
A Proof of Lemma 1

The following bounds are known [1]:
(
y − 1

2

)
log y − y +

1

2
log(2π) ≤ logΓ (y) ≤

(
y − 1

2

)
log y − y +

1

2
log(2π) +

1

12y
, (21)

log y − 1

y
≤ Ψ(y) ≤ log y − 1

2y
. (22)

For the Dirichlet distribution p(θ|θ̆) ∝
∏H

h=1 a
θ̆h−1
h , the mean and the variance are given as follows:

θ̂h = ⟨θh⟩p(θ|θ̆) =
θ̆h

θ̆0
, ⟨(θh − θ̂h)

2⟩p(θ|θ̆) =
θ̆h(θ̆0 − θ̆h)

θ̆20(θ̆0 + 1)
,

where θ̆0 =
∑H

h=1 θ̆h.

For fixed N , R, defined by Eq.(15), diverges to +∞ if Θ̆m,h → +0 for any (m,h) or B̆l,h → +0 for
any (l, h). Therefore, the global minimizer of the free energy (14) is in the interior of the domain,
where the free energy is differentiable. Consequently, the global minimizer is a stationary point.
The stationary condition (12) implies that

Θ̆m,h ≥ α, B̆l,h ≥ η, (23)
H∑

h=1

Θ̆m,h =
H∑

h=1

α+N (m),
L∑

l=1

B̆l,h =
L∑

l=1

η +
M∑

m=1

(Θ̆m,h − α). (24)

Therefore, we have

⟨(Θm,h − Θ̂m,h)
2⟩q(Θ) = Op(N

−2) for all (m,h), (25)
(
max
m

Θ̂m,h

)2
⟨(Bl,h − B̂l,h)

2⟩q(B) = Op(N
−2) for all (l, h), (26)

which leads to Eq.(17).

By using Eq.(22), Q is bounded as follows:

Q ≤ Q ≤ Q,

where

Q = −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

⎛

⎜⎝
H∑

h=1

Θ̆m,h∑H
h′=1

Θ̆m,h′

B̆l,h∑L
l′=1

B̆l′,h

exp

(
− 1

Θ̆m,h

)

exp

(
− 1

2
∑H

h′=1
Θ̆m,h′

)
exp

(
− 1

B̆l,h

)

exp

(
− 1

2
∑L

l′=1
B̆l′,h

)

⎞

⎟⎠ ,

Q = −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

⎛

⎜⎝
H∑

h=1

Θ̆m,h∑H
h′=1

Θ̆m,h′

B̆l,h∑L
l′=1

B̆l′,h

exp

(
− 1

2Θ̆m,h

)

exp

(
− 1∑H

h′=1
Θ̆m,h′

)
exp

(
− 1

2B̆l,h

)

exp

(
− 1∑L

l′=1
B̆l′,h

)

⎞

⎟⎠ .

Using Eqs.(25) and (26), we have Eq.(18), which completes the proof of Lemma 1. ✷

B Proof of Lemma 3

By using the bounds (21) and (22), R can be bounded as

R ≤ R ≤ R, (27)

where

R = −
M∑

m=1

log

(
Γ (Hα)
Γ (α)H

)
−

H∑

h=1

log

(
Γ (Lη)
Γ (η)

L)
− M(H − 1) +H(L− 1)

2
log(2π)

+
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}
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+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}

+
M∑

m=1

{
−

H∑

h=1

1

12Θ̆m,h

−
H∑

h=1

(
Θ̆m,h − α

)( 1

Θ̆m,h

− 1

2
∑H

h′=1 Θ̆m,h′

)}

+
H∑

h=1

{
−

L∑

l=1

1

12B̆l,h

−
L∑

l=1

(
B̆l,h − η

)( 1

B̆l,h

− 1

2
∑L

l′=1 B̆l′,h

)}
, (28)

