
A Proofs

The proofs use several standard quantities and results from information theory – see Appendix B for
more details. They also make use of a several auxiliary lemmas (presented in Subsection A.1), in-
cluding a simple but key lemma (Lemma 6) which quantifies how information-constrained protocols
cannot provide information on all coordinates simultaneously.

A.1 Auxiliary Lemmas

Lemma 1. Suppose that d > 1, and for some fixed distribution Pr0(·) over the messages
w1, . . . , wm computed by an information-constrained protocol, it holds that√√√√2

d

d∑
j=1

Dkl (Pr0(w1 . . . wm)||Prj(w1 . . . wm)) ≤ B.

Then there exist some j such that

Pr(J̃ = j) ≤ 3

d
+ 2B.

Proof. By concavity of the square root, we have√√√√2

d

d∑
j=1

Dkl (Pr0(w1 . . . wm)||Prj(w1 . . . wm)) ≥ 1

d

d∑
j=1

√
2 Dkl (Pr0(w1 . . . wm)||Prj(w1 . . . wm)).

Using Pinsker’s inequality and the fact that J̃ is some function of the messages w1, . . . , wm (inde-
pendent of the data distribution), this is at least

1

d

d∑
j=1

∑
w1...wm

∣∣Pr0(w1 . . . wm)− Prj(w
1 . . . wm)

∣∣
≥ 1

d

d∑
j=1

∣∣∣∣∣ ∑
w1...wm

(
Pr0(w1 . . . wm)− Prj(w

1 . . . wm)
)

Pr
(
J̃ |w1 . . . wm

)∣∣∣∣∣
≥ 1

d

d∑
j=1

|Pr0(J̃ = j)− Prj(J̃ = j)|.

Thus, we may assume that

1

d

d∑
j=1

|Pr0(J̃ = j)− Prj(J̃ = j)| ≤ B.

The argument now uses a basic variant of the probabilistic method. If the expression above is at
most B, then for at least d/2 values of j, it holds that |Pr0( ˜J = j) − Prj(J̃ = j)| ≤ 2B. Also,
since

∑d
j=1 Pr0(J̃ = j) = 1, then for at least 2d/3 values of j, it holds that Pr0(J̃ = j) ≤ 3/d.

Combining the two observations, and assuming that d > 1, it means there must exist some value of j
such that |Pr0(J̃)−Prj(J̃ = j)| ≤ 2B, as well as Pr0(J̃ = j) ≤ 3/d, hence Prj(J̃ = j) ≤ 3

d +2B
as required.

Lemma 2. Let p, q be distributions over a product domain A1 × A2 × . . . × Ad, where each Ai
is a finite set. Suppose that for some j ∈ {1, . . . , d}, the following inequality holds for all z =
(z1, . . . , zd) ∈ A1 × . . .×Ad:

p({zi}i 6=j |zj) = q({zi}i6=j |zj).
Also, let E be an event such that p(E|z) = q(E|z) for all z. Then

p(E) =
∑
zj

p(zj)q(E|zj).
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Proof.

p(E) =
∑
z

p(z)p(E|z) =
∑
z

p(z)q(E|z)

=
∑
zj

p(zj)
∑
{zi}i6=j

p({zj}i 6=j |zj)q(E|zj , {zi}i 6=j)

=
∑
zj

p(zj)
∑
{zi}i6=j

q({zj}i 6=j |zj)q(E|zj , {zi}i6=j)

=
∑
zj

p(zj)q(E|zj).

Lemma 3 ([16], Proposition 1). Let p, q be two distributions on a discrete set, such that
maxx

p(x)
q(x) ≤ c. Then

Dkl (p(·)||q(·)) ≤ c Dkl (q(·)||p(·)) .
Lemma 4 ([16], Proposition 2 and Remark 4). Let p, q be two distributions on a discrete set, such
that maxx

p(x)
q(x) ≤ c. Also, letDχ2(p(·)||q(·)) =

∑
x

(p(x)−q(x))2
q(x) denote the χ2-divergence between

the distributions p, q. Then

Dkl (p(·)||q(·)) ≤ Dχ2 (p(·)||q(·)) ≤ 2c Dkl (p(·)||q(·)) .

Lemma 5. Suppose we throw n balls independently and uniformly at random into d > 1 bins,
and let K1, . . .Kd denote the number of balls in each of the d bins. Then for any ε ≥ 0 such that
ε ≤ min{ 16 ,

1
2 log(d) ,

d
3n}, it holds that

E
[
exp

(
εmax

j
Kj

)]
< 13.

Proof. Each Kj can be written as
∑n
i=1 1(ball i fell into bin j), and has expectation n/d. There-

fore, by a standard multiplicative Chernoff bound, for any γ ≥ 0,

Pr
(
Kj > (1 + γ)

n

d

)
≤ exp

(
− γ2

2(1 + γ)

n

d

)
.

By a union bound, this implies that

Pr

(
max
j
Kj > (1 + γ)

n

d

)
≤

d∑
j=1

Pr
(
Kj > (1 + γ)

n

d

)
≤ d exp

(
− γ2

2(1 + γ)

n

d

)
.

In particular, if γ + 1 ≥ 6, we can upper bound the above by the simpler expression exp(−(1 +
γ)n/3d). Letting τ = γ + 1, we get that for any τ ≥ 6,

Pr

(
max
j
Kj > τ

n

d

)
≤ d exp

(
−τn

3d

)
. (1)

Define c = max{8, d3ε}. Using the inequality above and the non-negativity of exp(εmaxj Kj), we
have

E
[
exp(εmax

j
Kj)

]
=

∫ ∞
t=0

Pr

(
exp(εmax

j
Kj) ≥ t

)
dt

≤ c+

∫ ∞
t=c

Pr

(
exp(εmax

j
Kj) ≥ t

)
dt

= c+

∫ ∞
t=c

Pr

(
max
j
Kj ≥

log(t)

ε

)
dt

= c+

∫ ∞
t=c

Pr

(
max
j
Kj ≥

log(t)d

εn

n

d

)
dt
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Since we assume ε ≤ d/3n and c ≥ 8, it holds that exp(6εn/d) ≤ exp(2) < 8 ≤ c, which implies
log(c)d/εn ≥ 6. Therefore, for any t ≥ c, it holds that log(t)d/εn ≥ 6. This allows us to use
Eq. (1) to upper bound the expression above by

c+ d

∫ ∞
t=c

exp

(
− log(t)d

3εn

n

d

)
dt = c+ d

∫ ∞
t=c

t−1/3εdt.

