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A Proofs of the Main Results

A.1 Proof of Theorem 1

Proof. The theorem is a restatement of lemma 6, which we state and prove in the technical results
section below. For clarity, here we formally establish the correspondence between the theorem and
lemma 6.

Let Ω1 = ρ1 × ρ1 and Ω2 = ρ2 × ρ2 be the two index sets in the theorem. By assumption we have
ρ1 × ρ1 ∪ ρ2 × ρ2 = Ω and Ω 6= [n]× [n]. If A1 is not met, then ρ1 ∪ ρ2 6= [n], and from lemma 6
we can conclude recovery of A is impossible.

If ρ1 ∪ ρ2 = [n], but A2 is not met then |ρ1 ∩ ρ2| < r so it must be that rank{A(ι2, ι2)} < r, and
the final condition of the lemma is not met, so matrix recovery is impossible. Finally, if A3 is not
met, then again rank{A(ι2, ι2)} < r and we can conclude matrix recovery is impossible.

A.2 Proof of Theorem 2

Proof. Our proof technique will be to show that at the end of step 2 of the algorithm, the algorithm
has learned a Ĉ such that Â = ĈĈT = A in step 3 of the algorithm.

We establish the result by induction, using k = 1 as the base case. If k = 1, algorithm 1 consists
of running step 1 followed immediately by step 3. The matrix A(ρτ1 , ρτ1) is a principal submatrix
of A by assumption A2 and must therefore be SPSD. Therefore, we can decompose it with a real
eigendecomposition, and Ĉ(ρτ1 , :) = Eτ1Λ

1/2
τ1 in step 1 of the algorithm, so it must be that Ĉ(ρτ1 , :

) ∈ R|ρτ1 |×r and

Â(ρτ1 , ρτ1) = Ĉ(ρτ1 , :)Ĉ(ρτ1 , :)
T = Eτ1Λτ1E

T
τ1 = A(ρτ1 , ρτ1).

If k > 1, there are k − 1 iterations of step 2 between step 1 and step 3 of the algorithm. Let
l ∈ {2, . . . , k} indicate1 what iteration the algorithm is on in step 2. Define Il = ∪li=1ρτi . Assume
at the start of the iteration of step 2 for a given l, the algorithm has previously assigned values to
Ĉ(Il−1, :) ∈ R|Il−1|×r so that

Ĉ(Il−1, :)Ĉ(Il−1, :)T = Â(Il−1, Il−1) = A(Il−1, Il−1).

Above we have shown this is true for l = 2. For part 2a of each iteration, there is again by assumption
no noise, so Ã(ρτl , ρτl) = A(ρτl , ρτl). A(ρτl , ρτl) again indexes a principal submatrix of A by

1By this indexing notation, we count iterations of step 2 starting with the number 2. For example, if step
two runs twice, then for the first iteration of step 2, l = 2, and for the second l = 3.
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assumption A2, so its eigendecomposition with real eigenvalues exists and we again have Ĉl =

EτlΛ
1/2
τl , Ĉl ∈ R|ρτl |×r for Ĉl in step 2a, so

ĈlĈ
T
l = EτlΛτlE

T
τl

= A(ρl, ρl).

We now use lemma 5 to establish that after steps b and c, we will have a Ĉ(Il, :) ∈ R|Il|×r such
that Ĉ(Il, :)Ĉ(Il, :)T = A(Il, , Il, ).

To establish that this lemma applies, we need to first establish the correspondence between the
variables of algorithm 1 and those used in the statement of the lemma. Specifically, A(Il, Il) is
the matrix to be reconstructed from two of it’s principal submatrices A(Il−1, Il−1) and A(ρτl , ρτl).
We can verify that as required by the lemma A(ρτl ∪ Il−1, ρτl ∪ Il−1) = A(Il, Il). For these two
index sets, we have also already established that the algorithm’s variables Ĉ(Il−1, :) and Ĉl are
such that Ĉ(Il−1, :) ∈ R|Il−1|×r, Ĉl ∈ R|ρτl |×r, Ĉ(Il−1, :)Ĉ(Il−1, :)T = A(Il−1, Il−1) and
ĈlĈ

T
l = A(ρτl , ρτl).

Continuing to establish the correspondence between variables in the algorithm and the lemma, we
note that the algorithm’s variable ιl = ρτl∩

(
∪j=1,...,l−1ρτj

)
= ρτl∩Il−1. Further, it can be verified

that the variables in the algorithm ιl and φl index the rows of Ĉ and Ĉl such that Ĉ(ιl, :)Ĉ(ιl, :)
T =

A(ιl, ιl) = Ĉl(φl, :)Ĉl(φl, :)
T , and it can also be verified that algorithm’s variable ηl is defined so

that A(ρτl \ ιl, ρτl \ ιl) = Ĉl(ηl, :)Ĉl(ηl, :)
T .

By assumptions A3 and A4, rank{A(ιl, ιl)} = r, so it then follows from the lemma that there
must be a unique orthogonal W such that Ĉ(ιl, :) = Ĉl(φl, :)W . However, if W is unique and
establishes the equality, this must be the Ŵl learned in part b of step 2 of the algorithm. Further, we
just established the correspondence between the variables in the algorithm and that of the lemma,
so in part c of the step 2, we can conclude the algorithm produces a Ĉ(Il, :) such that A(Il, Il) =

Ĉ(Il, :)Ĉ(Il, :)T , which completes the inductive part of the proof.

All that remains of the proof is to show after processing all of the principal submatrices indexed
by Ω1, . . . ,Ωk, in steps 1 and 2 of the algorithm, step 3 will exactly recover A. If k = 1, the
algorithm consists of step 1 followed immediately by step 3. In step 1 we have shown that it will
assign values to the rows of Ĉ(I1, :) such that Ĉ(I1, :)Ĉ(I1, :)T = A(I1, I1). For k > 2, the
algorithm will perform k − 1 iterations of step 2 before step 3. By the inductive part of the proof
just finished, we can conclude after these k − 1 iterations, the algorithm will have assigned values
to the rows of Ĉ(Ik, :) such that Ĉ(Ik, :)Ĉ(Ik, :)T = A(Ik, Ik). However, by assumptions A1 and
A2, Ik = ∪kl=1ρτl = [n], showing that all the rows of Ĉ have been learned and therefore in step 3
of the algorithm Â = ĈĈT = A.

A.3 Proof of Theorem 3

Proof. The proof is by construction. First, consider the case when A is full rank and r = n. In
this case, we simply sample the full matrix and A1 − A3 trivially hold. Further, |Ω| = n2 = nr <
n(2r + 1).

Now, consider the case when r < n. Let Ω index the set of k = n− r principal submatrices running
down the diagonal of A, such that for l ∈ {1, . . . , k}, ρl = {1, . . . , r+ 1}+ {l− 1}.2 We can verify
that

ρ{Ω} = ρ{∪kl=1Ωl} = ∪kl=1ρl = [n],

meeting A1. Further, by construction each Ωl satisfies A2, and if we let τ1, . . . , τk = 1 . . . , k, we
have that for i ≥ 2

2We will use the notation {·}+ {·} indicates set addition.
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|ρτi ∩
(
∪j∈{1,...,i−1}ρτj

)
| = |ρτi ∩ ρτi−1

| = r,

establishing that A3 holds as well. Having established that A1 − A3 hold for the proposed Ω, we
count the number of indexed entries. The set Ω1 indexes (r + 1)2 entries, and each further Ωk for
k ≥ 2 indexes an additional 2r + 1 entries not index by earlier Ωk. We can formally count these
entries as

|Ω| = |Ω1|+
n−r∑
j=2

∣∣∣Ωj \ (Ωj ∩
[
∪j−1l=1 Ωl

])∣∣∣
= (r + 1)2 +

n−r∑
j=2

(2r + 1)

= (r + 1)2 + (n− r − 1)(2r + 1)

= 2nr + n− r2 − r
≤ n(2r + 1).

A.4 Proof of Theorem 4

Proof. For the rank r matrix A ∈ Sn+, fix C ∈ Rn×r such that A = CCT . By lemma 1, such a C
must exist. Now, define Cl = C(ρl, :). By assumption A2, each Al ∈ Snl+ , so Al = ClC

T
l and by

assumption A4, rank{Al} = r for all l, as rank{A(ιl, ιl)} = r for all l ≥ 2.

Additionally, by assumption A6, Ãl ∈ Snl+ , by assumption A5, rank
{
Ãl

}
≥ r, and ||Al − Ãl||F ≤

ε < 1 for all l. Further, we have min{mini∈[r−1], |λl,i − λl,i+1|, λl,r} ≥ δ > 0 for l ∈ {1, . . . , k},
and we also have ε < δ/2. Then by lemma 15, if each Ĉl is formed according to steps 1 and 2a of
algorithm3 1

min
W :WWT=I

||Cl − ĈlW ||F ≤ L
√
rε,

for L =

√
1 + 16ζ

δ2 + 8
√
2ζ1/2

δ3/2
, where we have used the assumption ζ ≥ λl,1 for all l.

Forming Ĉ from the Ĉl matrices in steps 1 and 2 of algorithm 1 is equivalent to forming Ĉ from
the same Ĉl matrices with algorithm 2 in corollary 19 according to the ordering given by τ1, . . . , τk.
Thus, we can use 19 to bound the error on minW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

at the end of step 2 of
algorithm 1.

Corollary 19 requires that ||C(ρl, :)|| ≤ b for some b ≥ 0 and minW :WWT=I

∣∣∣∣∣∣Cl − ĈlW ∣∣∣∣∣∣
F
≤

ε∗/b ≤ 1 for some ε∗ ≥ 0 for all l.

By assumption b ≥ maxl∈[k] ||C∗l ||F for some C∗l such that Al = C∗l C
∗
l
T . However, we can show

that there exists an orthogonal O such that Cl = C∗l O for any Cl and C∗l such that C∗l C
∗
l
T =

Al = ClC
T
l . The Frobenius norm is a unitarily invariant norm, so if b ≥ maxl∈[k] ||C∗l ||F , then

b ≥ maxl∈[k] ||Cl||F , as defined above, and it must be that ||C(ρl, :)||F ≤ b for all l. Defining
ε∗ = L

√
rε, and noting that our theorem requires

√
rε < b, we can verify

3Algorithm 1 never explicitly forms Ĉ1, but for clarify and brevity, we will define Ĉ(ρτl , :) to be
Ĉ(ρτl , :) = Ĉ1.
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ε∗

b
=
L
√
rε

b
≤
√
rε

b
< 1,

satisfying the requirements of the lemma.