R = −
M∑

m=1

log

(
Γ (Hα)
Γ (α)H

)
−

H∑

h=1

log

(
Γ (Lη)
Γ (η)

L)
− M(H − 1) +H(L− 1)

2
log(2π)

+
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}

+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}

+
M∑

m=1

{
1

12
∑H

h=1 Θ̆m,h

−
H∑

h=1

(
Θ̆m,h − α

)( 1

2Θ̆m,h

− 1
∑H

h′=1 Θ̆m,h′

)}

+
H∑

h=1

{
1

12
∑L

l=1 B̆l,h

−
L∑

l=1

(
B̆l,h − η

)( 1

2B̆l,h

− 1
∑L

l′=1 B̆l′,h

)}
. (29)

Eqs.(23) and (24) imply that

R =
M∑

m=1

{(
Hα− 1

2

)
log

H∑

h=1

Θ̆m,h −
H∑

h=1

(
α− 1

2

)
log Θ̆m,h

}

+
H∑

h=1

{(
Lη − 1

2

)
log

L∑

l=1

B̆l,h −
L∑

l=1

(
η − 1

2

)
log B̆l,h

}
+Op(H(M + L)),

which leads to Eq.(20). This completes the proof of Lemma 3. ✷

C Proof of Theorem 1

Lemma 2 and Lemma 3 imply that the free energy can be written as follows:

F − S =
{
M
(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN

+ (H − K̂)
(
Lη − 1

2

)
logL+Op(ĴN + LM). (30)

Below, we investigate the leading term of the free energy (30) in different asymptotic limits.

In the limit when N → ∞ with L,M ∼ O(1)

In this case, the minimizer should satisfy

B̂Θ̂
⊤
= B∗Θ∗⊤ +Op(N

−1), (31)

making Ĵ = 0 with probability 1, and the leading term of the order of Op(logN):

F − S =
{
M
(
Hα− 1

2

)
+ Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h)

(
η − 1

2

))}
logN +Op(1).

Note that Eq.(31) implies the consistency of the predictive distribution.

In the limit when N,M → ∞ with M
N , L ∼ O(1)

In this case,
Ĵ = op(logN), (32)

making the leading term of the order of Op(N logN):

F − S =
{
M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)
(
α− 1

2

)}
logN + op(N logN).

Eq.(32) implies that the predictive distribution is not necessarily consistent—op(logN) components can devi-
ate from the true matrix B∗Θ∗⊤ by the order of Op(1).
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In the limit when N,L → ∞ with L
N ,M ∼ O(1)

In this case, Eq.(32) holds, and the leading term of the free energy is of the order of Op(N logN):

F − S = HLη logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1)

In this case,

Ĵ = op(N logN), (33)

and the leading term of the free energy is of the order of Op(N
2 logN):

F − S = H (Mα+ Lη) logN + op(N
2 logN).

This completes the proof of Theorem 1. ✷

D Proof of Corollary 1

From the compact representation when Ĥ = H∗, M̂ (h) = M∗(h), and L̂(h) = L∗(h), we can decompose a
singular component into two, keeping B̂Θ̂

⊤
unchanged, so that

Ĥ → Ĥ + 1, (34)
∑H

h=1 M̂
(h) →

∑H∗

h=1 M̂
(h) +∆M for minh M∗(h) ≤ ∆M ≤ maxh M∗(h), (35)

∑H
h=1 L̂

(h) →
∑H∗

h=1 L̂
(h) +∆L for 0 ≤ ∆L ≤ maxh L∗(h). (36)

Here the lower-bound for ∆M in Eq.(35) corresponds to the case that the least frequent topic is chosen to be
decomposed, while the upper-bound to the case that the most frequent topic is chosen. The lower-bound for
∆L in Eq.(36) corresponds to the decomposition such that some of the word-occurrences are moved to a new
topic, while the upper-bound to the decomposition such that the topic with the widest vocabulary is copied to
a new topic. Note that the bounds both for ∆M and ∆L are not always achievable simultaneously, when we
choose one topic to decompose.