Since we assume ε ≤ 1/6, we have 1/(3ε) ≥ 2, and therefore we can solve the integration to get

c+
d

1
3ε − 1

c1−
1
3ε ≤ c+ dc1−

1
3ε .

Using the value of c, and since 1− 1
3ε ≤ −1, this is at most

max{8, d3ε}+ d ∗
(
d3ε
)1− 1

3ε = max{8, d3ε}+ d3ε.

Since ε ≤ 1/2 log(d), this is at most

max{8, exp(3/2)}+ exp(3/2) < 13

as required.

Lemma 6. LetZ1, . . . , Zd be independent random variables, and letW be a random variable which
can take at most 2b values. Then

1

d

d∑
j=1

I(W ;Zj) ≤
b

d
.

Proof. We have
1

d

d∑
j=1

I(W ;Zj) =
1

d

d∑
j=1

(H(Zj)−H(Zj |W )) .

Using the fact that
∑d
j=1H(Zj |W ) ≥ H(Z1 . . . , Zd|W ), this is at most

1

d

d∑
j=1

H(Zj)−
1

d
H(Z1 . . . Zd|W )

=
1

d

d∑
j=1

H(Zj)−
1

d
(H(Z1 . . . Zd)− I(Z1 . . . Zd;W ))

=
1

d
I(Z1 . . . Zd;W ) +

1

d

 d∑
j=1

H(Zj)−H(Z1 . . . Zd)

 . (2)

Since Z1 . . . Zd are independent,
∑d
j=1H(Zj) = H(Z1 . . . Zd), hence the above equals

1

d
I(Z1 . . . Zd;W ) =

1

d
(H(W )−H(W |Z1 . . . Zd)) ≤

1

d
H(W ),

which is at most b/d since W is only allowed to have 2b values.

A.2 Proof of Thm. 2

We will actually prove a more general result, stating that for any (b, n,m) protocol,

Prj(J̃ = j) ≤ 3

d
+ 14.3

√
mn2n

ρ2b

d
.

The result stated in the theorem follows in the case n = 1.

The proof builds on the auxiliary lemmas presented in Appendix A.1.
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On top of the distributions Prj(·) defined in the hide-and-seek problem (Definition 2), we define an
additional ‘reference’ distribution Pr0(·), which corresponds to the instances x chosen uniformly at
random from {−1,+1}d (i.e. there is no biased coordinate).

Let w1, . . . , wm denote the messages computed by the protocol. It is enough to prove that

2

d

d∑
j=1

Dkl

(
Pr0(w1 . . . wm)

∣∣∣∣Prj(w
1 . . . wm)

)
≤ 51mn2nρ2b/d, (3)

since then by applying Lemma 1, we get that for some j, Prj(J̃ = j) ≤ (3/d) +

2
√

51mn2nρ2b/d ≤ (3/d) + 14.3
√
mn2nρ2b/d as required.

Using the chain rule, the left hand side in Eq. (3) equals

2

d

d∑
j=1

m∑
t=1

Ew1...wt−1∼Pr0

[
Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
)]

= 2

m∑
t=1

Ew1...wt−1∼Pr0

1

d

d∑
j=1

Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
) (4)

Let us focus on a particular choice of t and values w1 . . . wt−1. To simplify the presentation, we
drop the t superscript from the message wt, and denote the previous messages w1 . . . wt−1 as ŵ.
Thus, we consider the quantity

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) . (5)

Recall that w is some function of ŵ and a set of n independent instances received in the current
round. Let xj denote the vector of values at coordinate j across these n instances. Clearly, under
Prj , every xi for i 6= j is uniformly distributed on {−1,+1}n, whereas each entry of xj equals 1
with probability 1

2 + ρ, and −1 otherwise.

First, we argue that by Lemma 2, for any w, ŵ, we have

Prj(w|ŵ) = Pr0(w|ŵ)
∑
xj

Prj(xj |ŵ) =
∑
xj

Pr0(w|ŵ)Prj(xj |ŵ) =
∑
xj

Pr0(w|ŵ)Prj(xj).

(6)
This follows by applying the lemma on p(·) = Prj(·|ŵ),q(·) = Pr0(·|ŵ) and Ai = {−1,+1}n
(i.e. the vector of values at a single coordinate i across the n data points), and noting the xj is
independent of ŵ. The lemma’s conditions are satisfied since xi for i 6= j has the same distribution
under Pr0(·|ŵ) and Prj(·|ŵ), and also w is only a function of x1 . . .xd and ŵ.

Using Lemma 3 and Lemma 4, we have the following.

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) ≤ max
w

(
Pr0(w|ŵ)

Prj(w|ŵ)

)
Dkl (Prj(w|ŵ)||Pr0(w|ŵ))

≤ max
w

(
Pr0(w|ŵ)

Prj(w|ŵ)

)
Dχ2 (Prj(w|ŵ)||Pr0(w|ŵ))

= max
w

(
Pr0(w|ŵ)

Prj(w|ŵ)

)∑
w

(Prj(w|ŵ)− Pr0(w|ŵ))
2

Pr0(w|ŵ)
(7)

Let us consider the max term and the sum seperately. Using Eq. (6) and the fact that ρ ≤ 1/4n, we
have

max
w

(
Pr0(w|ŵ)

Prj(w|ŵ)

)
= max

w

(∑
xj

Pr0(w|xj , ŵ)Pr0(xj)∑
xj

Pr0(w|xj , ŵ)Prj(xj)

)

≤ max
xj

(
Pr0(xj)

Prj(xj)

)
=

(
1/2

1/2− ρ

)n
≤ (1 + 4ρ)n ≤ (1 + 1/n)n ≤ exp(1). (8)
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As to the sum term in Eq. (7), using Eq. (6) and the Cauchy-Schwartz inequality, we have

∑
w

(Prj(w|ŵ)− Pr0(w|ŵ))
2

Pr0(w|ŵ)
=
∑
w

(∑
xj

Pr0(w|xj , ŵ) (Prj(xj)− Pr0(xj))
)2

Pr0(w|ŵ)

=
∑
w

(∑
xj

(Pr0(w|xj , ŵ)− Pr0(w|ŵ)) (Prj(xj)− Pr0(xj))
)2

Pr0(w|ŵ)

≤
∑
w

∑
xj

(Pr0(w|xj , ŵ)− Pr0(w|ŵ))
2∑

xj
(Prj(xj)− Pr0(xj))

2

Pr0(w|ŵ)

=
∑
xj

(Prj(xj)− Pr0(xj))
2
∑
xj

Dχ2 (Pr0(w|xj , ŵ)||Pr0(w|ŵ)) .