Corollary 19 also requires that C(ιl, :) and Ĉl(φl, :)T Ĉ(ιl, :) each are of rank r for l ∈ 2, . . . , k.
However, this assumption is also met. To see this, note that by assumptions A3 and A4 A(ιl, ιl) =
C(ιl, :)C(ιl, :)

T is of rank r for all l ≥ 2 so C(ιl, :) must be of rank r for all l ≥ 2. The requirement
that Ĉl(φl, :)T Ĉ(ιl, :) is of rank r for all l ≥ 2 is satisfied by the assumptions of the theorem.
Finally, corollary 19 also requires that ∪kl=1ρl = [n], which is met by assumption A1.

Therefore, we can use corollary 19 to bound minW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

as

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ [4 + 12/v]k−1ε∗

= [4 + 12/v]k−1L
√
rε

when v ≤ σ2
r(C(ιl, :))/b

2 for all l. Note that λr(A(ιl, ιl)) = σ2
r(C(ιl, :)), so this condition on v is

equivalent to v ≤ λr(A(ιl, ιl))/b
2 for all l.

To obtain a bound on
∣∣∣∣∣∣A− Â∣∣∣∣∣∣

F
, we apply lemma 11, to find

∣∣∣∣∣∣A− Â∣∣∣∣∣∣
F

=
∣∣∣∣∣∣CCT − ĈĈT ∣∣∣∣∣∣

≤ 2 ||C||F
(
[4 + 12/v]k−1L

√
rε
)

+
(
[4 + 12/v]k−1L

√
rε
)2

= 2 ||C||F
(
[4 + 12/v]k−1L

√
rε
)

+ [4 + 12/v]2k−2L2rε,

defining G = 4 + 12/v, we have

∣∣∣∣∣∣A− Â∣∣∣∣∣∣
F
≤ 2Gk−1L ||C||F

√
rε+G2k−2L2rε. (1)

Note that the statement of the main theorem in the body of the paper allows C to be any arbitrary n
by r matrix such that A = CCT . We note that indeed any such C will do as if A = CCT = C ′C ′

T

for some C ′ ∈ Rn×r, there is an orthogonal transformation relating C and C ′. The Frobenius norm
is a unitarily invariant norm, so ||C||F = ||C ′||F , which completes the proof.

B Technical Results

Lemma 1. For any A ∈ Sn+ such that rank{A} ≤ r, there exists a matrix C ∈ Rn×r such that
A = CCT .

Proof. By the spectral theorem for real symmetric matrices, any rank p symmetric, real matrix can
be decomposed as

A = EΛET ,

for some diagonal Λ ∈ Rp×p containing the p non-zero eigenvalues of A and E ∈ Rn×p, con-
taining the corresponding eigenvectors. Further, the p non-zero eigenvalues of A must all be
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greater than 0 as A is PSD. Define C = EΣ1/2. By construction C ∈ Rn×p and we have
CCT = EΣ1/2(EΣ1/2)T = EΣET = A. If p = r, this establishes the existence of a C ∈ Rn×r
such that A = CCT . If p < r, a C ∈ Rn×r such that A = CCT can be constructed by adding r− p
columns of zeros to the matrix EΣ1/2.

Lemma 2. Let C ∈ Rn×p be a rank r matrix. For the orthogonal matrix W ∈ Rp×p, consider the
equality C = CW . If r < p, then W is non-unique. Further, W = I if and only if r = p.

Proof. We begin with the case r = p. First, if W = I , then it immediately follows that C = CI .
Now, assume r = p. If r = p, it must be that n ≥ p. We write the singular value decomposition
of C as C = UΣV T for some U ∈ Rn×p with orthonormal columns, orthogonal V ∈ Rp×p and
diagonal Σ ∈ Rp×p with the p non-zero singular values of C along its diagonal. We now solve for
W in the equation C = CW to show that uniquely W = I . Specifically, we have

CW = C

UΣV TW = UΣV T

(V Σ−1UT )UΣV TW = (V Σ−1UT )UΣV T

W = I.

We now consider r < p. Denote the singular value decomposition of C as C = UΣV T . We
now need to consider the possibility that n < p, so define U ∈ Rn×n and V ∈ Rp×p to be
orthogonal matrices and let Σ ∈ Rn×p be a matrix with the singular values of C in the appropriate
locations. Specifically, the diagonal of Σ will contain the r singular values of C and p − r zero
values along its diagonal. We again consider solutions to the equation UΣV TW = UΣV T . We can
left multiply by UT to obtain ΣV TW = ΣV T . Let W = V O for some orthogonal O ∈ Rp×p. Let
O(i, :) = V (:, i)T if Σ(i, i) 6= 0. Then it can be verified that ΣV T = ΣV TW , regardless of the
values of the remaining rows ofO. Furter, the remaining rows ofO can be chosen arbitrarily as long
as O remains orthogonal. In the case of a single missing row, the missing row is only determined up
to multiplication by 1 or −1. In the case of more than one missing row, there is greater flexibility.
When O is non-unique, the product W = V O will be non-unique, completing the proof.

Corollary 3. Let C1, C2 ∈ Rn×r be matrices such that C1 = C2W for some orthogonal W ∈
Rr×r. If the rank of C1 is r, then W is unique.

Proof. The proof is by contradiction. First, assume there are two distinct orthogonal matrices W1

and W2, such that C1 = C2W1 and C1 = C2W2. Then it must be that

C2 = C2W1W
T
2 . (2)

Next, note that if W1 and W2 are two distinct orthornormal matrices, W1W
T
2 6= I . However, by

assumption C2 is of rank r and by lemma 2 (2) holds if and only if W1W
T
2 = I , and we have

achieved a contradiction.

Lemma 4. For the rank r matrix A ∈ Sn+ define C1, C2 ∈ Rn×r such that A = C1C
T
1 and

A = C2C
T
2 . Then there exists a unique orthogonal W ∈ Rr×r such that C1 = C2W .

Proof. First note that by assumption rank{A} = r, so C1 and C2 must also be of rank r. Further,
it must be that rank{A} ≤ n, so r ≤ n. Denote the singular value decomposition of C1 as
C1 = U1Σ1V

T
1 , for U1 ∈ Rn×r with orthonormal columns, diagonal r× r matrix Σ1, with the non-

zero singular values of C1 along its diagonal, and orthogonal V1 ∈ Rr×r. Use a similar notation for
the SVD of C2. With these preliminaries out of the way, we will first establish that W exists and is
orthogonal and then call on corollary 3 to establish its uniqueness.
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First, we establish that W exists by noting that we can solve for it. All of the singular values of C1

and C2 must be strictly greater than 0, as C1 and C2 are of rank r. Therefore, Σ−11 and Σ−12 are well
defined. Thus, we can solve for W as W = V2Σ−12 UT2 U1Σ1V

T
1 .

To establish that W must be orthogonal let W be a matrix such that C1 = C2W and note that we
have

A = C1C
T
1 = C2WWTCT2 = C2C

T
2 = A,

so clearly C2C
T
2 = C2WWTCT2 .

Using our notation for the SVD of C2, we can then write

U2Σ2V
T
2 IV2Σ2U

T
2 = U2Σ2V

T
2 WWTV2Σ2U

T
2 . (3)

Noting again that Σ−12 is well defined, we can then left multiple both sides of (3) by V2Σ−12 UT2 and
right multiply by U2Σ−12 V T2 to find,

I = WWT ,

establishing that W must be orthogonal. Having established that there exists an orthogonal W such
that C1 = C2W , that C1 and C2 are of rank r, the uniqueness of W follows directly from corollary
3.

Lemma 5. Consider the rank r matrix A ∈ Sn+. Define the index sets I1 and I2 such that A(I1, I1)
and A(I2, I2) are submatrices of A and A(I1 ∪ I2, I1 ∪ I2) = A. Let ι = I1 ∩ I2. Let n1 = |I1|,
and n2 = |I2|.
Define C1 ∈ Rn1×r and C2 ∈ Rn2×r such that A(I1, I1) = C1C

T
1 and A(I2, I2) = C2C

T
2 .

Further, let φ1 and φ2 index the rows of C1 and C2, respectively, such that C1(φ1, :)C1(φ1, :)
T =

A(ι, ι) = C2(φ2, :)C2(φ2, :)
T . Finally, let η2 index the rows of C2 such that A(I2 \ ι, I2 \ ι) =

C2(η2, :)C2(η2, :)
T . Then if the rank of A(ι, ι) is equal to r, there exists a unique orthogonal

W : C1(φ1, :) = C2(φ2, :)W (4)

such that A = C ′C ′
T when C ′ ∈ Rn×r is formed as

C ′(I1, :) = C1

C ′(I2 \ ι, :) = C2(η2, :)W.

Proof. Note that

C1(φ1, :)C1(φ1, :)
T = C2(φ2, :)C2(φ2, :)

T = A(ι, ι).

Further, by assumption A(ι, ι) is of rank r, so C1(φ1, :) and C2(φ2, :) must be as well. Then the
existence, ortogonality and uniqueness of W follow from lemma 4.

Next, we establish that C ′C ′T = A. First note that

C ′(I1, :)C ′(I1, :)T = C1C
T
1 = A(I1, I1),
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and

C ′(I2 \ ι, :)C ′(I2 \ ι, :)T = C2(η2, :)WWTC2(η2, :)
T

= C2(η2, :)C2(η2, :)
T

= A(I2 \ ι, I2 \ ι).

All that remains is to show that C ′(I2 \ ι, :)C ′(I1, :)T = A(I2 \ ι, I1). We do this by reference to
an arbitrary matrix D ∈ Rn×r such that A = DDT . It must be that A(I1, I1) = D(I1, :)D(I1, :)T
and A(I2, I2) = D(I2, :)D(I2, :)T . Additionally, we also know that A(I1, I1) = C1C

T
1 and

A(I2, I2) = C2C
T
2 .