Below, we investigate the relation between the sparsity of the solution and the hyperparameter setting in differ-
ent asymptotic limits.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λ = M
(
Hα− 1

2

)
+
∑Ĥ

h=1

(
Lη − 1

2 − M̂ (h)
(
α− 1

2

)
− L̂(h)

(
η − 1

2

))
. (37)

Note that the solution is sparse if Eq.(37) is increasing of Ĥ , and dense if it is decreasing. Eqs.(34)–(36) imply
the following:

1. When 0 < η ≤ 1
2L and α ≤ 1

2 , the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
− 1

minh M∗(h)

(
1
2
− Lη

)
,

and dense if

α >
1
2
− 1

minh M∗(h)

(
1
2
− Lη

)
.

2. When 0 < η ≤ 1
2L and α > 1

2 , the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
− 1

maxh M∗(h)

(
1
2
− Lη

)
,

and dense if

α >
1
2
− 1

maxh M∗(h)

(
1
2
− Lη

)
.

Therefore, the solution is always dense in this case.
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3. When 1
2L < η ≤ 1

2 and α < 1
2 , the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
+

1

minh M∗(h)

(
Lη − 1

2

)
,

and dense if

α >
1
2
+

1

minh M∗(h)

(
Lη − 1

2

)
.

Therefore, the solution is always sparse in this case.
4. When 1

2L < η ≤ 1
2 and α ≥ 1

2 , the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
> 0, or equivalently,α <

1
2
+

1

maxh M∗(h)

(
Lη − 1

2

)
,

and dense if

α >
1
2
+

1

maxh M∗(h)

(
Lη − 1

2

)
.

5. When η > 1
2 and α < 1

2 , the solution is sparse if

Lη − 1
2
−max

h

(
M∗(h)

(
α− 1

2

)
+ L∗(h)

(
η − 1

2

))
> 0, (38)

and dense if

Lη − 1
2
−max

h

(
M∗(h)

(
α− 1

2

)
+ L∗(h)

(
η − 1

2

))
< 0. (39)

Therefore, the solution is sparse if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α <
1
2
+

1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α >
1
2
+

1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Therefore, the solution is always sparse in this case.
6. When η > 1

2 and α ≥ 1
2 , the solution is sparse if Eq.(38) holds, and dense if Eq.(39) holds. There-

fore, the solution is sparse if

Lη − 1
2
−max

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α <
1
2
+

1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1
2
−min

h
M∗(h)

(
α− 1

2

)
−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α >
1
2
+

1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Thus, we can conclude that, in this case, the solution is sparse if

α <
1
2
+

L− 1

2maxh M∗(h) ,

and dense if

α >
1
2
+

Lη − 1
2

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 4 When 0 < η ≤ 1
2L , the solution is sparse if α < 1

2−
1
2−Lη

minh M∗(h) , and dense if α > 1
2−

1
2−Lη

minh M∗(h) .

When 1
2L < η ≤ 1

2 , the solution is sparse if α < 1
2 +

Lη− 1
2

maxh M∗(h) , and dense if α > 1
2 +

Lη− 1
2

maxh M∗(h) . When

η > 1
2 , the solution is sparse if α < 1

2 + L−1
2maxh M∗(h) , and dense if α > 1

2 +
Lη− 1

2

minh M∗(h) .
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In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)
(
α− 1

2

)
. (40)

Although the predictive distribution does not necessarily converges to the true distribution, we can investigate
the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤
unchanged. It is

clear that Eq.(40) is increasing of Ĥ if α < 1
2 , and decreasing if α > 1

2 . Combing this result with Lemma 4
completes the proof of Corollary 1. ✷

E Proof of Theorem 2

We analyze PBA learning, PBB learning, and MAP estimation, and then summarize the results.