(9)

where we used the definition of χ2-divergence as specified in Lemma 4. Again, we will consider
each sum separately. Applying Lemma 4 and Eq. (6), we have

Dχ2 (Pr0(w|xj , ŵ)||Pr0(w|ŵ)) ≤ 2 max
w

(
Pr0(w|xj , ŵ)

Pr0(w|ŵ)

)
Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ))

= 2 max
w

(
Pr0(w|xj , ŵ)∑

xj
Pr0(w|xj , ŵ)Pr0(xj)

)
Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ))

= 2 max
w

(
Pr0(w|xj , ŵ)

1
2n

∑
xj

Pr0(w|xj , ŵ)

)
Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ))

≤ 2n+1Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ)) (10)

Moreover, by definition of Pr0 and Prj , and using the fact that each coordinate of xj takes values
in {−1,+1}, we have

∑
xj

(Prj(xj)− Pr0(xj))
2

=
∑
xj

(
n∏
i=1

(
1

2
+ ρxj,i

)
− 1

2n

)2

=
1

4n

∑
xj

(
n∏
i=1

(1 + 2ρxj,i)− 1

)2

=
1

4n

∑
xj

(
n∏
i=1

(1 + 2ρxj,i)
2 − 2

n∏
i=1

(1 + 2ρxj,i) + 1

)

=
1

4n

 n∏
i=1

∑
xj,i

(1 + 2ρxj,i)
2 − 2

n∏
i=1

∑
xj,i

(1 + 2ρxj,i) + 2n


=

1

4n
(
(2 + 8ρ2)n − 2n+1 + 2n

)
=

1

2n
(
(1 + 4ρ2)n − 1

)
=

1

2n

((
1 +

4nρ2

n

)n
− 1

)
≤ 1

2n
(
exp(4nρ2)− 1

)
≤ 4.6

2n
nρ2, (11)

where in the last inequality we used the fact that 4nρ2 ≤ 4n(1/4n)2 ≤ 0.25, and exp(x) ≤
1 + 1.14x for any x ∈ [0, 0.25]. Plugging in Eq. (10) and Eq. (11) back into Eq. (9), we get that

∑
w

(Prj(w|ŵ)− Pr0(w|ŵ))
2

Pr0(w|ŵ)
≤ 9.2nρ2

∑
xj

Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ)) .

Plugging this in turn, together with Eq. (8), into Eq. (7), we get overall that

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) ≤ 9.2 exp(1)nρ2
∑
xj

Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ)) .
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This expression can be equivalently written as

9.2 exp(1)n2nρ2
∑
xj

1

2n
Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ))

= 9.2 exp(1)n2nρ2
∑
xj

Pr0(xj |ŵ)Dkl (Pr0(w|xj , ŵ)||Pr0(w|ŵ))

= 9.2 exp(1)n2nρ2IPr0(·|ŵ)(w;xj)

where IPr0(·|ŵ)(w;xj) denotes the mutual information between w and xj , under the (uniform) dis-
tribution on xj induced by Pr0(·|ŵ). This allows us to upper bound Eq. (5) as follows:

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) ≤ 9.2 exp(1)n2nρ2
1

d

d∑
j=1

IPr0(·|ŵ)(w;xj).

Since x1, . . . ,xd are independent of each other and w contains at most b bits, we can use the key
Lemma 6 to upper bound the above by 9.2 exp(1)n2nρ2b/d.

To summarize, this expression constitutes an upper bound on Eq. (5), i.e. on any in-
dividual term inside the expectation in Eq. (4). Thus, we can upper bound Eq. (4) by
18.4 exp(1)mn2nρ2b/d < 51mn2nρ2b/d. This shows that Eq. (3) indeed holds, which as ex-
plained earlier implies the required result.

A.3 Proof of Thm. 3

The proof builds on the auxiliary lemmas presented in Appendix A.1. It begins similarly to the proof
of Thm. 2, but soon diverges.

On top of the distributions Prj(·) defined in the hide-and-seek problem (Definition 2), we define an
additional ‘reference’ distribution Pr0(·), which corresponds to the instances x chosen uniformly at
random from {−1,+1}d (i.e. there is no biased coordinate).

Let w1, . . . , wm denote the messages computed by the protocol. To show the upper bound, it is
enough to prove that

2

d

d∑
j=1

Dkl

(
Pr0(w1 . . . wm)

∣∣∣∣Prj(w
1 . . . wm)

)
≤ min

{
60
mnρb

d
, 6mnρ2

}
(12)

since then by applying Lemma 1, we get that for some j, Prj(J̃ = j) ≤ (3/d) +

2
√

min{60mnρb/d, 6mnρ2} ≤ (3/d) + 5
√
mnmin{10ρb/d, ρ2} as required.

Using the chain rule, the left hand side in Eq. (12) equals

2

d

d∑
j=1

m∑
t=1

Ew1...wt−1∼Pr0

[
Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
)]

= 2

m∑
t=1

Ew1...wt−1∼Pr0

1

d

d∑
j=1

Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
) (13)

Let us focus on a particular choice of t and values w1 . . . wt−1. To simplify the presentation, we
drop the t superscript from the message wt, and denote the previous messages w1 . . . wt−1 as ŵ.
Thus, we consider the quantity

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) . (14)

Recall that w is some function of ŵ and a set of n independent instances received in the current
round. Let xj denote the vector of values at coordinate j across these n instances. Clearly, under
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Prj , every xi for i 6= j is uniformly distributed on {−1,+1}n, whereas each entry of xj equals 1
with probability 1

2 + ρ, and −1 otherwise.

We now show that Eq. (14) can be upper bounded in two different ways, one bound being 30nρb/d
and the other being 3nρ2. Combining the two, we get that

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) ≤ min

{
30
nρb

d
, 3nρ2

}
. (15)

Plugging this inequality back in Eq. (13), we validate Eq. (12), from which the result follows.

The 3nρ2 bound

This bound essentially follows only from the fact that xj is noisy, and not from the algorithm’s
information constraints, and is thus easier to obtain.

