
The EUM definition of generalization performance matches our framework using µ = P: in that
sense, we follow the EUM framework. Nonetheless, regardless of how we define the generalization
performance, our results can be used to maximize the empirical value of the Fβ-score.

3 Optimizing F -Measures by Reduction to Cost-Sensitive Classification

The F -measures presented above are non-linear aggregations of false negative/positive probabilities
that cannot be written in the usual expected loss minimization framework; usual learning algorithms
are thus, intrinsically, not designed to optimize this kind of performance metrics.
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In this section, we show in Proposition 4 that the optimal classifier for a cost-sensitive classification
problem with label dependent costs [7, 24] is also an optimal classifier for the pseudo-linear F -
measures (within a specific, yet arbitrary classifier setH). In cost-sensitive classification, each entry
of the error profile is weighted by a non-negative cost, and the goal is to minimize the weighted
average error. Efficient, consistent algorithms exist for such cost-sensitive problems [1, 22, 21].
Even though the costs corresponding to the optimal F -score are not known a priori, we show in
Proposition 5 that we can approximate the optimal classifier with approximate costs. These costs,
explicitly expressed in terms of the optimal F -score, motivate a practical algorithm.

3.1 Reduction to Cost-Sensitive Classification

In this section, F : D ⊂ Rd → R is a fixed pseudo-linear function. We denote by a : R → Rd the
function mapping values of F to the corresponding hyperplane of Theorem 1. We assume that the
distribution µ is fixed, as well as the (arbitrary) set of classifier H. We denote by E (H) the closure
of the image of H under E, i.e. E (H) = cl({E(h) , h ∈ H}) (the closure ensures that E (H) is
compact and that minima/maxima are well-defined), and we assume E (H) ⊆ D. Finally, for the
sake of discussion with cost-sensitive classification, we assume that a(t) ∈ Rd+ for any e ∈ E (H),
that is, lower values of errors entail higher values of F .

Proposition 4 Let F ? = max
e′∈E(H)

F (e′). We have: e ∈ argmin
e′∈E(H)

〈
a
(
F ?
)
, e′
〉
⇔ F (e) = F ?

Proof Let e? ∈ argmaxe′∈E(H) F (e′), and let a? = a(F (e?)) = a
(
F ?
)
. We first notice that

pseudo-linearity implies that the set of e ∈ D such that 〈a?, e〉 = 〈a?, e?〉 corresponds to the
level set {e ∈ D|F (e) = F (e?) = F ?}. Thus, we only need to show that e? is a minimizer of
e′ 7→ 〈a?, e′〉 in E (H). To see this, we notice that pseudo-linearity implies

∀e′ ∈ D, F (e?) ≥ F (e′)⇒ 〈a?, e?〉 ≤ 〈a?, e′〉
from which we immediately get e? ∈ argmine′∈E(H) 〈a?, e′〉 since e? maximizes F in E (H). �

The proposition shows that a
(
F ?
)

are the costs that should be assigned to the error profile in order
to find the F -optimal classifier in H. Hence maximizing F amounts to minimizing

〈
a
(
F ?
)
,E(h)

〉
with respect to h, that is, amounts to solving a cost-sensitive classification problem. The costs a

(
F ?
)

are, however, not known a priori (because F ? is not known in general). The following result shows
that having only approximate costs is sufficient to have an approximately F -optimal solution, which
gives us the main step towards a practical solution:

Proposition 5 Let ε0 ≥ 0 and ε1 ≥ 0, and assume that there exists Φ > 0 such that for all
e, e′ ∈ E (H) satisfying F (e′) > F (e), we have:

F (e′)− F (e) ≤ Φ 〈a(F (e′)) , e− e′〉 . (1)
Then, let us take e? ∈ argmaxe′∈E(H) F (e′), and denote a? = a(F (e?)). Let furthermore g ∈ Rd+
and h ∈ H satisfying the two following conditions:

(i) ‖ g − a? ‖2≤ ε0 (ii) 〈g,E(h)〉 ≤ min
e′∈E(H)

〈g, e′〉+ ε1 .

We have: F (E(h)) ≥ F (e?)− Φ · (2ε0M + ε1) , where M = max
e′∈E(H)

‖ e′ ‖2.