E.1 PBA Learning

The free energy for PBA learning is given as follows:

FPBA = χB +RPBA +QPBA, (41)

where χB is a large constant corresponding to the negative entropy of the delta functions, and

RPBA =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qPBA(Θ,B)

=
M∑

m=1

(
log

Γ (
∑H

h=1 Θ̆PBA
m,h )

∏H
h=1 Γ (Θ̆PBA

m,h )

Γ (α)H

Γ (Hα) +
∑H

h=1

(
Θ̆PBA

m,h − α
)(

Ψ(Θ̆PBA
m,h )− Ψ(

∑H
h′=1 Θ̆

PBA
m,h′)

))

+
H∑

h=1

(
log Γ (η)L

Γ (Lη) +
∑L

l=1 (1− η)
(
log(B̆PBA

l,h )− log(
∑L

l′=1 B̆
PBA
l′,h )

))
, (42)

QPBA =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qPBA(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

exp(Ψ(Θ̆PBA
m,h ))

exp
(
Ψ(
∑H

h′=1
Θ̆PBA

m,h′ )
)

B̆PBA
l,h∑L

l′=1
B̆PBA

l′,h

)
. (43)

Let us first consider the case when η < 1. In this case, F diverges to F → −∞ with fixed N , when
B̆l,h = O(1) for any (l, h) and B̆l′,h → +0 for all other l′ ̸= l. Therefore, the solution is useless.

When η ≥ 1, the solution satisfies the following stationary condition:

Θ̆PBA
m,h = α+

∑N(m)

n=1 ẑPBA(n,m)
h , B̆PBA

l,h = η − 1 +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑPBA(n,m)

h , (44)

ẑPBA(n,m)
h =

exp(Ψ(Θ̆PBA
m,h ))

∏L
l=1(B̆

PBA
l,h )w

(n,m)
l

∑H
h′=1

(
exp
(
Ψ(Θ̆PBA

m,h′ )
)∏L

l=1(B̆
PBA
l,h′ )w

(n,m)
l

) . (45)

In the same way as for VB learning, we can obtain the following lemma:

Lemma 5 Let B̂
PBA

Θ̂
PBA⊤

= ⟨BΘ⊤⟩qPBA(Θ,B). Then, it holds that

⟨(BΘ⊤ − B̂
PBA

Θ̂
PBA⊤

)2l,m⟩qPBA(Θ,B) = Op(N
−2), (46)

QPBA = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B̂

PBA
Θ̂

PBA⊤
)l,m +Op(N−1). (47)

QPBA is minimized when B̂
PBA

Θ̂
PBA⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QPBA = S +Op(ĴN + LM).

RPBA is written as follows:

RPBA =
{
M

(
Hα− 1

2

)
+ ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h) (η − 1)

)}
logN

+ (H − Ĥ)L (η − 1) logL+Op(H(M + L)). (48)
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Taking the different asymptotic limits, we obtain the following theorem:

Theorem 3 When η < 1, each column vector of B̂
PBA

has only one non-zero entry. Assume below
that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds that Ĵ = 0 with probability 1,
and

FPBA = S +
{
M

(
Hα− 1

2

)
+ ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h)

(
α− 1

2

)
+ L̂(h) (η − 1)

)}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FPBA = S +
{
M

(
Hα− 1

2

)
−

∑Ĥ
h=1 M̂

(h)
(
α− 1

2

)}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FPBA = S +HL(η − 1) logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FPBA = S +H(Mα+ L(η − 1)) logN + op(N2 logN).

Note that Theorem 3 provides no information on the sparsity of the PBA solution for η < 1. Below,
we investigate the sparsity of the solution for η ≥ 1.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λPBA = M
(
Hα− 1

2

)
+
∑Ĥ

h=1

(
L(η − 1)− M̂ (h)

(
α− 1

2

)
− L̂(h) (η − 1)

)
.