First, we have by Lemma 2 that for any w, ŵ,

Prj(w|ŵ) =
∑
xj

Pr0(w|ŵ)Prj(xj |ŵ) =
∑
xj

Pr0(w|ŵ)Prj(xj)

(this is the same as Eq. (6), and the justification is the same).

Using this inequality, the definition of relative entropy, and the log-sum inequality, we have

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) =
1

d

d∑
j=1

∑
w

Pr0(w|ŵ) log

(
Pr0(w|ŵ)

Prj(w|ŵ)

)

=
1

d

d∑
j=1

∑
w

Pr0(w|ŵ)

∑
xj

Pr0(xj)

 log

(∑
xj

Pr0(w|xj , ŵ)Pr0(xj)∑
xj

Pr0(w|xj , ŵ)Prj(xj)

)

≤ 1

d

d∑
j=1

∑
w

Pr0(w|ŵ)
∑
xj

Pr0(xj) log

(
Pr0(w|xj , ŵ)Pr0(xj)

Pr0(w|xj , ŵ)Prj(xj)

)

=
1

d

d∑
j=1

∑
w

Pr0(w|ŵ)
∑
xj

Pr0(xj) log

(
Pr0(xj)

Prj(xj)

)

=
1

d

d∑
j=1

∑
xj

Pr0(xj) log

(
Pr0(xj)

Prj(xj)

)

=
1

d

d∑
j=1

Dkl (Pr0(xj)||Prj(xj)) .

This relative entropy is between the distribution of n independent Bernoulli trials with parameter
1/2, and n independent Bernoulli trials with parameter 1/2 + ρ. This is easily verified to equal n
times the relative entropy for a single trial, which equals (by definition of relative entropy)

1

2
log

(
1/2

1/2− ρ

)
+

1

2
log

(
1/2

1/2 + ρ

)
= −1

2
log
(
1− 4ρ2

)
≤ 8 log(4/3)ρ2,

where we used the fact that ρ ≤ 1/4n ≤ 1/4, and the inequality − log(1 − x) ≤ 4 log(4/3)x for
x ∈ [0, 1/4]. Overall, we get that

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) ≤ 8 log(4/3)nρ2 ≤ 3nρ2.

The 30nρb/d bound

To prove this bound, it will be convenient for us to describe the sampling process of xj in a slightly
more complex way, as follows3:

3We suspect that this construction can be simplified, but were unable to achieve this without considerably
weakening the bound.

16



• We let v ∈ {0, 1}n be an auxiliary random vector with independent entries, where each
vi = 1 with probability 4ρ, and 0 otherwise.

• Under Pr0 and Pri for i 6= j, we assume that xj is drawn uniformly from {−1,+1}n
regardless of the value of v.

• Under Prj , we assume that each entry xj,l is independently sampled (in a manner depend-
ing on v) as follows:

– For each l such that vl = 1, we pick xj,l to be 1 with probability 3/4, and −1 other-
wise.

– For each l such that vl = 0, we pick xj,l to be 1 or −1 with probability 1/2.

Note that this induces the same distribution on xj as before: Each individual entry xj,l is independent
and satisfies Prj(xj,l = 1) = 4ρ ∗ 3

4 + (1− 4ρ) ∗ 1
2 = 1

2 + ρ.

Having finished with these definitions, we re-write Eq. (14) as

1

d

d∑
j=1

Dkl (Ev [Pr0(w|v, ŵ)] ||Ev [Prj(w|v, ŵ)]) .

Since the relative entropy is jointly convex in its arguments, and v is a fixed random variable, we
have by Jensen’s inequality that this is at most

Ev

1

d

d∑
j=1

Dkl (Pr0(w|v, ŵ)||Prj(w|v, ŵ))

 .
Now, note that if v = 0 (i.e. the zero-vector), then the distribution of x1, . . . ,xd is the same under
both Pr0 and any Prj . Since w is a function of x1, . . . ,xd, it follows that the distribution of w will
be the same under both Prj and Pr0, and therefore the relative entropy terms will be zero. Hence,
we can trivially re-write the above as

Ev

1v 6=0
1

d

d∑
j=1

Dkl (Pr0(w|v, ŵ)||Prj(w|v, ŵ))

 . (16)

where 1v 6=0 is an indicator function.

We can now use Lemma 2, where p(·) = Prj(·|v, ŵ),q(·) = Pr0(·|v, ŵ) and Ai = {−1,+1}n (i.e.
the vector of values at a single coordinate i across the n data points). The lemma’s conditions are
satisfied since xi for i 6= j has the same distribution under Pr0(·|v, ŵ) and Prj(·|v, ŵ), and also w
is only a function of x1 . . .xd and ŵ. Thus, we can rewrite Eq. (16) as

Ev

1v 6=0
1

d

d∑
j=1

Dkl

Pr0(w|v, ŵ)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
xj

Pr0(w|xj ,v, ŵ)Prj(xj |v, ŵ)

 .
Using Lemma 3, we can reverse the expressions in the relative entropy term, and upper bound the
above by

Ev

1v 6=0
1

d

d∑
j=1

(
max
w

Pr0(w|v, ŵ)∑
xj

Pr0(w|xj ,v, ŵ)Prj(xj |v, ŵ)

)
Dkl

∑
xj

Pr0(w|xj ,v, ŵ)Prj(xj |v, ŵ)

∣∣∣∣∣∣
∣∣∣∣∣∣ Pr0(w|v, ŵ)

 .
(17)

The max term equals

max
w

∑
xj

Pr0(w|xj ,v, ŵ)Pr0(xj |v, ŵ)∑
xj

Pr0(w|xj ,v, ŵ)Prj(xj |v, ŵ)
≤ max

xj

Pr0(xj |v, ŵ)

Prj(xj |v, ŵ)
,

and using Jensen’s inequality and the fact that relative entropy is convex in its arguments, we can
upper bound the relative entropy term by∑

xj

Prj(xj |v, ŵ)Dkl (Pr0(w|xj ,v, ŵ) || Pr0(w|v, ŵ))

≤
(

max
xj

Prj(xj |v, ŵ)

Pr0(xj |v, ŵ)

)∑
xj

Pr0(xj |v, ŵ)Dkl (Pr0(w|xj ,v, ŵ) || Pr0(w|v, ŵ)) .
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The sum in the expression above equals the mutual information between the message w and the
coordinate vector xj (seen as random variables with respect to the distribution Pr0(·|v, ŵ)). Writing
this as IPr0(·|v,ŵ)(w;xj), we can thus upper bound Eq. (17) by