Proof Let e′ ∈ E (H). By writing 〈g, e′〉 = 〈g − a?, e′〉+ 〈a?, e′〉 and applying Cauchy-Schwarz
inequality to 〈g − a?, e′〉 we get 〈g, e′〉 ≤ 〈a?, e′〉+ ε0M using condition (i). Consequently

min
e′∈E(H)

〈g, e′〉 ≤ min
e′∈E(H)

〈a?, e′〉+ ε0M = 〈a?, e?〉+ ε0M (2)

Where the equality is given by Proposition 4. Now, let e = E(h), assuming that classifier h satisfies
condition (ii). Using 〈a?, e〉 = 〈a? − g, e〉+ 〈g, e〉 and Cauchy-Shwarz, we obtain:

〈a?, e〉 ≤ 〈g, e〉+ ε0M ≤ min
e′∈E(H)

〈g, e′〉+ ε1 + ε0M ≤ 〈a?, e?〉+ ε1 + 2ε0M ,

where the first inequality comes from condition (ii) and the second inequality comes from (2). The
final result is obtained by plugging this inequality into (1). �
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Before discussing this result, we first give explicit values of a and Φ for pseudo-linear F -measures:

Proposition 6 Fβ ,mFβ andmcFβ defined in Section 2 satisfy the conditions of Proposition 5 with:

(binary) Fβ : Φ =
1

β2P1
and a : t ∈ [0, 1] 7→ (1+β2−t, t, 0, 0) .

(multilabel–micro) mFβ : Φ =
1

β2
∑L
k=1 Pk

and ai(t) =

{
1 + β2 − t if i is odd
t if i is even

.

(multiclass–micro) mcFβ : Φ =
1

β2(1− P1)
and ai(t) =


1 + β2 − t if i is odd and i 6= 1

t if i = 1

0 otherwise
.

Proof We prove the result for the Fβ-measure in binary classification. The other cases are similar.

Since Fβ is fractional-linear as a function of the error profile, it is pseudo-linear on the open convex
set {e ∈ Rd|(1 + β2)P1 − e1 + e2 > 0} (i.e. when the denominator is strictly positive). Moreover,
for every set of classifiersH, we have E (H) ⊆ D0 = [O,P1]× [0, 1− P1]× [1− P1]× [1, P1].

Now, by the definition of Fβ , we have

∀e ∈ D0, Fβ(e) ≤ t ⇔ (1 + β2 − t)e1 + te2 + (1 + β2)P1(t− 1) ≥ 0 ,

and the equation still holds by reversing the inequalities. We thus have that:
a(t) = (1 + β2 − t, t, 0, 0) satisfy the condition of Theorem 1 (with b(t) = (1 + β2)P1(t− 1)).

We now show that the condition of Equation 1 is satisfied for a(t) = (1 + β2 − t, t, 0, 0) and all
e, e′ ∈ D0 by taking Φ = 1

β2P1
. To that end, let e and e′ in E (H) and t and t′ in R such that

t′ = Fβ(e′) > Fβ(e) = t. Denote by ε the quantity 〈a(t′), e− e′〉. Note that ε > 0 and that:

0 = 〈a(t), e〉 + b(t) = (1 + β2 − t)e1 + te2 + (1 + β2)P1(t− 1)

0 = 〈a(t′), e′〉 + b(t′) = (1 + β2 − t′)e′1 + t′e′2 + (1 + β2)P1(t′ − 1)

ε = 〈a(t′), e− e′〉 = (1 + β2 − t′)e1 + t′e2 + (1 + β2)P1(t′ − 1)

where the two first equalities are given by the definitions of a and b, and the last one is obtained
using 〈a(t′), e− e′〉 = 〈a(t′), e〉+ b(t′)− 〈a(t′), e′〉 − b(t′) and using the second equality.

Taking the difference of the third equality and the first, we obtain:

ε = (t− t′)e1 + (t′ − t)e2 + (1 + β2)P1(t′ − t)

From which we get, since (1 + β2)P1 − e1 + e2 > 0 for e ∈ D0:

Fβ(e′)− Fβ(e) = t′ − t = ε
(
(1 + β2)P1 − e1 + e2

)−1 ≤ ε

β2P1
,

because β2P1 the minimum of (1 +β2)P1− e1 + e2 onD0 (taking e1 = P1 and e2 = 0). We obtain
the result since ε = 〈a(t′), e− e′〉 by definition. �

Note that the result on Fβ for binary classification can be used for the macro-Fβ-measure in multil-
abel classification when training one binary classifier per label. Also, the relative costs (1 + β2 − t)
for false negative and t for false positive imply that for the F1-measure, the optimal classifier is the
solution of the cost-sensitive binary problem with costs (1 − F ?/2), F ?/2. If we take H as the
set of all measurable functions, the Bayes-optimal classifier for this cost is to predict class 1 when
µ(y = 1|x) ≥ F ?/2 (see e.g. [22]). Our propositions thus extends this known result [13] to the
non-asymptotic regime and to an arbitrary set of classifiers.