Further, the rank r matrix A(ι, ι) is a submatrix of A(I1, I1) and A(I2, I2) so A(I1, I1) and
A(I2, I2) must also be of rank r, from which it follows that D(I1, :), D(I2, :), C1 and C2 are
also of rank r.

From lemma 4 it then follows that there exist unique orthogonal O1 and O2 such that
D(I1, :) = C1O1 and D(I2, :) = C2O2. Further, we have

C1(φ1, :)C1(φ1, :)
T = C2(φ2, :)WC1(φ1, :)

T

= D(ι, :)OT2 WO1D(ι, :)T

= A(ι, ι),

which establishes that D(ι, :)OT2 WO1D(ι, :)T = A(ι, ι). Further, D(ι, :) is a rank r matrix of size
|ι| by r. Therefore, for the matrix M it must be that D(ι, :)MD(ι, :)T = A(ι, ι) = D(ι, :)D(ι, :)T

if and only if M = I . Therefore, D(ι, :)OT2 WO1D(ι, :)T = A(ι, ι) if and only if O2WOT1 = I .

Now, consider, C ′(I2 \ ι, :)C ′(I1, :)T . We can write

C ′(I2 \ ι, :)C ′(I1, :)T = C2(η2, :)WCT1

= D(I2 \ ι, :)OT2 WO1D(I1, :)T

= D(I2 \ ι, :)ID(I1, :)T

= A(I2 \ ι, I1).

Having shown that A(I1, I1) = C ′(I1, :)C ′(I1, :)T , A(I2 \ ι, I2 \ ι) = C ′(I2 \ ι, :)C ′(I2 \ ι, :)T
and A(I2 \ ι, I1) = C ′(I2 \ ι, :)C ′(I1, :)T , we can conclude that A(I1 ∪ I2, I1 ∪ I2) = C ′C ′T .
Further, A(I1 ∪ I2, I1 ∪ I2) must be the entirety of A as by assumption A(I1 ∪ I2, I1 ∪ I2) = A,
which completes the proof.

Lemma 6. Let A ∈ Sn+ be a rank r matrix. Define the index sets I1 ⊂ [n] and I2 ⊂ [n] and let
ι = I1 ∩ I2. Let Ω denote the set of observed entries of A and assume Ω = I1 × I1 ∪ I2 × I2 and
Ω 6= [n]× [n]. Then it is necessary that I1∪I2 = [n] and rank{A(ι, ι)} = r, where it is understood
that rank{A(ι, ι)} = 0 if ι = ∅, for there to be a unique rank r completion of A.

Proof. First, if I1 ∪ I2 6= [n], the set Ω fails to index a complete row and column of A, which we
compactly express as {(i, j), (j, i) : j ∈ [n]} ∩ Ω = ∅ for some i ∈ [n]. The matrix A is PSD,
and by lemma 1 we can decompose A as A = CCT for some C ∈ Rn×r. For any such C, we
can write the individual entries of A as A(i, j) = C(i, :)C(j, :)T for all i, j ∈ [n]. For row i of
any such C, the set of entries {Aij , Aji : j ∈ [n]} then provide the only set of equality constraints
for learning C(i, :). Now if {(i, j), (j, i) : j ∈ [n]} ∩ Ω = ∅ for some i ∈ [n], this implies there
are no equality constraints to learn C(i, ; ). Therefore, there are an infinite number of C matrices
such that Aij = (CCT )ij ,∀(i, j) ∈ Ω but A 6= CCT . Further, since C ∈ Rn×r, it must be
rank

{
CCT

}
≤ r, establishing that we can find an infinite number of rank{r} completions of A

from the set of entries indexed in Ω.
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The rest of this proof now considers the case when I1∪I2 = [n] but rank{A(ι, ι)} < r. The matrix
A is of rank r, and A(ι, ι) is a submatrix of A. Therefore, it must be that rank{A(ι, ι)} ≤ r. We
will show that when rank{A(ι, ι)} < r we can find two or more rank r completions for A which
match the entries of A in Ω but differ on their entries outside of Ω, establishing that there is no
unique rank r completion for A from the set of observed entries in Ω.

The matrix A is PSD, and we by lemma 1 we can decompose A as A = CCT for some C ∈ Rn×r.

Let n1 = |I1| and n2 = |I2|. Define φ1 and φ2 such that C1(φ1, :) = C(ι, :) and
C2(φ2, :) = C(ι, :). Define η2 = [n2] \ φ2. We construct a matrix, Ĉ ∈ Rn×r, as

Ĉ(I1, :) = C(I1, :),
Ĉ(η2, :) = C(η2, :)W,

for some orthogonal W such that C(ι, :) = C(ι, :)W .

If ι = ∅, then any orthogonal matrix will satisfy this constraint. If ι 6= ∅ and rank rank{A(ι, ι)} < r,
then such an orthogonal W still exists and is non-unique. To see this note that if the rank of A(ι, ι)
is less than r, the rank of C(ι, :) must also be less than r as C(ι, :)C(ι, :)T = A(ι, ι). By lemma 2
we can then conclude that there exists a non-unique orthogonal W such that C(ι, :) = C(ι, :)W .

Let Â = ĈĈT . Any such Â must be of rank r as rank
{
Ĉ
}
≤ r. Further, Â must agree with A on

all entries indexed by Ω. To see this note

Â(I1, I1) = Ĉ(I1, :)Ĉ(I1, :)T

= C(I1, :)C(I1, :)T

= A(I1, I1),

and

Â(I2, I2) = Ĉ(I2, :)Ĉ(I2, :)T

= C(I2, :)WWTC(I2, :)T

= C(I2, :)C(I2, :)T

= A(I2, I2),

where we have used the relations Ĉ(I2 ∩ ι, :) = C(ι, :) = C(ι, :)W and
Ĉ(I2 \ ι, :) = Ĉ(η2, :) = C(η2, :)W to conclude Ĉ(I2, :) = C(I2, :)W .

However, if W is non-unique the product

Â(I1, I2) = C(I1, :)WTC(I2, :)T

will in general be non-unique, which will yield non-unique completions of the entries of A not
indexed by Ω. Further, by assumption Ω 6= [n] × [n], so there are one or more entries of A not
indexed by Ω. This establishes the existence of a non-unique rank r completion for A from the set
of entries indexed in Ω and completes the proof.

Corollary 7. Let Ω 6= [n] × [n] index the set of observed entries of a rank r matrix A ∈ Sn+.
Suppose there exists a ρ1, . . . , ρk such that ∪ki=1ρi × ρi = Ω for all i ∈ [k], ρi 6⊆ ρj for all pairs
(i, j) ∈ [k]× [k], and ρi ∩ ρj = ∅ for any pair (i, j) ∈ {(i, j)||i− j| > 1, i ∈ [k], j ∈ [k]}.

Define ιi = ρi ∩ ρi−1 for i ∈ {2, . . . , k}. Then it is necessary that ∪ki=1ρi = [n] and
rank{A(ιi, ιi)} = r for all i ∈ {2, . . . , k} for there to be a unique rank r completion of A.
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Proof. Fix i∗ ≥ 2. Define ρ∗i−1 = ∪i
∗−1
j=1 ρj and ρ∗i = ∪kj=i∗ρk and Ω∗ = ρ∗i−1 × ρ∗i−1 ∪ ρ∗i × ρ∗i .

By construction ρ∗i−1 ∈ [n] and ρ∗i ∈ [n]. Further, we prove that Ω∗ 6= [n] × [n] by contradiction.
Assume that Ω∗ = [n] × [n]. Then this would require that either ρ∗i−1 = [n] or ρ∗i = [n], which
would imply ρ∗i−1 ∩ ρ∗i = ρ∗i or ρ∗i−1 ∩ ρ∗i = ρ∗i−1. However, since we assume ρi ∩ ρj = ∅ for
any pair (i, j) ∈ {(i, j)||i − j| > 1, i ∈ [k], j ∈ [k]}, it must be that ρ∗i−1 ∩ ρ∗i = ρi∗−1 ∩ ρi∗ .
However, if ρ∗i−1 ∩ ρ∗i = ρ∗i or ρ∗i−1 ∩ ρ∗i = ρ∗i−1 and ρ∗i−1 ∩ ρ∗i = ρi∗−1 ∩ ρi∗ , then it must be that
ρi∗ ⊆ ρi∗−1 or ρi∗−1 ⊆ ρi∗ , which is a contradiction of the assumption that ρi 6⊆ ρj for any pair
(i, j) ∈ [k]× [k].

Thus, we have two sets, ρ∗i−1 and ρ∗i , which index A as required by lemma 6. Now assume that
∪ki=1ρk 6= [n]. Then ρ∗i−1 ∪ ρ∗i 6= [n], so by lemma 6, A cannot be completed from the entries
indexed by Ω∗.

Now, assume that ∪ki=1ρk = [n] so ρ∗i−1 ∪ ρ∗i = [n], but there exists an i∗ such that
rank{A(ιi∗ , ιi∗)} < r. Define ι∗ = ρ∗i−1 ∩ ρ∗i .

Then

rank{A(ι∗, ι∗)} = rank
{
A(ρ∗i−1 ∩ ρ∗i , ρ∗i−1 ∩ ρ∗i )

}
= rank{A(ρi∗−1 ∩ ρi∗ , ρi∗−1 ∩ ρi∗)}
= rank{A(ιi∗ , ιi∗)}
< r.

Therefore, by lemma 6 there is again no unique rank r completion of A from the entries indexed by
Ω∗.

However,

Ω = ∪kj=1ρj × ρj

=
(
∪i

∗−1
j=1 ρj × ρj

)
∪
(
∪nj=i∗ρj × ρj

)
⊆ ρ∗i−1 × ρ∗i−1 ∪ ρ∗i × ρ∗i
= Ω∗.

Therefore, the set Ω∗ is a superset of Ω. If no unique rank r completion can be found from a superset
of Ω, then the entries indexed by Ω must themselves contain insufficient information to allow for a
unique rank r completion of A, completing the proof.

