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1 Introduction

Here we report supplementary information to the main paper, such as extended mathematical deriva-
tions and implementation details. For ease of reference, this document follows the same division in
sections of the paper, and supplementary methods are reported in the same order as they are origi-
nally referenced in the main text.

2 Bayesian observer model

We describe here several technical details regarding the construction of the Bayesian observer model
which are omitted in the paper.
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2.1 Mapping to internal measurement space

The mapping to internal measurement space is a mathematical trick to deal with observer models
whose sensory noise magnitude is stimulus-dependent in task space. For this derivation, let us
assume that the measurement probability density, pmeas(x|s), can be expressed as a Gaussian with
stimulus-dependent noise:

pmeas(x|s) = N
(
x|s, σ2

meas(s)
)
. (S1)

In the case of Weber’s law, we would have σmeas(s) = bs, with b > 0 standing for Weber’s constant
(this feature of noise is called the scalar property in time perception [1, 2]).

The problem with Eq. S1 is that the measurement distribution is Gaussian but the likelihood (func-
tion of s) is not – which is unwieldy for the computation of the posterior. A solution consists in
finding a transformed space in which the likelihood is (approximately) Gaussian. It is easy to show
that a mapping of the form:

f(s) =

∫ s

−∞

1

σmeas(s′)
ds′ + const (S2)

achieves this goal. In fact, we can write an informal proof as follows:

f (x) = f (s+ σmeas(s) · η)
≈ f (s) + f ′ (s) · σmeas(s) · η
= t+ η

(S3)

where η is a normally distributed random variable with zero mean and unit variance. The second
passage of Eq. S3 uses a first-order Taylor expansion, under the assumption that the noise magnitude
is low compared to the magnitude of the stimulus. The last passage shows that the measurement
variable is approximately Gaussian in internal measurement space with mean t ≡ f(s) and unit
variance.

For Weber’s law, the solution of Eq. S2 has a logarithmic form f(s) ∝ log s, which is commonly
used in the psychophysics literature. We want the mapping to cover both constant noise and scalar
noise (and intermediate cases), so we consider a generalized transform, f(s) ∝ log

(
1 + s

s0

)
, where

the base magnitude parameter s0 controls whether the mapping is purely logarithmic (for s0 → 0),
linear (for s0 → ∞) or in-between [3]. For the paper, we further generalize the mapping, Eq. 2
in the main text, by adding a power exponent d that allows to reproduce Steven’s power law of
sensation [4]. Note that the exponent d has no effect if the mapping is (close to) purely logarithmic.

2.2 Moment-based parametrization of a unimodal mixture of two Gaussians

Let us consider a mixture of two Gaussian distributions:

p(s) = wN
(
x|µ1, σ

2
1

)
+ (1− w)N

(
x|µ2, σ

2
2

)
. (S4)

We want to express its parameters (w, µi, σi, for i = 1, 2) as a function of the standardized moments
of the distribution: mean µ, variance σ2, skewness γ and (excess) kurtosis κ, with the additional
constraint of unimodality. The first two standardized moments are µ = 0 and σ2 = 1 (this is without
loss of generality, as we may later rescale and shift the resulting distribution to match arbitrary values
of µ and σ2). Since there are five parameters and only four constraints, we will find a solution (or
multiple solutions) as a function of the remaining parameter w.

• For the special case γ = 0 and κ ≤ 0 we have:

µ1 = 4

√
−κ
2
, µ2 = −µ1, σ2

1 = σ2
2 =

√
1−

√
−κ
2
. (S5)

• For the special case γ = 0 with κ > 0 the solutions are:

µ1 = µ2 = 0, σ2
1 = 1∓

√
(1− w)κ√

3w
, σ2

2 = 1±
√
wκ√

3(1− w)
. (S6)
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• Finally, for the general case γ 6= 0:

µ1 = −1− w
w
· µ2

µ2 = Roots
[(
2− 6w + 8w2 − 6w3 + 2w4

)
y6 +

(
4w2γ − 12w3γ + 8w4γ

)
y3

+
(
3w3κ− 3w4κ

)
y2 − w4γ2

]
σ2
1 = 1 +

(w − 1)µ2

3w4γ

[
3w3κ+ (5− 7w)w2γµ2 − 2(w − 1)(1− w + w2)µ4

2

]
σ2
2 = 1 +

κ

γµ2
+

(
2

3w
− 7

3

)
µ2
2 − 2(w − 1)(1 + w2 − w) µ5

2

3w3γ
(S7)

where Roots specifies the real roots of the polynomial in square brackets.

The final degree of freedom is chosen by picking the value of w that locally maximizes the differen-
tial entropy of the distribution while respecting the requirement of unimodality and within the range
0.025 ≤ w ≤ 0.975. The latter constraint is added to prevent highly degenerate solutions such as,
e.g., w → 0 with σ2

1 → ∞. At the implementation level, we do not perform these computations
at every step but we precomputed a table that maps a pair of values (γ, κ) to a parameter vector
w, µi, σj for j = 1, 2 that uniquely identifies a mixture of two Gaussians.1 This table also encodes
the boundaries of γ, κ since not all values are allowed (see Figure S1).
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Figure S1: Tabulated values of w as a function of skewness and kurtosis. The values of the mix-
ing weight w that respect the constraints of unimodality and 0.025 ≤ w ≤ 0.975 cover a crescent-
shaped region in the domain of skewness γ and excess kurtosis κ (shaded area). The black line
represents the hard bound between skewness and kurtosis that applies to all univariate distributions,
that is κ ≥ γ2 − 2.

2.3 Computation of the expected loss

The observer’s prior is written as:

qprior(t) =

M∑
m=1

wmN
(
t|µm, a

2
)

(S8)

1Thanks to symmetries we need to precompute the table only for γ ≥ 0 and we flip the sign of µ1 and µ2

for γ < 0.
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where a is the lattice spacing and we have defined µm ≡ µmin + (m− 1)a (see Eq. 4 in the paper).
The internal measurement likelihood takes the form:

qmeas(x|t) =
2∑

j=1

π̃jN
(
x|t+ µ̃j , σ̃

2
j

)
(S9)

with π̃1 ≡ π̃, π̃2 ≡ 1 − π̃ (see the corresponding Eq. 3 in the paper). The posterior distribution is
computed by multiplying Eq. S8 and S9:

qpost (t|x) =
M∑

m=1

2∑
j=1

wmπ̃jN
(
t|µm, a

2
)
N
(
t|x− µ̃j , σ̃

2
j

)
=

M∑
m=1

2∑
j=1

γmjN
(
t|νmj , τ

2
mj

) (S10)

obtained after some algebraic manipulations and where we have defined:

γmj ≡ wmπ̃jN
(
µm|x− µ̃j , a

2 + σ̃2
j

)
νmj ≡

µmσ̃
2
j + (x− µ̃j)a

2

a2 + σ̃2
j

(S11)

τ2mj ≡
a2σ̃2

j

a2 + σ̃2
j

.

The loss function depends on the signed error in internal measurement space and is defined as:

L
(
t̂− t

)
=−

2∑
k=1

π`
kN

(
t̂− t|µ`

k, σ
`
k

2
)

(S12)

with π`
1 ≡ π` and π`

2 ≡ 1 − π` (see Eq. 6 in the paper). The expected loss for estimate t̂, given
measurement x, therefore takes the closed analytical form:

E
[
L; t̂, x

]
qpost

=

∫
qpost (t|x)L

(
t̂− t

)
dt

=−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
k

∫
N
(
t|νmj , τ

2
mj

)
N
(
t|t̂− µ`

k, σ
`
k

2
)
dt

=−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
t̂|νmj + µ`

k, τ
2
mj + σ`

k

2
)
.