3.2 Practical Algorithm

Our results suggests that the optimization of pseudo-linear F -measures should wrap cost-sensitive
classification algorithms, used in an inner loop, by an outer loop setting the appropriate costs.
In practice, since the function a : [0, 1] → Rd, which assigns costs to probabilities of error, is
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Lipschitz-continuous (with constant 2 on our examples), it is sufficient to discretize the interval
[0, 1] to have a set of evenly spaced values {t1, ..., tC} (say, tj+1− tj = ε0/2) to obtain an ε0-cover
{a(t1), ...,a(tC)} of the possible costs. Using the approximate guarantee of Proposition 5, learning
a cost-sensitive classifier for each a(ti) and selecting the one with optimal F -measure a posteriori
is sufficient to obtain a MΦ(2ε0 + ε1)-optimal solution, where ε1 is the approximation guarantee of
the cost-sensitive classification algorithm.

This meta-algorithm can be instantiated with any learning algorithm and different F -measures. In
our experiments of Section 4, we first use it with cost-sensitive binary classification algorithms: Sup-
port Vector Machines (SVMs) and logistic regression, both with asymmetric costs [2], to optimize
the F1-measure in binary classification and the macro-F1-score in multilabel classification (training
one-vs-rest classifiers). Musicant et al. [14] also advocated for SVMs with asymmetric costs for
F1-measure optimization in binary classification. However, their argument, specific to SVMs, is not
methodological but technical (relaxation of the maximization problem).

4 Experiments

The goal of this section is to give illustration of the algorithms suggested by the theory. First, our re-
sults suggest that cost-sensitive classification algorithms may be preferable to the more usual proba-
bility thresholding method. We compare cost-sensitive classification, as implemented by SVMs with
asymmetric costs, to thresholded logistic regression, with linear classifiers. Besides, the structured
SVM approach to F1-measure maximization SVMperf [11] provides another baseline. For complete-
ness, we also report results for thresholded SVMs, cost-sensitive logistic regression, and for the
thresholded versions of SVMperf and the cost-sensitive algorithms (a thresholded algorithm means
that the decision threshold is tuned a posteriori by maximizing the F1-score on the validation set).

Cost-sensitive SVMs and logistic regression (LR) differ in the loss they optimize (weighted hinge
loss for SVMs, weighted log-loss for LR), and even though both losses are calibrated in the cost-
sensitive setting (that is, converging toward a Bayes-optimal classifier as the number of examples and
the capacity of the class of function grow to infinity) [22], they behave differently on finite datasets
or with restricted classes of functions. We may also note that asymptotically, the Bayes-classifier for
a cost-sensitive binary classification problem is a classifier which thresholds the posterior probability
of being class 1. Thus, all methods but SVMperf are asymptotically equivalent, and our goal here is
to analyze their non-asymptotic behavior on a restricted class of functions.

Although our theoretical developments do not indicate any need to threshold the scores of classifiers,
the practical benefits of a post-hoc adjustment of these scores can be important in terms of F1-
measure maximization. The reason is that the decision threshold given by cost-sensitive SVMs or
logistic regression might not be optimal in terms of the cost-sensitive 0/1-error, as already noted in
cost-sensitive learning scenarios [10, 2]. This is illustrated in Figure 1, on the didactic “Galaxy”
distribution, consisting in four clusters of 2D-examples, indexed by z ∈ {1, 2, 3, 4}, with prior
probability P(z = 1) = 0.01, P(z = 2) = 0.1, P(z = 3) = 0.001, and P(z = 4) = 0.889,
with respective class conditional probabilities P(y = 1|z = 1) = 0.9, P(y = 1|z = 2) = 0.09,
P(y = 1|z = 3) = 0.9, and P(y = 1|z = 4) = 0. We drew a very large sample (100,000 examples)
from the distribution, whose optimal F1-measure is 67.5%. Without tuning the decision threshold
of the classifiers, the best F1-measure among the classifiers is 55.3%, obtained by SVMperf, whereas
tuning thresholds enables to reach the optimal F1-measure for SVMperf and cost-sensitive SVM.
On the other hand, LR is severely affected by the non-linearity of the level sets of the posterior
probability distribution, and does not reach this limit (best F1-score of 48.9%). Note also that even
with this very large sample size, the SVM and LR classifiers are very different.