The solution is sparse if λPBA is increasing of Ĥ , and dense if it is decreasing. We focus on the case
when η ≥ 1. Eqs.(34)–(36) imply the following:

1. When α < 1
2 , the solution is sparse if

L(η − 1)−max
h

(
M∗(h)

(
α− 1

2

)
+ L∗(h) (η − 1)

)
> 0, (49)

and dense if

L(η − 1)−max
h

(
M∗(h)

(
α− 1

2

)
+ L∗(h) (η − 1)

)
< 0. (50)

Therefore, the solution is sparse if

L(η − 1)−min
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) > 0,

or equivalently, α <
1

2
+

(
L−maxh L∗(h)) (η − 1)

minh M∗(h) ,

and dense if

L(η − 1)−max
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) < 0,

or equivalently, α >
1

2
+

(
L−maxh L∗(h)) (η − 1)

maxh M∗(h) .

Therefore, the solution is always sparse in this case.
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2. When α ≥ 1
2 , the solution is sparse if Eq.(49) holds, and dense if Eq.(50) holds. Therefore,

the solution is sparse if

L(η − 1)−max
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) > 0,

or equivalently, α <
1

2
+

(
L−maxh L∗(h)) (η − 1)

maxh M∗(h) ,

and dense if

L(η − 1)−min
h

M∗(h)
(
α− 1

2

)
−max

h
L∗(h) (η − 1) < 0,

or equivalently, α >
1

2
+

(
L−maxh L∗(h)) (η − 1)

minh M∗(h) .

Thus, we can conclude that, in this case, the solution is sparse if

α <
1

2
,

and dense if

α >
1

2
+

L(η − 1)

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 6 Assume that η ≥ 1. The solution is sparse if α < 1
2 , and dense if α > 1

2 + L(η−1)
minh M∗(h) .

In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M
(
Hα− 1

2

)
−
∑Ĥ

h=1 M̂
(h)

(
α− 1

2

)
. (51)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(51) is increasing of Ĥ if α < 1
2 , and decreasing if α > 1

2 . Combing
this result with Lemma 6, we obtain the following corollary:

Corollary 2 Assume that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), the PBA solution is
sparse if α < 1

2 , and dense if α > 1
2+

L(η−1)
minh M∗(h) . In the limit when N,M → ∞ with M

N , L ∼ O(1),
the PBA solution is sparse if α < 1

2 , and dense if α > 1
2 .

E.2 PBB Learning

The free energy for PBB learning is given as follows:

FPBB = χΘ +RPBB +QPBB, (52)

where χΘ is a large constant corresponding to the negative entropy of the delta functions, and

RPBB =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qPBB(Θ,B)

=
M∑

m=1

(
log Γ (α)H

Γ (Hα) +
∑H

h=1 (1− α)
(
log(Θ̆PBB

m,h )− log(
∑H

h′=1 Θ̆
PBB
m,h′)

))

+
H∑

h=1

(
log

Γ (
∑L

l=1 B̆PBB
l,h )

∏L
l=1 Γ (B̆PBB

l,h )

Γ (η)L

Γ (Lη) +
∑L

l=1

(
B̆PBB

l,h − η
)(

Ψ(B̆PBB
l,h )− Ψ(

∑L
l′=1 B̆

PBB
l′,h )

))
,

(53)
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QPBB =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qPBB(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

Θ̆PBB
m,h∑H

h′=1
Θ̆PBB

m,h′

exp(Ψ(B̆PBB
l,h ))

exp
(
Ψ(
∑L

l′=1
B̆PBB

l′,h )
)

)
. (54)

Let us first consider the case when α < 1. In this case, F diverges to F → −∞ with fixed N , when
Θ̆m,h = O(1) for any (m,h) and Θ̆m,h′ → +0 for all other h′ ̸= h. Therefore, the solution is
sparse (so sparse that the estimator is useless).