(S13)

Eq. S13 generalizes a previous result [5, Eq. 4] to the case of likelihoods and loss functions that are
mixtures of Gaussians. Thanks to the expression of Eq. S13 as a mixture of Gaussians, the global
minimum of the expected loss can be found very efficiently through an adaptation of Newton’s
method [5, 6]. Note that computational efficiency is not merely a desirable feature, but rather a
key requirement for tractability of our analysis of the complex parameter space. In Section 5.1 we
discuss how the framework can be generalized to a loss function whose error is computed in arbitrary
spaces.

2.4 Mapping densities from task space to internal measurement space and vice versa

Variables are mapped from task space to internal measurement space (and vice versa) through the
mappings described in Eq. 2 in the main text. Mapping of densities needs to take into account the
Jacobian of the transformation.

A distribution p(s) in task space is converted into internal measurment space as:

q(t) =
∣∣∣f−1′(t)∣∣∣ p(f−1(t)) = [ s0

Ad

(
e

t−B
A − 1

) 1
d−1

e
t−B
A

]
p(f−1(t)). (S14)
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Conversely, the inverse transform of a density q(t) from internal measurement space to task space
is:

p(s) = |f ′(s)| q(f(s)) =

[
Ad (s/s0)

d−1

1 + (s/s0)
d

]
q(f(s)). (S15)

3 Model identifiability

A pivotal role in our a priori identifiability analysis is taken by the equation that links the expected
log likelihood to the KL-divergence between the response distributions. Here we show the deriva-
tion.

3.1 Derivation of Eq. 12 in the paper

We want to find a closed-form solution for Eq. 11 in the paper:

〈log Pr(D|θ)〉 =
∫
|D|=Ntr

log Pr (D|θ) Pr (D|θ∗) dD. (S16)

First, we divide the datasetD as follows. Recall that the experiment presents a discrete set of stimuli
si with relative frequency Pi, for 1 ≤ i ≤ Nexp. We assume that the number of trials for each
stimulus is allocated a priori to match relative frequencies (a common practice in psychophysical
experiments). Therefore, dataset D can be divided in Nexp sub-datasets Di with respectively PiNtr
trials each. Assuming independence between trials and thanks to linearity of the expectation opera-
tor, we can write:

〈log Pr(D|θ)〉 =
Nexp∑
i=1

〈log Pr(Di|θ)〉 (S17)

where each sub-dataset Di only contains trials that show a specific stimulus si. In the following we
compute the expectation of the log likelihood for a sub-dataset with a single stimulus.

Let us consider a sub-dataset Di with N ≡ PiNtr trials and stimulus si. The true distribution of
responses in each trial is assumed to be stationary with distribution p(r) ≡ presp(r|si,θ∗), whereas
the distribution of responses according to model θ is represented by q(r) ≡ presp(r|si,θ). The
expected log likelihood of the sub-dataset for model θ under true model θ∗ is:

〈log Pr(Di|θ)〉Pr(Di|θ∗) =

∫
Pr (r1, . . . , rN |θ∗) log Pr (r1, . . . , rN |θ) dr1 × . . .× drN

=

∫
Pr (r1, . . . , rN |θ∗)

log N∏
j=1

q (rj)

 dr1 × . . .× drN
=

N∑
j=1

∫
Pr (r1, . . . , rN |θ∗) log q (rj) dr1 × . . .× drN

=N

∫
p (r) log q (r) dr

= − PiNtr · [DKL(p||q) +H(p)]

(S18)

where DKL(p||q) is the Kullback-Leibler (KL) divergence, a non-symmetric measure of the dif-
ference between two probability distributions widely used in information theory, and H(p) is the
(differential) entropy of p. The last passage follows from the definition of cross-entropy [7]. Note
that the entropy of p does not depend on θ, so the entropy term is constant for our purposes. Com-
bining Eqs. S17 and S18 we obtain Eq. 12 in the paper.