Ev

1v 6=0
1

d

d∑
j=1

(
max
xj

Pr0(xj |v, ŵ)

Prj(xj |v, ŵ)

)(
max
xj

Prj(xj |v, ŵ)

Pr0(xj |v, ŵ)

)
IPr0(·|v,ŵ)(w;xj)


≤ Ev

1v 6=0

(
max
j,xj

Pr0(xj |v, ŵ)

Prj(xj |v, ŵ)

)(
max
j,xj

Prj(xj |v, ŵ)

Pr0(xj |v, ŵ)

)
1

d

d∑
j=1

IPr0(·|v,ŵ)(w;xj)

 .
Since {xj}j are independent of each other andw contains at most b bits, we can use the key Lemma 6
to upper bound the above by

Ev

[
1v 6=0

(
max
j,xj

Pr0(xj |v, ŵ)

Prj(xj |v, ŵ)

)(
max
j,xj

Prj(xj |v, ŵ)

Pr0(xj |v, ŵ)

)
b

d

]
.

Now, recall that for any j, xj refers to a column of n independent entries, drawn independently of
any previous messages ŵ, where under Pr0, each entry xj,i is chosen to be±1 with equal probability,
whereas under Prj each is chosen to be 1 with probability 3

4 if vi = 1, and with probability 1
2 if

vi = 0. Therefore, letting |v| denote the number of non-zero entries in v, we can upper bound the
expression above by

Ev

[
1v 6=0

(
1/2

1/4

)|v|(
3/4

1/2

)|v|
b

d

]
=

b

d
Ev

[
1v 6=03|v|

]
, (18)

To compute the expectation in closed-form, recall that each entry of v is picked independently to be
1 with probability 4ρ, and 0 otherwise. Therefore,

Ev

[
1v 6=03|v|

]
= Ev

[
3|v| − 1v=0

]
=

n∏
i=1

Evi [3vi ]− Pr(v = 0)

= (Ev1 [3v1 ])
n − Pr(v = 0)

= (4ρ ∗ 3 + (1− 4ρ) ∗ 1)n − (1− 4ρ)n

= (1 + 8ρ)n − (1− 4ρ)n ≤ exp(8nρ)− (1− 4nρ),

where in the last inequality we used the facts that (1 + a/n)n ≤ exp(a) and (1 − a)n ≥ 1 − an.
Since we assume ρ ≤ 1/4n, 8nρ ≤ 2, so we can use the inequality exp(x) ≤ 1 + 3.2x, which holds
for any x ∈ [0, 2], and get that the expression above is at most (1 + 26nρ)− (1− 4nρ) = 30nρ, and
therefore Eq. (18) is at most 30nρb/d. This in turn is an upper bound on Eq. (14) as required.

A.4 Proof of Thm. 4

Let c1, c2 be positive parameters to be determined later, and assume by contradiction that our algo-
rithm can guarantee E[

∑T
t=1 `t,it −

∑T
t=1 `t,j ] < c1 min{T/4,

√
dT/b} for any distribution and all

j.

Consider the set of distributions Prj(·) over {0, 1}d, where each coordinate is chosen indepen-
dently and uniformly, except coordinate j which equals 0 with probability 1

2 + ρ, where ρ =

c2 min{1/4,
√
d/bT}. Clearly,the coordinate i which minimizes E[`t,i] is j. Moreover, if at round

t the learner chooses some it 6= j, then E[`t,it − `t,j ] = ρ = c2 min{1/4,
√
d/bT}. Thus, to have

E[
∑T
t=1 `t,it −

∑T
t=1 `t,j ] < c1 min{T/4,

√
dT/b} requires that the expected number of rounds

where it 6= j is at most c1c2T . By Markov’s inequality, this means that the probability of j not being
the most-commonly chosen coordinate is at most (c1/c2)/(1/2) = 2c1/c2. In other words, if we
can guarantee regret smaller than c1 min{T/4,

√
dT/b}, then we can detect j with probability at

least 1− 2c1/c2, simply by taking the most common coordinate.
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However, by4 Thm. 2, for any (b, 1, T ) protocol, there is some j such that the protocol would cor-
rectly detect j with probability at most

3

d
+ 21

√
Tb

d
c22 min

{
1

16
,
d

bT

}
≤ 3

d
+ 21c2.

Therefore, assuming d > 3, and taking for instance c1 = 3.7 ∗ 10−4, c2 = 5.9 ∗ 10−3, we get
that the probability of detection is at most 3

4 + 21c2 < 0.874, whereas the scheme discussed in the
previous paragraph guarantees detection with probability at least 1 − 2c1/c2 > 0.874. We have
reached a contradiction, hence our initial hypothesis is false and our algorithm must suffer regret at
least c1 min{T/4,

√
dT/b}.

A.5 Proof of Thm. 5

The proof is rather involved, and is composed of several stages. First, we define a variant of our hide-
and-seek problem, which depends on sparse distributions. We then prove an information-theoretic
lower bound on the achievable performance for this hide-and-seek problem with information con-
straints. The bound is similar to Thm. 3, but without an explicit dependence on the bias5 ρ. We then
show how the lower bound can be strengthened in the specific case of b-memory online protocols.
Finally, we use these ingredients in proving Thm. 5.

We begin by defining the following hide-and-seek problem, which differs from problem 2 in that the
distribution is supported on sparse instances. It is again parameterized by a dimension d, bias ρ, and
sample size mn:

Definition 3 (Hide-and-seek Problem 2). Consider the set of distributions {Prj(·)}dj=1 over
{−ei,+ei}di=1, defined as

Prj(ei) =

{
1
2d i 6= j
1
2d + ρ

d i = j
Prj(−ei) =

{
1
2d i 6= j
1
2d −

ρ
d i = j

.

Given an i.i.d. sample of mn instances generated from Prj(·), where j is unknown, detect j.

In words, Prj(·) corresponds to picking ±ei where i is chosen uniformly at random, and the sign is
chosen uniformly if i 6= j, and positive (resp. negative) with probability 1

2 +ρ (resp. 1
2 −ρ) if i = j.

It is easily verified that this creates sparse instances with zero-mean coordinates, except coordinate
j whose expectation is 2ρ/d.