When α ≥ 1, the solution satisfies the following stationary condition:

Θ̆PBB
m,h = α− 1 +

∑N(m)

n=1 ẑPBB(n,m)
h , B̆PBB

l,h = η +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑPBB(n,m)

h , (55)

ẑPBB(n,m)
h =

Θ̆PBB
m,h exp

{∑L
l=1 w(n,m)

l (Ψ(B̆PBB
l,h )−Ψ(

∑L
l′=1 B̆PBB

l′,h ))
}

∑H
h′=1

Θ̆PBB
m,h′ exp

{∑L
l=1 w(n,m)

l

(
Ψ(B̆PBB

l,h′ )−Ψ
(∑L

l′=1
B̆PBB

l′,h′

))} . (56)

In the same way as for VB and PBA learning, we can obtain the following lemma:

Lemma 7 Let B̂
PBB

Θ̂
PBB⊤

= ⟨BΘ⊤⟩qPBB(Θ,B). Then, it holds that

⟨(BΘ⊤ − B̂
PBB

Θ̂
PBB⊤

)2l,m⟩qPBB(Θ,B) = Op(N
−2), (57)

QPBB = −
∑M

m=1 N
(m)

∑L
l=1 Vl,m log(B̂

PBB
Θ̂

PBB⊤
)l,m +Op(N−1). (58)

QPBB is minimized when B̂
PBB

Θ̂
PBB⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QPBB = S +Op(ĴN + LM).

RPBB is written as follows:

RPBB =
{
MH (α− 1) + Ĥ

(
Lη − 1

2

)
−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h)

(
η − 1

2

))}
logN

+ (H − Ĥ)
(
Lη − 1

2

)
logL+Op(H(M + L)). (59)

Taking the different asymptotic limits, we obtain the following theorem:

Theorem 4 When α < 1, each row vector of Θ̂
PBB

has only one non-zero entry, and the PBB
solution is sparse. Assume below that α ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds
that Ĵ = 0 with probability 1, and

FPBB = S +
{
MH (α− 1) + Ĥ

(
Lη − 1

2

)
−
∑Ĥ

h=1

(
M̂ (h) (α− 1) + L̂(h)

(
η − 1

2

))}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FPBB = S +
{
MH (α− 1)−

∑Ĥ
h=1 M̂

(h) (α− 1)
}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FPBB = S +HLη logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FPBB = S +H(M(α− 1) + Lη) logN + op(N2 logN).

Theorem 4 states that the PBB solution is sparse when α < 1. Below, we investigate the sparsity of
the solution for α ≥ 1.
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In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λPBB = MH (α− 1) +
∑Ĥ

h=1

(
Lη − 1

2 − M̂ (h) (α− 1)− L̂(h)
(
η − 1

2

))
.

The solution is sparse if λPBB is increasing of Ĥ , and dense if it is decreasing. We focus on the case
when α ≥ 1. Eqs.(34)–(36) imply the following:

1. When 0 < η ≤ 1
2L , the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1) > 0, or equivalently,α < 1− 1

maxh M∗(h)

(
1

2
− Lη

)
,

and dense if

α > 1− 1

maxh M∗(h)

(
1

2
− Lη

)
.

Therefore, the solution is always dense in this case.
2. When 1

2L < η ≤ 1
2 , the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1) > 0, or equivalently,α < 1 +

Lη − 1
2

maxh M∗(h) ,

and dense if

α > 1 +
Lη − 1

2

maxh M∗(h) .