4 Supplementary methods and results

We report here additional details and results omitted for clarity from the main text.
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4.1 Sampling from the approximate expected posterior density

The observer models we consider in the paper have 26-41 parameters, which correspond to a fairly
high-dimensional parameter space. We assumed indepedent, non-informative priors on each model
parameter, uniform on a reasonably inclusive range. Some parameters that naturally cover several
orders of magnitude (e.g., the mixing weights wm, for 1 ≤ m ≤ M ) were represented in log
scale.2 Also, the kurtosis parameters of likelihoods and loss function (κ, κ̃, κ`) were represented
in a transformed kurtosis space with κ′ ≡

√
κ+ 2 (in this space, skewness and kurtosis are on a

similar scale; the hard bound κ ≥ γ2 − 2 becomes κ′ ≥ |γ|).
We explored a priori identifiability in the large parameter space by sampling observers from the
approximate expected posterior density, Eqs. 12 and 13 in the paper, via an adaptive MCMC algo-
rithm [9]. Note that we computed the KL-divergence between the (rescaled) response distributions
of a candidate model θ and of the reference model θ∗, Eq. 12, only inside the range of experimen-
tal stimuli (this is equivalent to the experimental practice of discarding responses outside a certain
range, to avoid edge effects). For each specific experimental design, we ran 6-10 parallel chains with
different starting points near θ∗ (5 · 103 burn-in steps, 5 · 104 to 2 · 105 samples per chain, depend-
ing on model complexity). To check for convergence, we computed Gelman and Rubin’s potential
scale reduction statistic R for all parameters [10]. Large values of R denote convergence problems
whereas values close to 1 suggest convergence. For all experimental designs and parameters, R was
generally . 1.1. Paired with a visual check of the marginal pdfs of the sampled chains, this result
suggests a resonable degree of convergence. Finally, chains were thinned to reduce autocorrelations,
storing about Nsmpl = 104 sampled observers per experimental design.

As an additional consistency check, we performed a ‘posterior predictive check’ (see e.g. [11])
with the sampled observers, that is we verified that the predicted behavior of the sampled observers
matches the behavior of the reference observer across some relevant statistics (if not, it means that
the sampling algorithm is not working correctly). We chose as relevant summary statistics the means
and standard deviations of the observers’ responses, as a function of stimulus si and experimental
condition (computed for each sampled observer via Eq. 9 in the paper). We found that the predicted
response means were generally in excellent agreement with the ‘true’ response means of the refer-
ence observer. Distributions of predicted response variances showed some minor bias, but were still
in good statistical agreement with the true response variance.

4.2 Temporal context and interval timing

The set of stimuli si used in the experiment is comprised of Nexp = 11 equiprobable, regularly
spaced intervals over the relevant range (Short 494-847 ms, Long 847-1200 ms) [2].

To reconstruct the observer’s average prior (Figure 2 a in the paper), for each sampled observer,
we computed the prior in internal space (Eq. 4 in the paper) and transformed it back to task space
via Eq. S15; the mean prior is obtained by averaging all sampled priors. We also computed the
first four central moments of each sampled prior in task space, whose distributions are shown in
Figure 2 a in the main text. The reconstruction error for each sampled prior was assessed through
the symmetric KL-divergence with the prior of the reference observer (the standard KL-divergence
produces similar results).

Note that observer models BSL, MAP and MTR were tested on both the Short and Long ranges
(models SRT and LNG were simulated only on either the Short or the Long range). Figure 2 in the
paper reports only data for the Short range; we show here the priors recovered in the Long range
condition for the same models (Figure S2). Results are qualitatively similar to what we observed
for the Short range, with similar deviations from the reference prior and the same ranking between
experimental designs.

4.3 Slow-speed prior in speed perception

The set of stimuli si is comprised of Nexp = 6 equiprobable motion speeds: s ∈ {0.5, 1, 2, 4, 8, 12}
deg/s [3].