Corollary 8. Let Ω 6= [n]×[n] index the set of observed entries of a rank r matrixA ∈ Sn+. Suppose
there exists a ρ1, . . . , ρk such that ∪ki=1ρi × ρi = Ω, ρi 6⊆ ρj for all pairs (i, j) ∈ [k] × [k] and
ρi ∩ ρj = ∅ for any pair (i, j) ∈ {(i, j)|i 6= 1, j 6= 1, i ∈ [k], j ∈ [k]}.

Define ιi = ρi∩ρ1 for i ∈ {2, . . . , k}. Then it is necessary that ∪ki=1ρi = [n] and rank{A(ιi, ιi)} =
r for all i ∈ {2, . . . , k} for there to be a unique rank r completion of A.

Proof. Fix i∗ ≥ 2. Define ρ∗i−1 = ∪i
∗−1
j=1 ρj and ρ∗i = ∪kj=i∗ρk and Ω∗ = ρ∗i−1 × ρ∗i−1 ∪ ρ∗i × ρ∗i .

By construction ρ∗i−1 ∈ [n] and ρ∗i ∈ [n]. Further, we prove that Ω∗ 6= [n] × [n] by contradiction.
Assume that Ω∗ = [n] × [n]. Then this would require that either ρ∗i−1 = [n] or ρ∗i = [n], which
would imply ρ∗i−1 ∩ ρ∗i = ρ∗i or ρ∗i−1 ∩ ρ∗i = ρ∗i−1. However, since we assume ρi ∩ ρj = ∅ for any
pair (i, j) ∈ {(i, j)|i 6= 1, j 6= 1, i ∈ [k], j ∈ [k]}, this would imply that ρ1 ∩ ρi = ρi for some
i ≥ 2 or ρ1 ∩ ρi = ρ1 for some i ≥ 2, implying that ρi ⊆ ρ1 for some i ≥ 2 or ρ1 ⊆ ρi for some
i ≥ 2, both of which contradict the assumption that ρi 6⊆ ρj for any pair (i, j) ∈ [k]× [k].
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Thus, we have two sets, ρ∗i−1 and ρ∗i , which index A as required by lemma 6. Now assume that
∪ki=1ρk 6= [n]. Then ρ∗i−1 ∪ ρ∗i 6= [n], so by lemma 6, A cannot be completed from the entries
indexed by Ω∗.

Now, assume that ∪ki=1ρk = [n] so ρ∗i−1 ∪ ρ∗i = [n], but there exists an i∗ such that
rank{A(ιi∗ , ιi∗)} < r. Define ι∗ = ρ∗i−1 ∩ ρ∗i .

Then

rank{A(ι∗, ι∗)} = rank
{
A(ρ∗i−1 ∩ ρ∗i , ρ∗i−1 ∩ ρ∗i )

}
= rank{A(ρ1 ∩ ρi∗ , ρ1 ∩ ρi∗)}
= rank{A(ιi∗ , ιi∗)}
< r.

Therefore, by lemma 6 there is again no unique rank r completion of A from the entries indexed by
Ω∗. However,

Ω = ∪kj=1ρj × ρj

=
(
∪i

∗−1
j=1 ρj × ρj

)
∪
(
∪nj=i∗ρj × ρj

)
⊆ ρ∗i−1 × ρ∗i−1 ∪ ρ∗i × ρ∗i
= Ω∗.

Therefore, the set Ω∗ is a superset of Ω. If no unique rank r completion can be found from a superset
of Ω, then the entries indexed by Ω must themselves contain insufficient information to allow for a
unique rank r completion of A, completing the proof.

Corollary 9. Let Ω 6= [n]× [n] index the set of observed entries of a rank r matrixA ∈ Sn+. Assume
there exists an I ⊆ [n] and ρ ⊆ [n] such that ρ× ρ ⊆ Ω, ρ 6⊆ I and Ω ⊆ ρ× ρ ∪ I × I.

Define ι = ρ∩I. Then it is necessary that ρ∪I = [n] and rank{A(ι, ι)} = r for all i ∈ {2, . . . , k}
for there to be a unique rank r completion of A.

Proof. The proof is a straightforward application of lemma 6.

Define Ω∗ = ρ× ρ∪I1×I1. Assume ρ∪I1 6= [n]. Then by lemma 6, A cannot be recovered from
the entries indexed by Ω∗.

Now assume that ρ ∪ I1 = [n], but rank{A(ι, ι)} < r. Then by lemma 6, A cannot be recovered
from the entries indexed by Ω∗.

However, Ω∗ ⊇ Ω. If no unique rank r completion can be found from a superset of Ω, then the
entries indexed by Ω must themselves contain insufficient information to allow for a unique rank r
completion of A, completing the proof.

Lemma 10. For any matrix pair C ∈ Rn×p and Ĉ ∈ Rn×p such that
minW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε, there exists an P ∈ Rn×p and orthogonal U ∈ Rp×p

such that Ĉ = CU + P and ||P ||F ≤ ε.

Proof. Define UT = argminW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

. Then by assumption
∣∣∣∣∣∣C − ĈUT ∣∣∣∣∣∣

F
≤ ε.

Further, the set of orthogonal matrices of size 1 or greater is nonempty so such a U must always
exist. Now define Ĉ = CU + P . Because we can pick any P ∈ Rn×r, such a P always exists.
Then
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||P ||F = ||CU − CU − P ||F
=
∣∣∣∣∣∣CU − Ĉ∣∣∣∣∣∣

F

=
∣∣∣∣∣∣C − ĈUT ∣∣∣∣∣∣

F

≤ ε.

Lemma 11. For C and Ĉ in Rn×p, let minW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε and ||C||F ≤ δ. Then

∣∣∣∣∣∣CCT − ĈĈT ∣∣∣∣∣∣
F
≤ 2δε+ ε2.

Proof. For any W : WWT = I , we can write

∣∣∣∣∣∣Ĉ∣∣∣∣∣∣
F

=
∣∣∣∣∣∣ĈW ∣∣∣∣∣∣

F
=
∣∣∣∣∣∣ĈW − C + C

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣ĈW − C∣∣∣∣∣∣

F
+ ||C||F

=
∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣

F
+ ||C||F ,

where we have made use of triangle inequality for norms and the unitarily invariance of the Frobe-
nius norm. The above holds for any W . Selecting W ∗ = argminW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

, we
have

∣∣∣∣∣∣Ĉ∣∣∣∣∣∣
F
≤
∣∣∣∣∣∣C − ĈW ∗∣∣∣∣∣∣

F
+ ||C||F

≤ ε+ δ.

Again, for any W : WWT = I , we can write

∣∣∣∣∣∣CCT − ĈĈT ∣∣∣∣∣∣
F

=
∣∣∣∣∣∣CCT − ĈWWT ĈT

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣CCT − ĈWCT + ĈWCT − ĈWWT ĈT

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣[C − ĈW ]CT + ĈW [CT −WT ĈT ]

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣[C − ĈW ]CT

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣ĈW [CT −WT ĈT ]

∣∣∣∣∣∣
F

≤ ||C||F
∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣

F
+
∣∣∣∣∣∣ĈW ∣∣∣∣∣∣

F

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

= ||C||F
∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣

F
+
∣∣∣∣∣∣Ĉ∣∣∣∣∣∣

F

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
,

where in addition to the two properties of the Frobenius norm we used before we have also used
the submultiplicative property of this norm. We can again pick W arbitrarily, and we again pick
W ∗ = argminW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

, so that
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∣∣∣∣∣∣CCT − ĈĈT ∣∣∣∣∣∣
F
≤ ||C||F

∣∣∣∣∣∣C − ĈW ∗∣∣∣∣∣∣
F

+
∣∣∣∣∣∣Ĉ∣∣∣∣∣∣

F

∣∣∣∣∣∣C − ĈW ∗∣∣∣∣∣∣
F

≤ ||C||F ε+ ||Ĉ||F ε
≤ δε+ (ε+ δ)ε

= 2δε+ ε2,

where we have used the bound on ||Ĉ||F in moving to the second to last line of the proof.

Lemma 12. For C1, C2 ∈ Rn×p, such that ||C1||F ≤ δ1 and ||C2||F ≤ δ2 define

Ĉ1 = C1 + P1

Ĉ2 = C2 + P2,

for some error matrices P1, P2 ∈ Rn×p such that ||P1||F ≤ ε1 and ||P2||F ≤ ε2. Then

∣∣∣∣∣∣CT1 C2 − ĈT1 Ĉ2

∣∣∣∣∣∣
F
≤ ε1δ2 + ε1ε2 + δ1ε2.

Proof. Throughout this proof we will use the triangle inequality of norms and the submultiplicative
property of the Frobenius norm without further comment.

First, note that

∣∣∣∣∣∣Ĉ1

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣Ĉ1 − C1 + C1

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣Ĉ1 − C1

∣∣∣∣∣∣
F

+ ||C1||F
= ||P1||F + ||C1||F
≤ ε1 + δ1.

Next, we have

∣∣∣∣∣∣CT1 C2 − ĈT1 Ĉ2

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣CT1 C2 − ĈT1 C2 + ĈT1 C2 − ĈT1 Ĉ2

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣[CT1 − ĈT1 ]C2 + ĈT1

[
C2 − Ĉ2

]∣∣∣∣∣∣
F

=
∣∣∣∣∣∣−PT1 C2 − ĈT1 P2

∣∣∣∣∣∣
F

≤
∣∣∣∣PT1 C2

∣∣∣∣
F

+
∣∣∣∣∣∣ĈT1 P2

∣∣∣∣∣∣
F

≤ ||P1||F ||C2||F + ||Ĉ1||F ||P2||F
≤ ε1δ2 + [ε1 + δ1]ε2

= ε1δ2 + ε1ε2 + δ1ε2,

where he have used the bound on
∣∣∣∣∣∣Ĉ1

∣∣∣∣∣∣ in moving to the second to last line of the proof.