The datasets we use are Adult (binary classification, 32,561/16,281 train/test ex., 123 features),
Letter (single label multiclass, 26 classes, 20,000 ex., 16 features), and two text datasets: the
20 Newsgroups dataset News201 (single label multiclass, 20 classes, 15,935/3,993 train/test ex.,
62,061 features, scaled version) and Siam2 (multilabel, 22 classes, 21,519/7,077 train/test ex.,

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.
html#news20

2http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel.
html#siam-competition2007
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Figure 1: Decision boundaries for the galaxy dataset before and after thresholding the classifier
scores of SVMperf (dotted, blue), cost-sensitive SVM (dot-dashed, cyan), logistic regression (solid,
red), and cost-sensitive logistic regression (dashed, green). The horizontal black dotted line is an
optimal decision boundary.

Table 1: (macro-)F1-measures (in %). Options: T stands for thresholded, CS for cost-sensitive and
CS&T for cost-sensitive and thresholded.

Baseline SVMperf SVMperf SVM SVM SVM LR LR LR
Options – T T CS CS&T T CS CS&T

Adult 67.3 67.9 67.8 67.9 67.8 67.8 67.9 67.8
Letter 52.5 60.8 63.1 63.2 63.8 61.2 59.9 62.1
News20 59.5 78.7 82.0 81.7 82.4 81.2 81.1 81.5
Siam 49.4 52.8 52.6 51.9 54.9 53.9 53.8 54.4

30,438 features). All datasets except for News20 and Siam are obtained from the UCI repository3.
For each experiment, the training set was split at random, keeping 1/3 for the validation set used to
select all hyper-parameters, based on the maximization of the F1-measure on this set. For datasets
that do not come with a separate test set, the data was first split to keep 1/4 for test. The algorithms
have from one to three hyper-parameters: (i) all algorithms are run with L2 regularization, with a
regularization parameter C ∈ {2−6, 2−5, ..., 26}; (ii) for the cost-sensitive algorithms, the cost for
false negatives is chosen in { 2−tt , t ∈ {0.1, 0.2, ..., 1.9}} of Proposition 6 4; (iii) for the thresholded
algorithms, the threshold is chosen among all the scores of the validation examples.

The library LibLinear [9] was used to implement SVMs5 and Logistic Regression (LR). A constant
feature with value 100 was added to each dataset to mimic an unregularized offset.

The results, averaged over five random splits, are reported in Table 1. As expected, the difference
between methods is less extreme than on the artificial “Galaxy” dataset. The Adult dataset is an
example where all methods perform nearly identically; the surrogate loss used in practice seems
unimportant. On the other datasets, we observe that thresholding has a rather large impact, and
especially for SVMperf; this is also true for the other classifiers: the unthresholded SVM and LR with
symmetric costs (unreported here) were not competitive as well. The cost-sensitive (thresholded)
SVM outperforms all other methods, as suggested by the theory. It is probably the method of choice
when predictive performance is a must.

On these datasets, thresholded LR behaves reasonably well considering its relatively low computa-
tional cost. Indeed, LR is much faster than SVM: in their thresholded cost-sensitive versions, the
timings for LR on News20 and Siam datasets are 6,400 and 8,100 seconds, versus 255,000 and
147,000 seconds for SVM respectively. Note that we did not try to optimize the running time in our
experiments. In particular, considerable time savings could be achieved by using warm-start.

3https://archive.ics.uci.edu/ml/datasets.html
4We take t greater than 1 in case the training asymmetry would be different from the true asymmetry [2].
5The maximum number of iteration for SVMs was set to 50,000 instead of the default 1,000.
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5 Conclusion

We presented an analysis of F -measures, leveraging the property of pseudo-linearity of some of
them to obtain a strong non-asymptotic reduction to cost-sensitive classification. The results hold
for any dataset and for any class of function. Our experiments on linear functions confirm theory, by
demonstrating the practical interest of using cost-sensitive classification algorithms rather than using
a simple probability thresholding. However, they also reveal that, for F -measure maximization,
thresholding the solutions provided by cost-sensitive algorithms further improves performances.

Algorithmically and empirically, we only explored the simplest case of our result (Fβ-measure in
binary classification and macro-Fβ-measure in multilabel classification), but much more remains to
be done. First, the strategy we use for searching the optimal costs is a simple uniform discretization
procedure, and more efficient exploration techniques could probably be developped. Second, al-
gorithms for the optimization of the micro-Fβ-measure in multilabel classification received interest
recently as well [8, 19], but are for now limited to the selection of threshold after any kind of train-
ing. New methods for that measure may be designed from our reduction; we also believe that our
result can lead to progresses towards optimizing the micro-Fβ measure in multiclass classification.
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