We now present a result similar to Thm. 3 for this new hide-and-seek problem:

Theorem 6. Consider hide-and-seek problem 2 on d > 1 coordinates, with some bias
ρ ≤ min{ 1

27 ,
1

9 log(d) ,
d

14n}. Then for any estimate J̃ of the biased coordinate returned by any
(b, n,m) protocol, there exists some coordinate j such that

PrJ(J̃ = j) ≤ 3

d
+ 11

√
mb

d
.

The proof appears in subsection A.6 below, and is broadly similar to the proof of Thm. 3 (although
using a somewhat different approach).

The theorems above hold for any (b, n,m) protocol, and in particular for b-memory online protocols
(since they are a special case of (b, 1,m) protocols). However, for b-online protocols, the following
simple observation will allow us to further strengthen our results:

Theorem 7. Any b-memory online protocol over m instances is also a
(
b, κ,

⌊
m
κ

⌋)
protocol for any

positive integer κ ≤ m.

4The theorem discusses the case where the distribution is over {−1,+1}d, and coordinate j has a slight
positive bias, but it’s easily seen that the lower bound also holds here where the domain is {0, 1}d.

5Attaining a dependence on ρ seems technically complex for this hide-and-seek problem, but fortunately is
not needed to prove Thm. 5.
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The proof is immediate: Given a a batch of κ instances, we can always feed the instances one
by one to our b-memory online protocol, and output the final message after bm/κc such batches
are processed, ignoring any remaining instances. This makes the algorithm a type of

(
b, κ,

⌊
m
κ

⌋)
protocol.

As a result, when discussing b-memory online protocols for some particular value of m, we can
actually apply Thm. 6 where we replace n,m by κ, bm/κc, where κ is a free parameter we can tune
to attain the most convenient bound.

With these results at hand, we turn to prove Thm. 5.

The lower bound follows from the concentration of measure assumption on x̃ixj , and a union bound,
which implies that

Pr
(
∀i < j, |x̃ixj − E[xixj ]| <

τ

2

)
≥ 1− d(d− 1)

2
2 exp

(
−mτ2/6

)
≥ 1− d2 exp

(
−mτ2/6

)
.

If this event occurs, then picking (Ĩ , J̃) to be the coordinates with the largest empirical mean would
indeed succeed in detecting (i∗, j∗), since E[xi∗xj∗ ] ≥ E[xixj ] + τ for all (i, j) 6= (i∗, j∗).

The upper bound in the theorem statement follows from a reduction to the setting discussed in
Thm. 6. Let {Pri∗,j∗(·)}1≤i∗<j∗≤d be a set of distributions over d-dimensional vectors x, parame-
terized by coordinate pairs (i∗, j∗). Each such Pri∗,j∗(·) is defined as a distribution over vectors of

the form
√

d
2 (σ1ei + σ2ej) in the following way:

• (i, j) is picked uniformly at random from {(i, j) : 1 ≤ i < j ≤ d}
• σ1 is picked uniformly at random from {−1,+1}.
• If (i, j) 6= (i∗, j∗), σ2 is picked uniformly at random from {−1,+1}. If (i, j) = (i∗, j∗),

then σ2 is chosen to equal σ1 with probability 1
2 +ρ (for some ρ ∈ (0, 1/2) to be determined

later), and −σ1 otherwise.

In words, each instance is a 2-sparse random vector, where the two non-zero coordinates are chosen
at random, and are slightly correlated if and only if those coordinates are (i∗, j∗).

Let us first verify that any such distribution Pri∗,j∗(·) belongs to the distribution family specified in
the theorem:

1. For any coordinate k, xk is non-zero with probability 2/d (i.e. the probability that either i
or j above equal k), in which case x2k = d/2. Therefore, E[x2k] = 1 for all k.

2. When (i, j) 6= (i∗, j∗), then σ1, σ2 are uncorrelated, hence E[xixj ] = 0. On the other hand,
E[xi∗xj∗ ] = 2

d(d−1)
((

1
2 + ρ

)
d
2 +

(
1
2 − ρ

) (
−d2
))

= 2ρ
d−1 . So we can take τ = 2ρ

d−1 , and
have that E[xi∗xj∗ ] = τ .

3. For any i < j, xixj is a random variable which is non-zero with probability 2/(d(d− 1)),
in which case its magnitude is d/2. Thus, E[(xixj)

2] ≤ d
2(d−1) . Applying Bernstein’s

inequality, if x̃ixj is the empirical average of xixj over m i.i.d. instances, then

Pr
(
|x̃ixj − E[xixj ]| ≥

τ

2

)
≤ 2 exp

− mτ2

4
(

d
d−1 + d

3τ
)
 .

Since we chose τ = 2ρ
d−1 <

1
d−1 , and we assume d ≥ 9, this bound is at most

2 exp

(
− mτ2

4d
d−1

(
1 + 1

3

)) ≤ 2 exp

(
−mτ

2

6

)
.

Therefore, this distribution satisfies the theorem’s conditions.

The crucial observation now is that the problem of detecting (i∗, j∗) is can be reduced to a hide-
and-seek problem as defined in Definition 3. To see why, let us consider the distribution over d× d
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matrices induced by xx>, where x is sampled according to Pri∗,j∗(·) as described above, and in
particular the distribution on the entries above the main diagonal. It is easily seen to be equivalent to
a distribution which picks one entry (i, j) uniformly at random from {(i, j) : 1 ≤ i < j ≤ d}, and
assigns to it the value

{
−d2 ,+

d
2

}
with equal probability, unless (i, j) = (i∗, j∗), in which case the

positive value is picked with probability 1
2 + ρ, and the negative value with probability 1

2 − ρ. This
is equivalent to the hide-and-seek problem described in Definition 3, over d(d−1)2 coordinates. Thus,

we can apply Thm. 6 for d(d−1)
2 coordinates, and get that if ρ ≤ min

{
1
27 ,

1

9 log( d(d−1)
2 )

, d(d−1)28n

}
,

then for some (i∗, j∗) and any estimator (Ĩ , J̃) returned by a (b, n,m) protocol,

Pri∗,j∗
(

(Ĩ , J̃) = (i∗, j∗)
)
≤ 6

d(d− 1)
+ 11

√
2mb

d(d− 1)
.