Lemma 13. Let U be an n × n orthogonal matrix. For the unit length vector v ∈ Rn, define
θi(v) = mink:|k|=1 cos−1(kU(:, i)T v), where | · | indicates absolute value. Then∑

j 6=i

(U(:, j)T v)2 = sin2 θi(v).
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Proof. The matrix U is orthogonal, so it must be that

∑
j

(U(:, j)T v)2 = vTUUT v = vT v = ||v||22 = 1,

where ||·||2 indicates the `2-norm. Therefore, for k ∈ {1,−1}, we have

∑
j

(U(:, j)T v)2 = (kU(:, i)T v)2 +
∑
j 6=i

(U(:, j)T v)2 = cos2 θi(v) +
∑
j 6=i

(U(:, j)T v)2 = 1,

which we can use to find

∑
j 6=i

(U(:, j)T v)2 = 1− cos2 θi(v) = sin2 θi(v).

Lemma 14. Consider the matrices A, Ã ∈ Sn+ of rank r and r̃ ≥ r, respectively. Define Ĉ ∈ Rn×r
column-wise such that

Ĉ(:, i) = λ̃
1/2
i Ẽ(:, i), ∀i ≤ r. (5)

For i ≤ r, define θi = minki:|ki|=1 cos−1(kiẼ
T
i Ei), where | · | indicates absolute value.

Then for any C ∈ Rn×r such that A = CCT and Ã

min
W :WWT=I

||C − ĈW ||F ≤

√√√√ r∑
i=1

|λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λi − λ̃i|1/2 sin2(θi/2).

Proof. Let S be the set of r × r diagonal sign matrices (diagonal matrices with values of 1 or −1

along the diagonal). The Frobenius norm is unitarily invariant, so for any C and Ĉ,

min
W :WWT=I

||C − ĈW ||F = min
W :WWT=I

||CW − Ĉ||F

= min
W :WWT=I,S∈S

||CWS − ĈS||F .

Further, for orthogonal W , the matrix WS−1 is also orthogonal, so if W ∗ minimizes
minW :WWT=I,S∈S ||CW − ĈS||F , then W ∗S−1 is an orthogonal matrix that minimizes
minW :WWT=I,S∈S ||CWS − ĈS||F , establishing that

min
W :WWT=I

||C − ĈW ||F = min
W :WWT=I,S∈S

||CW − ĈS||F .

Now select W ′ such that CW ′ = EΛ1/2. If CCT = A, such a W ′ is guaranteed to always exist by
lemma 4. Next, note that
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min
W :WWT=I,S∈S

||CW − ĈS||F ≤ min
S∈S
||CW ′ − ĈS||F

= min
S∈S
||EΛ1/2 − ĈS||F .

We next can write

min
S∈S
||EΛ1/2 − ĈS||2F = min

S∈S

r∑
i=1

||E(:, i)λ
1/2
i − Ĉ(:, i)S(i, i)||22

=

r∑
i=1

min
ki:ki∈{−1,1}

||E(:, i)λ
1/2
i − kiẼ(:, i)λ̃

1/2
i ||

2
2, (6)

where in moving the last line above we have used (5) to substitute for Ĉ(:, i) and written the mini-
mization over S ∈ S equivalently in terms of individual ki ∈ {−1, 1}.

Now, let Ẽ⊥ be a matrix with orthonormal columns that span the subspace of Rn orthogo-
nal to the subspace spanned by the first r columns of Ẽ. The columns of the unitary matrix
B = [Ẽ1, . . . , Ẽk, Ẽ⊥] then form an orthonormal basis for Rn. For any vector x ∈ Rn, it must
then be that ||x||2 = ||BTx||2. Therefore

r∑
i=1

min
ki:ki∈{−1,1}

||E(:, i)λ
1/2
i − kiẼ(:, i)λ̃

1/2
i ||

2
2 =

r∑
i=1

min
ki:ki∈{−1,1}

||BT [E(:, i)λ
1/2
i − kiẼ(:, i)λ̃

1/2
i ]||22

=

r∑
i=1

min
ki:ki∈{−1,1}

n∑
j=1

(
B(:, j)T [E(:, i)λ

1/2
i − kiẼ(:, i)λ̃

1/2
i ]
)2

=

r∑
i=1

min
ki:ki∈{−1,1}

((
B(:, i)T [E(:, i)λ

1/2
i − kiẼ(:, i)λ̃

1/2
i ]
)2

+ . . .

∑
j 6=i

(
B(:, j)T [E(:, i)λ

1/2
i − kiẼ(:, i)λ̃

1/2
i ]
)2)

=

r∑
i=1

min
ki:ki∈{−1,1}

((
λ
1/2
i Ẽ(:, i)TE(:, i)− kiλ̃1/2i

)2
+ . . .

∑
j 6=i

(
λ
1/2
i B(:, j)TE(:, i)

)2)
,

where in moving to the last equality statement we have recognized that the first r columns of B are
by construction the first r columns of Ẽ.

Using lemma 13, it must be that

∑
j 6=i

(
λ
1/2
i B(:, j)TE(:, i)

)2
= λi

∑
j 6=i

(
B(:, j)TE(:, i)

)2
= λi sin2 θi,

where θi = minki:|ki|=1 cos−1(kiB(:, i)TE(:, i)) = minki:|ki|=1 cos−1(kiẼ(:, i)TE(:, i)).

Further, note that
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min
ki:ki∈{−1,1}

(
λ
1/2
i Ẽ(:, i)TE(:, i)− kiλ̃1/2i

)2
= min
ki:ki∈{−1,1}

(
kiλ

1/2
i Ẽ(:, i)TE(:, i)− λ̃1/2i

)2
.

Additionally, λ1/2i ≥ 0 and λ̃1/2i ≥ 0 since both A and Ã are PSD. Therefore, the ki that min-
imizes the above equation must render kiẼ(:, i)TE(:, i) ≥ 0, from which we can conclude that
kiẼ(:, i)TE(:, i) = cos(θi), when θi = minki:|ki|=1 cos−1(kiẼ(:, i)TE(:, i)), so

min
ki:ki∈{−1,1}

(
kiλ

1/2
i Ẽ(:, i)TE(:, i)− λ̃1/2i

)2
=
(
λ
1/2
i cos(θi)− λ̃1/2i

)2
.

We can therefore write (6) as

r∑
i=1

min
ki:ki∈{−1,1}

||E(:, i)λ
1/2
i − kiẼ(:, i)λ̃

1/2
i ||

2
2 =

r∑
i=1

[(
λ
1/2
i cos(θi)− λ̃1/2i

)2
+ λi sin2 θi

]

=

r∑
i=1

[
λi + λ̃i − 2 cos(θi)λ

1/2
i λ̃

1/2
i

]
.

We now bound

λi + λ̃i − 2 cos(θi)λ
1/2
i λ̃

1/2
i = (λ

1/2
i − λ̃1/2i )2 + 2λ

1/2
i λ̃

1/2
i − 2 cos(θi)λ

1/2
i λ̃

1/2
i

= (λ
1/2
i − λ̃1/2i )2 + 2λ

1/2
i λ̃

1/2
i (1− cos(θi)) .

Note that

(λ
1/2
i − λ̃1/2i )2 =

(λi − λ̃i)2

(λ
1/2
i + λ̃

1/2
i )2

= |λi − λ̃i|
|λi − λ̃i|

(λi + λ̃i + 2λ
1/2
i λ̃

1/2
i )

≤ |λi − λ̃i|
|λi − λ̃i|
λi + λ̃i

≤ |λi − λ̃i|,

and we can use a half angle formula to write cos(θi) = 1− 2 sin2(θi/2), and we have

λi + λ̃i − 2 cos(θi)λ
1/2
i λ̃

1/2
i ≤ |λi − λ̃i|+ 4λ

1/2
i λ̃

1/2
i sin2(θi/2).

Further note that λ̃1/2i = λ
1/2
i + λ̃

1/2
i − λ1/2i ≤ λ1/2i + |λ1/2i − λ̃1/2i |, so we have

λi + λ̃i − 2 cos(θi)λ
1/2
i λ̃

1/2
i ≤ |λi − λ̃i|+ 4λ

1/2
i (λ

1/2
i + |λ1/2i − λ̃1/2i |) sin2(θi/2)

= |λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λ

1/2
i − λ̃1/2i | sin

2(θi/2)

≤ |λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λi − λ̃i|

1/2 sin2(θi/2),

where in moving to the last line we have again used the inequality (λ
1/2
i − λ̃1/2i )2 ≤ |λi − λ̃i|. We

can then complete the proof by writing
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min
W :WWT=I

||C − ĈW ||2F ≤
r∑
i=1

|λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λi − λ̃i|

1/2 sin2(θi/2),

where the final result is obtained by taking the square root of both sides of the above inequality.

Lemma 15. Consider the matricesA, Ã ∈ Sn+ of rank r and r̃ ≥ r, respectively. Define S = Ã−A.
Let δ = min{mini∈[r−1], |λi − λi+1|, λr}. Let ||S||F ≤ ε, for some ε < δ/2 ≤ 1. Define Ĉ ∈ Rn×r
column-wise as

Ĉ(:, i) = λ̃
1/2
i Ẽ(:, i), ∀i ≤ r. (7)

Then for any C such that CCT = A,

min
W :WWT=I

||C − ĈW ||F ≤ K
√
rε,

for K =

√
1 + 16λ1

δ2 +
8
√
2λ

1/2
1

δ3/2
.

Proof. For i ≤ r, define θi = minki:|ki|=1 cos−1(kẼTi Ei). We start by using lemma 14 to write

min
W :WWT=I

||C − ĈW ||F ≤

√√√√ r∑
i=1

|λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λi − λ̃i|1/2 sin2(θi/2).

(8)

We will now proceed to establish our theorem by using results in matrix perturbation theory to bound
the different terms in the square root of equation (8). Throughout this proof it should be understood
that λr+1, . . . , λn = 0 and λ̃r̃+1, . . . , λ̃n = 0).

By construction S is a real, symmetric matrix, and we begin by using Weyl’s theorem, which states
that λ̃i ∈ [λi + λ1(S), λi + λn(S)] [1], where λi(S) indicates the ith eigenvalue of S, to bound
|λi − λ̃i| ≤ maxj∈{1,n} |λj(S)| ≤ maxj∈[n] |λj(S)|. We then have

r∑
i=1

|λi − λ̃i| ≤
r∑
i=1

max
j∈[n]

|λj(S)| = rmax
j∈[n]

|λj(S)| = r||S||2 ≤ r ||S||F ≤ rε, (9)

where ||·||2 indicates the spectral norm.