2Note that a uniform prior in log space implies a prior of the form ∼ 1/x in standard space [8].
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Figure S2: Internal representations in interval timing (Long condition). Accuracy of the recon-
structed priors in the Long range; each row corresponds to a different experimental design. Figure
2 in the main text reports data for the Short range in the same format. See caption of Figure 2 in
the main text for a detailed legend. a: The first column shows the reference prior and the recovered
mean prior. The other columns display the recovered central moments of the prior. b: Box plots
of the symmetric KL-divergence between the reconstructed priors and the prior of the reference
observer.

We reconstructed the observer’s average log prior in task space (Figure 3 a in the paper) for each
sampled observer. To capture the shape of the sampled priors, we fit each of them with a parametric
formula: log q(s) = −kprior log

(
s2 + s2prior

)
+ cprior, via least-squares estimation. The distribution

of fitted parameters kprior and sprior is shown in Figure 3 a in the main text.

We show here the results for an additional observer model (FLT) which incorporates a uniformly
flat prior (Figure S3). The model inference correctly recovers a flat prior with exponent kprior ≈ 0
(compare it with Figure 3 in the paper).
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Figure S3: Internal representations in speed perception (flat prior). Accuracy of the recon-
structed internal representations (priors and likelihoods) for an observer with a uniformly flat prior.
Figure 3 in the main text reports data for other two observer models in the same format. See caption
of Figure 3 in the main text for a detailed legend. a: The first panel shows the reference log prior
and the recovered mean log prior. The other two panels display the approximate posteriors of kprior
and sprior. b: Box plot of the symmetric KL-divergence between the reconstructed and reference
prior. c: Approximate posterior distributions for sensory mapping and sensory noise parameters.

5 Extensions of the observer model

We discuss here an extension of the framework presented in the main text.
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5.1 Expected loss in arbitrary spaces

In the paper we have used a loss function that depends on the error, i.e. on the difference between the
estimate and the true value of the stimulus, in internal measurement space (Eq. S12). However, we
might want to compute the error in task space, or more in general in an arbitrary loss space defined
by a mapping g(s) : s→ l parametrized by s`0 and d` (see Eq. 2 in the paper). Ideally, we still want
to find a closed-form expression for the expected loss. We can write the loss function in the new loss
space as:

L (g (ŝ)− g (s)) = L
(
g
(
f−1(t̂)

)
− g

(
f−1(t)

))
= L

(
h(t̂)− h(t)

)
(S19)

where we have defined the composite function h ≡ g ◦ f−1. Clearly the original expression of
the loss in internal measurement space is recovered if g ≡ f . We can rewrite the expected loss as
follows:

E [L]qpost
(t̂) =−

M∑
m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
h
(
t̂
)
|νmj + µ`

k, τ
2
mj + σ`

k

2
)

×
∫
N
(
h (t)|νmjk

(
t̂
)
, τ2mjk

)
dt,

(S20)

where we have defined:

νmjk

(
t̂
)
≡
νmjσ

`
k

2
+
(
h
(
t̂
)
− µ`

k

)
τ2mj

τ2mj + σ`
k

2 , τmjk ≡
τ2mjσ

`
k

2

τ2mj + σ`
k

2 . (S21)

In order to perform the integration in Eq. S20, we Taylor-expand h(t) up to the first order around
the mean of each integrated Gaussian, νmjk

(
t̂
)
. We can perform this linearization without major

loss of accuracy since the Gaussians in the integral are narrow, their variance bounded from above
by a2 (τ2mjk < τ2mj < a2, see Eqs. S11 and S21). The integration yields:

E [L]qpost (t̂) ≈−
M∑

m=1

2∑
j=1

γmj

2∑
k=1

π`
kN

(
h
(
t̂
)
|νmj + µ`

k, τ
2
mj + σ`

k

2
) 1

h′
(
νmjk

(
t̂
)) . (S22)

Eq. S22 is not a regular mixture of Gaussians, but we can write its first and second derivative
analytically, which in principle allows to apply Newton’s method for numerical minimization. This
derivation shows that the techniques developed in the paper can be extended to the general case of a
loss function based in an arbitrary space (including, in particular, task space).
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