Our theorem deals with two types of protocols:
(
b, d(d− 1), b m

d(d−1)c
)

protocols, and b-memory

online protocols over m instances. In the former case, we can simply plug in
⌊

m
d(d−1)

⌋
, d(d − 1)

instead of m,n, while in the latter case we can still replace m,n by
⌊

m
d(d−1)

⌋
, d(d − 1) thanks to

Thm. 7. In both cases, doing this replacement and choosing ρ = 1

9 log( d(d−1)
2 )

(which is justified

when d ≥ 9, as we assume), we get that

Pri∗,j∗
(

(Ĩ , J̃) = (i∗, j∗)
)
≤ 6

d(d− 1)
+ 11

√
2b

d(d− 1)

⌊
m

d(d− 1)

⌋
≤ O

(
1

d2
+

√
m

d4/b

)
.

(19)
This implies the upper bound stated in the theorem, and also noting that

τ =
2ρ

d− 1
=

2

9(d− 1) log
(
d(d−1)

2

) = Θ

(
1

d log(d)

)
.

Having finished with the proof of the theorem as stated, we note that it is possible to extend the
construction used here to show performance gaps for other sample sizes m. For example, instead of
using a distribution supported on {√

d

2
(σ1ei + σ2ej)

}
1≤i<j≤d

for any pair of coordinates 1 ≤ i < j ≤ d, we can use a distribution supported on{√
λ

2
(σ1ei + σ2ej)

}
1≤i<j≤λ

for some λ ≤ d. By choosing the bias τ = Θ(1/λ log(λ)), we can show a performance gap (in
detecting the correlated coordinates) in the regime λ4

b � m � λ2 log2(λ). This regime exists for
λ as small as

√
b (up to log-factors), in which case we already get performance gaps when m is

roughly linear in the memory b.

A.6 Proof of Thm. 6

The proof builds on the auxiliary lemmas presented in Appendix A.1. It is broadly similar to the
proof of Thm. 3, but with a few more technical intricacies (such as balls-and-bins arguments) to
handle the different sampling process.

On top of the distributions Prj(·) defined in the hide-and-seek problem (Definition 3), we define
an additional ‘reference’ distribution Pr0(·), which corresponds to the instances being chosen uni-
formly at random from {−ei,+ei}di=1 (i.e. there is no biased coordinate).
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Let w1, . . . , wm denote the messages computed by the protocol. To show the lower bound, it is
enough to prove that

2

d

d∑
j=1

Dkl

(
Pr0(w1 . . . wm)

∣∣∣∣Prj(w
1 . . . wm)

)
≤ 26mb

d
, (20)

since then by applying Lemma 1, we get that for some j, Prj(J̃ = j) ≤ (3/d) + 2
√

26mb/d <

(3/d) + 11
√
mb/d as required.

Using the chain rule, the left hand side in Eq. (20) equals

2

d

d∑
j=1

m∑
t=1

Ew1...wt−1∼Pr0

[
Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
)]

= 2

m∑
t=1

Ew1...wt−1∼Pr0

1

d

d∑
j=1

Dkl

(
Pr0(wt|w1 . . . wt−1)||Prj(w

t|w1 . . . wt−1)
) (21)

Let us focus on a particular choice of t and values w1 . . . wt−1. To simplify the presentation, we
drop the t superscript from the message wt, and denote the previous messages w1 . . . wt−1 as ŵ.
Thus, we consider the quantity

1

d

d∑
j=1

Dkl (Pr0(w|ŵ)||Prj(w|ŵ)) . (22)

Recall that w is some function of ŵ and a set of n instances received in the current round. Moreover,
each instance is non-zero at a single coordinate, with a value in {−1,+1}. Thus, given an ordered
sequence of n instances, we can uniquely specify them using vectors u,x1, . . . ,xd, where

• u ∈ {1 . . . d}n, where each ei indicates what is the non-zero coordinate of the i-th instance.

• Each xj ∈ {−1,+1}|{i:ei=j}| is a (possibly empty) vector of the non-zero values, when
those values fell in coordinate j.

For example, if d = 3 and the instances are (−1, 0, 0); (0, 1, 0); (0,−1, 0), then u = (1, 2, 2);x1 =
(−1);x2 = (1,−1);x3 = ∅. Note that under both Pr0(·) and Prj(·), u is uniformly distributed in
{1 . . . d}n, and {xj}j are mutually independent conditioned on u.

With this notation, we can rewrite Eq. (22) as

1

d

d∑
j=1

Dkl (Eu [Pr0(w|u, ŵ)] ||Eu [Prj(w|u, ŵ)]) .

Since the relative entropy is jointly convex in its arguments, we have by Jensen’s inequality that this
is at most

1

d

d∑
j=1

Eu [Dkl (Pr0(w|u, ŵ)||Prj(w|u, ŵ))] = Eu

1

d

d∑
j=1

Dkl (Pr0(w|u, ŵ)||Prj(w|u, ŵ))

 .
(23)

We now decompose Prj(w|u, ŵ) using Lemma 2, where p(·) = Prj(·|u, ŵ),q(·) = Pr0(·|u, ŵ)
and each zi is xi. The lemma’s conditions are satisfied since the distribution of xi, i 6= j is the same
under Pr0(·|u, ŵ),Prj(·|u, ŵ), and also w is only a function of u,x1 . . .xd and ŵ. Thus, we can
rewrite Eq. (23) as

Eu

1

d

d∑
j=1

Dkl

Pr0(w|u, ŵ)

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
xj

Prj(xj |u, ŵ)Pr0(w|u,xj , ŵ)

 .
Using Lemma 3, we can reverse the expressions in the relative entropy term, and upper bound the
above by
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Eu

1

d

d∑
j=1

(
max
w

Pr0(w|u, ŵ)∑
xj

Prj(xj |u, ŵ)Pr0(w|u,xj , ŵ)

)
×

Dkl

∑
xj

Prj(xj |u, ŵ)Pr0(w|u,xj , ŵ)

∣∣∣∣∣∣
∣∣∣∣∣∣ Pr0(w|u, ŵ)

 . (24)

The max term equals

max
w

∑
xj

Pr0(xj |u, ŵ)Pr0(w|u,xj , ŵ)∑
xj

Prj(xj |u, ŵ)Pr0(w|u,xj , ŵ)
≤ max

xj

Pr0(xj |u, ŵ)

Prj(xj |u, ŵ)
,

and using Jensen’s inequality and the fact that relative entropy is convex in its arguments, we can
upper bound the relative entropy term by∑

xj

Prj(xj |u, ŵ)Dkl (Pr0(w|u,xj , ŵ) || Pr0(w|u, ŵ))

≤
(

max
xj

Prj(xj |u, ŵ)

Pr0(xj |u, ŵ)

)∑
xj

Pr0(xj |u, ŵ)Dkl (Pr0(w|u,xj , ŵ) || Pr0(w|u, ŵ)) .