We next bound sin2(θi/2) for i ≤ r. For Ẽ(:, i), we define

ri = AẼ(:, i)− λ̃iẼ(:, i), (10)

which is a residual vector that will be 0 if and only if (λ̃i, Ẽ(:, i)) are an eigenpair of A.

Now define

sep{A, Ã} = min
i∈[r]

min
j∈[n],j 6=i

|λ̃i − λj |. (11)
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By the Sin Theta theorem (c.f., theorem 3.4 in §V of [1]), we know that

| sin(θi)| ≤
||ri||2

minj∈[n],j 6=i |λj − λ̃i|
.

We also know sep{A, Ã} ≤ minj∈[n],j 6=i |λj − λ̃i|, for all i ∈ [r], so we have

r∑
i=1

sin2 (θi) ≤
r∑
i=1

(
||ri||2

sep{A, Ã}

)2

≤ 1

sep2{A, Ã}

r∑
i=1

||ri||22.

We now bound
∑r
i=1 ||ri||22. To simplify things note that

ri = AẼ(:, i)− λ̃iẼ(:, i) = AẼ(:, i)− ÃẼ(:, i) = AẼ(:, i)− (A+ S)Ẽ(:, i) = −SẼ(:, i),

so that ||ri||2 =
∣∣∣∣∣∣SẼ(:, i)

∣∣∣∣∣∣
2
. We can now write

r∑
i=1

||ri||22 =

r∑
i=1

∣∣∣∣∣∣SẼ(:, i)
∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣SẼ(:, 1 : r)

∣∣∣∣∣∣2
F

≤
∣∣∣∣∣∣S[Ẽ(:, 1 : r), Ẽ(:, 1 : r)⊥]

∣∣∣∣∣∣2
F

= ||S||2F
≤ ε2,

where Ẽ(:, 1 : r)⊥ is a matrix with orthonormal columns spanning a subspace orthogonal to the
subspace spanned by the columns of the matrix Ẽ(:, 1 : r), so [Ẽ(:, 1 : r), Ẽ(:, 1 : r)⊥] is an
orthogonal matrix.

Therefore, we have

r∑
i=1

sin2 (θi) ≤
ε2

sep2{A, Ã}
. (12)

To complete our bound on
∑r
i=1 sin2 (θi), we have only to lower bound sep{A, Ã}.

Let dmax = maxi∈[r] |λi − λ̃i|. We can again use Weyl’s theorem to bound

dmax = max
i∈[r]
|λi − λ̃i| ≤ ||S||2 ≤ ||S||F ≤ ε < δ/2. (13)

For i ∈ [r] we also derive an inequality that will be immediately useful. We start by stating,

min
j∈[n],j 6=i

|λi − λj | = min {|λi−1 − λi|, |λi+1 − λi|} ,

where is understood the appropriate terms disappear if i = 1 or i = n. We finish the derivation of
the inequality by writing for all i ∈ [r],
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min {|λi−1 − λi|, |λi+1 − λi|} ≤ min{ min
i∈[r−1],

|λi − λi+1|, λr} = δ,

so we can conclude for all i ∈ [r],

min
j∈[n],j 6=i

|λi − λj | ≤ δ. (14)

For all i ∈ [r], we can then use 13 and 14 to bound

min
j∈[n],j 6=i

|λj − λ̃i| = min
j∈[n],j 6=i

|λ̃i − λj |

= min
j∈[n],j 6=i

|λ̃i − λi + λi − λj |

≥ min
j∈[n],j 6=i

|λi − λj | − |λ̃i − λi|

≥ min
j∈[n],j 6=i

δ − |λ̃i − λi|

≥ min
j∈[n],j 6=i

δ − dmax

> δ − δ/2
= δ/2.

Therefore, it must be that sep{A, Ã} > δ/2. We can then pick up from (12) and complete our
bound on

∑r
i=1 sin2 (θi) as

r∑
i=1

sin2 (θi) <
4ε2

δ2
. (15)

We now pick back up with (8) and write

min
W :WWT=I

||C − ĈW ||F ≤

√√√√ r∑
i=1

|λi − λ̃i|+ 4λi sin2(θi/2) + 4λ
1/2
i |λi − λ̃i|1/2 sin2(θi/2)

=

√√√√ r∑
i=1

|λi − λ̃i|+ 4

r∑
i=1

λi sin2(θi/2) + 4

r∑
i=1

λ
1/2
i |λi − λ̃i|1/2 sin2(θi/2)

≤

√√√√ r∑
i=1

|λi − λ̃i|+ 4λ1

r∑
i=1

sin2(θi/2) + 4λ
1/2
1 d

1/2
max

r∑
i=1

sin2(θi/2).

Further, note that θi ∈ [0, π/2], and therefore sin(θi/2) ≤ sin(θi), so we have

min
W :WWT=I

||C − ĈW ||F ≤

√√√√ r∑
i=1

|λi − λ̃i|+ 4λ1

r∑
i=1

sin2(θi) + 4λ
1/2
1 d

1/2
max

r∑
i=1

sin2(θi).

We now use (9), (13) and (15) to find
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min
W :WWT=I

||C − ĈW ||F ≤

√
rε+

16λ1ε2

δ2
+

8
√

2λ
1/2
1 ε2

δ3/2
.

For r ≥ 1 and ε ≤ 1, we then have

min
W :WWT=I

||C − ĈW ||F ≤ K
√
rε,

for K =

√
1 + 16λ1

δ2 +
8
√
2λ

1/2
1

δ3/2
.

Lemma 16. Let M be a rank r matrix in Rn×r such that ||M ||F ≤ δ. Define

M1 = MW1 + P1

M2 = MW2 + P2,

for perturbation matrices P1, P2 ∈ Rn×r such that ||P1||F ≤ ε1 and ||P2||F ≤ ε2 and orthonormal
matrices W1 ∈ Rr×r and W2 ∈ Rr×r.

Find

T = argmin
W :WWT=I

||MW1 −MW2W ||2F , (16)

and

T̂ = argmin
W :WWT=I

||M1 −M2W ||2F . (17)

Then T = WT
2 W1 is unique. If MT

2 M1 is also of rank r, T̂ is also unique. Finally, when MT
2 M1 is

of rank r,

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣
F
≤ 2

σ2
r(M)

[δ(ε1 + ε2) + ε1ε2].

Proof. Define S = [MW2]TMW1, and denote the singular value decomposition of S as S =
UΣV T , for orthogonal matrices U and V and the diagonal matrix Σ containing the singular values
of S down its diagonal. Similarly, define Ŝ = MT

2 M1, and denote its singular value decomposition
as Ŝ = Û Σ̂V̂ T .

It has been shown in [2] that the T and T̂ which minimize (16) and (17) can be expressed as

T = UV T (18)

T̂ = Û V̂ T . (19)

Denote the singular value decomposition of M as M = LΨRT , for the matrix with orthornormal
columns L ∈ Rn×r, the orthogonal matrix R ∈ Rr×r and the diagonal matrix Ψ ∈ Rr×r. Writing
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S = [MW2]TMW1 = WT
2 M

TMW1 = WT
2 RΨLTLΨRTW1 = WT

2 RΨ2RTW1,

makes it clear that U = WT
2 R and V = WT

1 R. Therefore

T = UV T = WT
2 RR

TW1 = WT
2 W1.

To establish the uniqueness of T , [2] has shown that it is sufficient that the matrix S have r, non-
zero singular values, which must be the case since we assume that the rank of M is r. Similarly, the
uniqueness of T̂ follows from the assumption that Ŝ = MT

2 M1 is of rank r.

All that remains is to establish the bound for
∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣

F
. We first bound

∣∣∣∣∣∣S − Ŝ∣∣∣∣∣∣
F

, and we write

∣∣∣∣∣∣S − Ŝ∣∣∣∣∣∣
F

=
∣∣∣∣[MW2]TMW1 −MT

2 M1

∣∣∣∣
F

=
∣∣∣∣[MW2]TMW1 − [MW2 + P2]T [MW1 + P1]

∣∣∣∣
F
.

Note that ||MW2||F = ||MW1||F = ||M ||F ≤ δ. Lemma 12 can now be applied to find

∣∣∣∣∣∣S − Ŝ∣∣∣∣∣∣
F
≤ ε1δ + ε2ε1 + ε2δ = δ(ε1 + ε2) + ε1ε2. (20)

Having established a bound on ||S − Ŝ||, we now bound ||T − T̂ ||. Finding T and T̂ in (18)
and (19) is equivalent to finding the unitary matrix in the polar decomposition of S and Ŝ. Li
([3], theorem 1) has shown if A and Ã are two non-singular n × n matrices, then

∣∣∣∣∣∣∣∣∣Q− Q̃∣∣∣∣∣∣∣∣∣ ≤
2

σn(A)+σn(Ã)

∣∣∣∣∣∣∣∣∣A− Ã∣∣∣∣∣∣∣∣∣, where Q and Q̃ are the unitary matrices in the polar decomposition of A

and Ã, σn(·) gives the nth singular value of it’s argument when singular values are indexed such
that σ1 ≥ . . . ≥ σn and |||·||| is any unitarily invariant norm. We can apply this theorem to S ∈ Rr×r
and Ŝ ∈ Rr×r as we have shown S = [MW2]TMW1 is of rank r and by assumption Ŝ = MT

2 M1

is as well. Applying the theorem for the Frobenius norm, we find

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣
F
≤ 2

σr(S) + σr(S̃)

∣∣∣∣∣∣S − S̃∣∣∣∣∣∣
F

(21)

≤ 2

σr(S)

∣∣∣∣∣∣S − S̃∣∣∣∣∣∣
F

(22)

≤ 2

σr(S)
[δ(ε1 + ε2) + ε1ε2]. (23)

Recognizing that σr(S) = σr([MW2]TMW1) = σr(M
TM) = σ2

r(M), we can complete the proof
by writing

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣
F
≤ 2

σ2
r(M)

[δ(ε1 + ε2) + ε1ε2]. (24)

Lemma 17. For C ∈ Rn×r define Ĉ1 and Ĉ2 as

Ĉ1 = C(ρ1, :)W1 + P1

Ĉ2 = C(ρ2 :)W2 + P2,
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for some index sets ρ1 ⊆ [n], ρ2 ⊆ [n] with cardinality |ρ1| = n1 and |ρ2| = n2, orthogonal
matrices W1 ∈ Rr×r,W2 ∈ Rr×r and error matrices P1 ∈ Rn1×r, P2 ∈ Rn2×r.

Denote the intersection of ρ1 and ρ2 as ι = ρ1 ∩ ρ2. Let φ1 and φ2 indicate the rows of Ĉ1 and Ĉ2

so that

Ĉ1(φ1, :) = C(ι, :)W1 + P1

Ĉ2(φ2, :) = C(ι, :)W2 + P2.

Finally, define η2 such that Ĉ2(η2, :) = C(ρ2 \ ι, :)W2 + P2.

Algorithm 1 Procrustes Matrix Reconstruction Algorithm (Ĉ1, Ĉ2, ρ1, ρ2, φ1, φ2, ι, η2)

1. T̂ ← argminW :WWT=I

∣∣∣∣∣∣Ĉ1(φ1, :)− Ĉ2(φ2, :)W
∣∣∣∣∣∣
F

2. Ĉ(ρ1, :)← Ĉ1

3. Ĉ(ρ2 \ ι, :)← Ĉ2(η2, :)T̂

4. Return Ĉ

Assume ρ1 ∪ ρ2 = [n], |ι| ≥ r, ||C(ρ2, :)||F ≤ δ2, ||P1||F ≤ ε1 and ||P2||F ≤ ε2. Then if C(ι, :), and
Ĉ2(φ2, :)

T Ĉ1(φ1, :) are of rank r, algorithm 1 will assign values to all rows of Ĉ such that

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε1 + ε2 +K[δ22(ε1 + ε2) + δ2ε1ε2],

for a constant K = 2
σ2
r(C(ι,:)) .

Proof. We first show that all rows of Ĉ will be assigned values. To see this note that in step 1, rows
indexed by ρ1 are assigned values. In step 2, rows indexed by ρ2 \ ι are assigned values. Finally,
ρ1 ∪ (ρ2 \ ι) = [n], showing that all rows of Ĉ are assigned values.

To establish the error bound, we begin by using the triangle inequality to write

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ min
W :WWT=I

{∣∣∣∣∣∣C(ρ1, :)− Ĉ(ρ1, :)W
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣C(ρ2 \ ι, :)− Ĉ(ρ2 \ ι, :)W

∣∣∣∣∣∣
F

}
.

If we set W = WT
1 , we can write this as

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤
∣∣∣∣∣∣C(ρ1, :)− Ĉ(ρ1, :)W

T
1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣C(ρ2 \ ι, :)− Ĉ(ρ2 \ ι, :)WT

1

∣∣∣∣∣∣
F
.

We can bound the first term as

∣∣∣∣∣∣C(ρ1, :)− Ĉ(ρ1, :)W
T
1

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣C(ρ1, :)− Ĉ1W

T
1

∣∣∣∣∣∣
F

=
∣∣∣∣C(ρ1, :)− [C(ρ1, :)W1 + P1]WT

1

∣∣∣∣
F

=
∣∣∣∣P1W

T
1

∣∣∣∣
F

= ||P1||F
≤ ε1,
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where we have used that fact that the Frobenius norm is unitarily invariant in moving from the third
to fourth lines. In the remainder of this proof we will use this property of the Frobenius norm without
further comment.

We again use the triangle inequality to bound the second term as

∣∣∣∣∣∣C(ρ2 \ ι, :)− Ĉ(ρ2 \ ι, :)WT
1

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣C(ρ2 \ ι, :)− Ĉ2(η2, :)T̂W

T
1

∣∣∣∣∣∣
F

=
∣∣∣∣∣∣C(ρ2 \ ι, :)− [C(ρ2 \ ι, :)W2 + P2(η2, :)]T̂W

T
1

∣∣∣∣∣∣
F

≤
∣∣∣∣∣∣P2(η2, :)T̂W

T
1

∣∣∣∣∣∣
F

+
∣∣∣∣∣∣C(ρ2 \ ι, :)

[
I −W2T̂W

T
1

]∣∣∣∣∣∣
F

We can bound
∣∣∣∣∣∣P2(η2, :)T̂W

T
1

∣∣∣∣∣∣
F

as

∣∣∣∣∣∣P2(η2, :)T̂W
T
1

∣∣∣∣∣∣
F

= ||P2(η2, :)||F ≤ ||P2||F ≤ ε2,

where we have taken advantage of the fact that T̂WT
1 must be an orthogonal matrix. We now

complete the proof by bounding
∣∣∣∣∣∣C(ρ2 \ ι, :)

[
I −W2T̂W

T
1

]∣∣∣∣∣∣
F

. We can use the submultiplicative
property of Frobenius norm to write

∣∣∣∣∣∣C(ρ2 \ ι, :)
[
I −W2T̂W

T
1

]∣∣∣∣∣∣
F
≤ ||C(ρ2 \ ι, :)||F

∣∣∣∣∣∣I −W2T̂W
T
1

∣∣∣∣∣∣
F

= ||C(ρ2 \ ι, :)||F
∣∣∣∣∣∣WT

2 W1 − T̂
∣∣∣∣∣∣
F

= ||C(ρ2 \ ι, :)||F
∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣

F
,

where we have defined T = WT
2 W1. We now apply lemma 16 to bound

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣
F

. We set M in

the lemma to C(ι, :), M1 to Ĉ1(φ1, :), M2 to Ĉ2(φ2, :), P1 to P1(φ1, :) and P2 to P2(φ2, :).

Note that it must be that ||C(ι, :)||F ≤ ||C(ρ2, :)||F , any by assumption ||C(ρ2, :)||F ≤ δ2 so
||C(ι, :)||F ≤ δ2. Additionally, ||P1(φ1, :)||F ≤ ||P1||F ≤ ε1 and ||P2(φ2, :)||F ≤ ||P2||F ≤ ε2. By
assumption C(ι, :) is of rank r, as is Ĉ2(φ2, :)

T Ĉ1(φ1, :). Under these conditions T is the solution
to equation (16) in the lemma and T̂ to equation (17). Applying the lemma, we find

∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣
F
≤ 2

σ2
r(C(ι, :))

[δ2(ε1 + ε2) + ε1ε2].

We can also bound ||C(ρ2 \ ι, :)||F ≤ δ2, and we have

||C(ρ2 \ ι, :)||F
∣∣∣∣∣∣T − T̂ ∣∣∣∣∣∣

F
≤ 2

σ2
r(C(ι, :))

[δ2(ε1 + ε2) + ε1ε2] ||C(ρ2 \ ι, :)||F

≤ 2

σ2
r(C(ι, :))

[δ2(ε1 + ε2) + ε1ε2]δ2

=
2

σ2
r(C(ι, :))

[δ22(ε1 + ε2) + δ2ε1ε2].

Putting all of the pieces of the proof together we have

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε1 + ε2 +K[δ22(ε1 + ε2) + δ2ε1ε2],
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for K = 2
σ2
r(C(ι,:)) .

Corollary 18. For C ∈ Rn×r, assume there exists a Ĉ1 ∈ Rn1×r and Ĉ2 ∈ Rn2×r and index sets
ρ1 and ρ2 such that

min
W :WWT=I

∣∣∣∣∣∣C(ρ1, :)− Ĉ1W
∣∣∣∣∣∣
F
≤ ε1

min
W :WWT=I

∣∣∣∣∣∣C(ρ2, :)− Ĉ2W
∣∣∣∣∣∣
F
≤ ε2.

Assume ρ1 ∪ ρ2 = [n]. Let ι = ρ1 ∩ ρ2 and assume |ι| ≥ r.

Define Cl = C(ρl, :) and let φl be an index set that assigns the rows of the matrix C(ι, :) to their
location in Cl, so that C(ι, :) = Cl(φl, :) and let ηl assign the rows of C(ρl \ ιl, :) to their location
in Cl, so that C(ρl \ ιl, :) = Cl(ηl, :).

Assume C(ι, :) and Ĉ1(φ1, :)
T Ĉ2(φ2, :) each are of rank r. Finally, assume ||C(ρ2, :)||F ≤ δ2.

Learn Ĉ ∈ Rn×r with algorithm 1 in lemma 17. Then algorithm 1 will assign values to all rows of
Ĉ such that

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε1 + ε2 +K[δ22(ε1 + ε2) + δ2ε1ε2],

for K = 2
σ2
r(C(ι,:)) .

Proof. For the r × r orthogonal matrices T1 and T2, define the matrices E1, E2 ∈ Rn×r such that

Ĉ1 = C(ρ1, :)T1 + E1 (25)

Ĉ2 = C(ρ2, :)T2 + E2. (26)

Then for any Ĉ1, Ĉ2 andC, there exists orthogonal T1 and T2 such that ||E1||F ≤ ε1 and ||E2||F ≤ ε2.

We prove this first for Ĉ1 and C(ρ1, :). Let W ′ = argminW :WWT=I

∣∣∣∣∣∣C(ρ1, :)− Ĉ1W
∣∣∣∣∣∣
F

, and let

T1 = W ′
T . Then

||E1||F =
∣∣∣∣∣∣Ĉ1 − C(ρ1, :)W

′T
∣∣∣∣∣∣
F

=
∣∣∣∣∣∣C(ρ1, :)− Ĉ1W

′
∣∣∣∣∣∣
F

= min
W :WWT=I

∣∣∣∣∣∣C(ρ1, :)− Ĉ1W
∣∣∣∣∣∣
F

≤ ε1.

The same argument can be carried out for Ĉ2, C(ρ2, :) and T2. All of the assumptions are then met
for lemma 17 to guarantee that algorithm 1 will learn a Ĉ from Ĉ1 and Ĉ2 such that all rows of Ĉ
are assigned and

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε1 + ε2 +K[δ22(ε1 + ε2) + δ2ε1ε2],

for K = 2
σ2
r(C(ι,:)) .
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Corollary 19. For C ∈ Rn×r, assume there exists a set of two or more matrices Ĉ1 ∈
Rn1×r, . . . , Ĉk ∈ Rnk×r, and collection of index sets ρ1, . . . , ρk such that ||C(ρl, :)||F ≤ b for

some b > 0 and minW :WWT=I

∣∣∣∣∣∣C(ρl, :)− ĈlW
∣∣∣∣∣∣
F
≤ ε/b some ε ≥ 0 for all l.