The sum in the expression above equals the mutual information between the message w and the
coordinate vector xj (seen as random variables with respect to the distribution Pr0(·|u, ŵ)). Writing
this as IPr0(·|u,ŵ)(w;xj), we can thus upper bound Eq. (24) by

Eu

1

d

d∑
j=1

(
max
xj

Pr0(xj |u, ŵ)

Prj(xj |u, ŵ)

)(
max
xj

Prj(xj |u, ŵ)

Pr0(xj |u, ŵ)

)
IPr0(·|u,ŵ)(w;xj)


≤ Eu

(max
j,xj

Pr0(xj |u, ŵ)

Prj(xj |u, ŵ)

)(
max
j,xj

Prj(xj |u, ŵ)

Pr0(xj |u, ŵ)

)
1

d

d∑
j=1

IPr0(·|u,ŵ)(w;xj)

 .
Since x1 . . .xd are mutually independent conditioned on u and ŵ, and also w contains at most b
bits, we can use the key Lemma 6 to upper bound the above by

Eu

[(
max
j,xj

Pr0(xj |u, ŵ)

Prj(xj |u, ŵ)

)(
max
j,xj

Prj(xj |u, ŵ)

Pr0(xj |u, ŵ)

)
b

d

]
.

Now, recall that conditioned on u, each xj refers to a column of |{i : ei = j}| i.i.d. entries, drawn
independently of any previous messages ŵ, where under Pr0, each entry is chosen to be ±1 with
equal probability, whereas under Prj each is chosen to be 1 with probability 1

2 + ρ, and −1 with
probability 1

2 − ρ. Therefore, we can upper bound the expression above by

Eu

(max
j

max

{(
1/2 + ρ

1/2

)|{i:ei=j}|
,

(
1/2

1/2− ρ

)|{i:ei=j}|})2
b

d

 .
Since we assume ρ ≤ 1/27, it’s easy to verify that the expression above is at most

Eu

[(
max
j

(1 + 2.2ρ)
|{i:ei=j}|

)2
b

d

]
= Eu

[(
max
j

(
1 +

4.4ρ|{i : ei = j}|
2|{i : ei = j}|

)2|{i:ei=j}|
)
b

d

]

≤ Eu

[
max
j

exp (4.4ρ|{i : ei = j}|)
]
b

d
= Eu

[
exp

(
4.4ρ max

j
|{i : ei = j}|

)]
b

d

Since u is uniformly distributed in {1 . . . d}n, then maxj |{i : ei = j} corresponds to the largest
number of balls in a bin when we randomly throw n balls into d bins. By Lemma 5, and since
we assume ρ ≤ min{ 1

27 ,
1

9 log(d) ,
d

14n}, it holds that the expression above is at most 13b/d. To
summarize, this is a valid upper bound on Eq. (22), i.e. on any individual term inside the expectation
in Eq. (21). Thus, we can upper bound Eq. (21) by 26mb/d. This shows that Eq. (20) indeed holds,
which as explained earlier implies the required result.
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B Basic Results in Information Theory

The proof of Thm. 3 and Thm. 6 makes extensive use of quantities and basic results from informa-
tion theory. We briefly review here the technical results relevant for our paper. A more complete
introduction may be found in [14]. Following the settings considered in the paper, we will focus
only on discrete distributions taking values on a finite set.

Given a random variable X taking values in a domain X , and having a distribution function p(·), we
define its entropy as

H(X) =
∑
x∈X

p(x) log2(1/p(x)) = EX log2

(
1

p(x)

)
.

Intuitively, this quantity measures the uncertainty in the value of X . This definition can be extended
to joint entropy of two (or more) random variables, e.g. H(X,Y ) =

∑
x,y p(x, y) log2(1/p(x, y)),

and to conditional entropy

H(X|Y ) =
∑
y

p(y)
∑
x

p(x|y) log2

(
1

p(x|y)

)
.

For a particular value y of Y , we have

H(X|Y = y) =
∑
x

p(x|y) log2

(
1

p(x|y)

)
It is possible to show that

∑n
j=1H(Xi) ≥ H(X1, . . . , Xn), with equality when X1, . . . , Xn are

independent. Also, H(X) ≥ H(X|Y ) (i.e. conditioning can only reduce entropy). Finally, if X is
supported on a discrete set of size 2b, then H(X) is at most b.

Mutual information I(X;Y ) between two random variables X,Y is defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) =
∑
x,y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
.

Intuitively, this measures the amount of information each variable carries on the other one, or in
other words, the reduction in uncertainty on one variable given we know the other. Since entropy
is always positive, we immediately get I(X;Y ) ≤ min{H(X), H(Y )}. As for entropy, one can
define the conditional mutual information between random variables X,Y given some other random
variable Z as

I(X;Y |Z) = Ez∼Z [I(X;Y |Z = z)] =
∑
z

p(z)
∑
x,y

p(x, y|z) log2

(
p(x, y|z)

p(x|z)p(y|z)

)
.

Finally, we define the relative entropy (or Kullback-Leibler divergence) between two distributions
p, q on the same set as

Dkl(p||q) =
∑
x

p(x) log2

(
p(x)

q(x)

)
.

It is possible to show that relative entropy is always non-negative, and jointly convex in its two
arguments (viewed as vectors in the simplex). It also satisfies the following chain rule:

Dkl(p(x1 . . . xn)||q(y1 . . . yn) =

n∑
i=1

Ex1...xi−1∼p [Dkl(p(xi|x1 . . . xi−1)||q(xi|x1 . . . xi−1))] .

Also, it is easily verified that

I(X;Y ) =
∑
y

p(y) Dkl(pX(·|y)||pX(·)),

where pX is the distribution of the random variable X . In addition, we will make use of Pinsker’s
inequality, which upper bounds the so-called total variation distance of two distributions p, q in terms
of the relative entropy between them:∑

x

|p(x)− q(x)| ≤
√

2Dkl(p||q).
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Finally, an important inequality we use in the context of relative entropy calculations is the log-sum
inequality. This inequality states that for any nonnegative ai, bi,(∑

i

ai

)
log

∑
i ai∑
i bi
≤
∑
i

ai log
ai
bi
.
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