Assume ∪kl=1ρl = [n]. For all l ≥ 2, define ιl = ρl ∩
(
∪l−1j=1ρj

)
and assume |ιl| ≥ r.

Define Cl = C(ρl, :) for all l, and let φl be an index set that assigns the rows of the matrix C(ι, :)
to their location in Cl, so that C(ι, :) = Cl(φl, :) and let ηl assign the rows of C(ρl \ ιl, :) to their
location in Cl, so that C(ρl \ ιl, :) = Cl(ηl, :).

Algorithm 2 Sequential Procrustes Matrix Recovery (Ĉ1, . . . , Ĉk, ρ1, . . . , ρk, {ιl, φl, ηl}kl=2)

Initialize Ĉ as a n× r matrix.

1. Ĉ(ρ1, :)← Ĉ1

2. For l ∈ {2, . . . , k}

(a) Ŵl ← argminWWT=I

∣∣∣∣∣∣Ĉ(ιl, :)− Ĉl(φl, :)W
∣∣∣∣∣∣2
F

(b) Ĉ(ρl \ ιl, :)← Ĉl(ηl, :)Ŵl

3. Return Ĉ

Use algorithm 2 to learn a Ĉ ∈ Rn×r. Then if C(ιl, :) and Ĉl(φl, :)T Ĉ(ιl, :) each are of rank r for
l ∈ 2, . . . , k, algorithm 2 will assign values to all the rows of Ĉ such that

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣ ≤ [4 + 12/v]k−1ε,

for a constant where v ≤ σ2
r(C(ιl, :))/b

2 for all l ≥ 2.

Proof. We will first establish a bound assuming ||C(ρl, :)||F ≤ 1 for all l and ε ≤ 1, and will then
generalize this result when ||C(ρl, :)||F ≤ b for some b > 0 for all l and ε ≤ b.
We establish the result by induction. We prove the base case for k = 2. Note for the case k = 2,
algorithm 2 will consist of step 1, followed by one iteration of step 2, followed by step 3, which is
equivalent to running algorithm 1 of lemma 17 with inputs Ĉ1, Ĉ2, ρ1, ρ2, φ1, φ2, ι2 and η2, where
we have listed inputs in the same order as in the heading for algorithm 1. In this case, Ĉ1 and Ĉ2

are such that minW :WWT=I

∣∣∣∣∣∣C(ρ1, :)− Ĉ1W
∣∣∣∣∣∣ ≤ ε and minW :WWT=I

∣∣∣∣∣∣C(ρ2, :)− Ĉ2W
∣∣∣∣∣∣ ≤ ε.

Further, by assumption ρ1 ∪ ρ2 = [n], |ι2| ≥ r and C(ι2, :) is of rank r. If Ĉ2(φ2, :)
T Ĉ1(φ1, :) is of

rank r, corollary 18 then guarantees that algorithm 1 will learn a Ĉ such that

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ 2ε+K[2δ22ε+ δ2ε

2], (27)

for K = 2
σ2
r(C(ι2,:))

where δ2 = ||C(ρ2, :)||F ≤ 1. Noting that by assumption ε ≤ 1 and σ2
r(C(ι2, :

)) ≤ v, we have

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ [2 + 3G]ε ≤ [4 + 6G]ε, (28)

where G = 2/v.
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We now prove the induction step. When k ≥ 3, algorithm 2 will consist of running step 1, followed
by k − 1 iterations of step 2, followed by running step 3. Let Ik−1 = ∪k−1l=1 ρl. On the (k −
1)th iteration of step 2, assume that the previous steps of the algorithm have learned the rows of
Ĉ indexed by Ik−1 (that is C(Ik−1, :)) such that minW :WWT=I

∣∣∣∣∣∣C(Ik−1, :)− Ĉ(Ik−1, :)W
∣∣∣∣∣∣ ≤

[4 + 6G]k−2ε. For clarity of what is to follow, define ε′k−1 = [4 + 6G]k−2ε. Performing the
(k − 1)th iteration of step 2 of algorithm 2 with Ĉk and the Ĉ(Ik−1, :) from the previous steps
of the algorithm and then performing step 3 is equivalent to running algorithm 1 with the inputs
Ĉ(Ik−1, :), Ĉk, Ik−1, ρk, φ′k−1, φk, ηk, ιk, where we have again listed inputs in the same order as in
the heading for algorithm 2, and φ′k−1 = ιk.

By assumption minW :WWT=I

∣∣∣∣∣∣C(Ik−1, :)− Ĉ ′k−1W
∣∣∣∣∣∣
F
≤ ε′k−1 and

minW :WWT=I

∣∣∣∣∣∣C(ρk, :)− ĈkW
∣∣∣∣∣∣
F
≤ ε. Further, ρk ∪ Ik−1 = ρk ∪

(
∪k−1l=1 ρl

)
= [n], |ιk| ≥ r

and C(ιk, :) is of rank r. Then if Ĉk(φk, :)
T Ĉ(ι, :) also is of rank r, corollary 18 guarantees that

algorithm 1 will learn a full Ĉ from Ĉk and Ĉ ′k−1 such that

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε+ ε′k−1 +K[δ2k(ε+ ε′k−1) + δkε

′
k−1ε],

where δk = ||C(ρk, :)||F ≤ 1. Again, ε ≤ 1, so we have

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε+ ε′k−1 +K[ε+ 2ε′k−1].

Recognizing that again K = 2
σ2
r(C(ιk,:))

≤ 2
v = G, we further have

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε+ ε′k−1 +G[ε+ 2ε′k−1]. (29)

We can bound the right hand side of (29) as

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ ε+ [4 + 6G]k−2ε+G[ε+ 2[4 + 6D]k−2ε]

= [1 +G]ε+ [1 + 2G][4 + 6G]k−2ε

= [1 +G]ε+ 2k−2[1 + 2G][2 + 3G]k−2ε

≤ [2 + 3G]ε+ 2k−2[2 + 3G]k−1ε

=
(
[2 + 3G] + 2k−2[2 + 3G]k−1

)
ε

≤
(
[2 + 3G]k−1 + 2k−2[2 + 3G]k−1

)
ε

= [1 + 2k−2][2 + 3G]k−1ε

≤ [2k−2 + 2k−2][2 + 3G]k−1ε

= 2k−1[2 + 3G]k−1ε

= [4 + 6G]k−1ε. (30)

Substituting G = 2/v, we can conclude

min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ [4 + 12/v]k−1ε

when ||C(ρl, :)||F ≤ 1 for all l and ε ≤ 1.
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We now generalize this result when ||C(ρl, :)||F ≤ b for some b > 0 for all l and 0 ≤ ε ≤ b. Define
C ′ = C/b and Ĉ ′l = Ĉl/b for all l. Then

||C ′(ρl, :)||F = ||C(ρl, :)/b||F =
1

b
||C(ρl, :)||F ≤ 1.

Further, since minW :WWT=I

∣∣∣∣∣∣C(ρl, :)− ĈlW
∣∣∣∣∣∣
F
≤ ε and ε ≤ b, then

min
W :WWT=I

∣∣∣∣∣∣C ′(ρl, :)− Ĉ ′lW ∣∣∣∣∣∣
F

= min
W :WWT=I

∣∣∣∣∣∣∣∣1bC(ρl, :)−
1

b
ĈlW

∣∣∣∣∣∣∣∣
F

=
1

b

[
min

W :WWT=I

∣∣∣∣∣∣C(ρl, :)− ĈlW
∣∣∣∣∣∣
F

]
≤ ε

b
≤ 1.

for all l. For clarity of what is to follow define ε′ = ε/b.

Finally, if v ≤ σ2
r(C(ιl, :)) for all l ≥ 2, then v′ = v/b2 will satisfy v′ ≤ σ2

r(C ′(ιl, :)) for all l ≥ 2,
as can be seen by writing

v

b2
≤ 1

b2
σ2
r(C(ιl, :)) = σ2

r(C(ιl, :)/b) = σ2
r(C ′(ιl, :)).

Having established this basic inequalities, it can be verified that using algorithm 2 to reconstruct
C from Ĉ1, . . . , Ĉk is equivalent to first using algorithm 2 to reconstruct the rescaled C ′ from
Ĉ ′1, . . . , Ĉ ′k and then multiplying the final Ĉ ′ by b to estimate Ĉ = bĈ ′. However, we have
just shown that ||C ′(ρl, :)||F ≤ 1 for all l and ε′ ≤ 1, so we can use the result we just established to
conclude that

min
W :WWT=I

∣∣∣∣∣∣C ′ − Ĉ ′W ∣∣∣∣∣∣
F
≤ [4 + 12/v′]k−1ε′

for v′ ≤ σ2
r(C ′(ιl, :)) for all l. Using the relations above, we can conclude

min
W :WWT=I

∣∣∣∣∣∣C ′ − Ĉ ′W ∣∣∣∣∣∣
F
≤ [4 + 12/v′]k−1

ε

b

when for v′ ≤ 1
b2σ

2
r(C(ιl, :)) for all l.

However, if minW :WWT=I

∣∣∣∣∣∣C ′ − Ĉ ′W ∣∣∣∣∣∣
F
≤ [4 + 12/v′]k−1 εb , then

b

[
min

W :WWT=I

∣∣∣∣∣∣C ′ − Ĉ ′W ∣∣∣∣∣∣
F

]
= min
W :WWT=I

∣∣∣∣∣∣bC ′ − bĈ ′W ∣∣∣∣∣∣
F

= min
W :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F

≤ b[4 + 12/v′]k−1
ε

b

= [4 + 12/v′]k−1ε,

so minW :WWT=I

∣∣∣∣∣∣C − ĈW ∣∣∣∣∣∣
F
≤ [4 + 12/v′]k−1ε which completes the proof.
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