3. When η > 1
2 , the solution is sparse if

Lη − 1

2
−max

h

(
M∗(h) (α− 1) + L∗(h)

(
η − 1

2

))
> 0, (60)

and dense if

Lη − 1

2
−max

h

(
M∗(h) (α− 1) + L∗(h)

(
η − 1

2

))
< 0. (61)

Therefore, the solution is sparse if

Lη − 1

2
−max

h
M∗(h) (α− 1)−max

h
L∗(h)

(
η − 1

2

)
> 0,

or equivalently, α < 1 +
1

maxh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
,

and dense if

Lη − 1

2
−min

h
M∗(h) (α− 1)−max

h
L∗(h)

(
η − 1

2

)
< 0,

or equivalently, α > 1 +
1

minh M∗(h)

(
Lη − 1

2
−max

h
L∗(h)

(
η − 1

2

))
.

Thus, we can conclude that, in this case, the solution is sparse if

α < 1 +
L− 1

2maxh M∗(h) ,

and dense if

α > 1 +
Lη − 1

2

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 8 Assume that α ≥ 1. When 0 < η ≤ 1
2L , the solution is always dense. When 1

2L < η ≤ 1
2 ,

the solution is sparse if α < 1 +
Lη− 1

2

maxh M∗(h) , and dense if α > 1 +
Lη− 1

2

maxh M∗(h) . When η > 1
2 , the

solution is sparse if α < 1 + L−1
2maxh M∗(h) , and dense if α > 1 +

Lη− 1
2

minh M∗(h) .
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In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λ = M (Hα− 1)−
∑Ĥ

h=1 M̂
(h) (α− 1) . (62)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(62) is decreasing of Ĥ if α > 1. Combing this result with Theorem 4,
which states that the PBB solution is sparse when α < 1, and Lemma 8, we obtain the following
corollary:

Corollary 3 Consider the limit when N → ∞ with L,M ∼ O(1). When 0 < η ≤ 1
2L , the PBB

solution is sparse if α < 1, and dense if α > 1. When 1
2L < η ≤ 1

2 , the PBB solution is sparse if

α < 1 +
Lη− 1

2

maxh M∗(h) , and dense if α > 1 +
Lη− 1

2

maxh M∗(h) . When η > 1
2 , the PBB solution is sparse

if α < 1 + L−1
2maxh M∗(h) , and dense if α > 1 +

Lη− 1
2

minh M∗(h) . In the limit when N,M → ∞ with
M
N , L ∼ O(1), the PBB solution is sparse if α < 1, and dense if α > 1.

E.3 MAP Learning

The free energy for MAP learning is given as follows:

FMAP = χΘ + χB +RMAP +QMAP, (63)

where χΘ and χB are large constants corresponding to the negative entropies of the delta functions,
and

RMAP =
〈
log q(Θ)q(B)

p(Θ|α)p(B|η)

〉

qMAP(Θ,B)

=
M∑

m=1

(
log Γ (α)H

Γ (Hα) +
∑H

h=1 (1− α)
(
log(Θ̆MAP

m,h )− log(
∑H

h′=1 Θ̆
MAP
m,h′ )

))

+
H∑

h=1

(
log Γ (η)L

Γ (Lη) +
∑L

l=1 (1− η)
(
log(B̆MAP

l,h )− log(
∑L

l′=1 B̆
MAP
l′,h )

))
, (64)

QMAP =
〈
log q({z(n,m)})

p({w(n,m)},{z(n,m)}|Θ,B)

〉

qMAP(Θ,B,{z(n,m)})

= −
M∑

m=1

N (m)
L∑

l=1

Vl,m log

(
H∑

h=1

Θ̆MAP
m,h∑H

h′=1
Θ̆MAP

m,h′

B̆MAP
l,h∑L

l′=1
B̆MAP

l′,h

)
. (65)

Let us first consider the case when α < 1. In this case, F diverges to F → −∞ with fixed N ,
when Θ̆m,h = O(1) for any (h,m) and Θ̆m,h′ → +0 for all other h′ ̸= h. Therefore, the solution
is sparse (so sparse that the estimator is useless). Similarly, assume that η < 1. Then, F diverges
to F → −∞ with fixed N , when B̆l,h = O(1) for any (l, h) and B̆l′,h → +0 for all other l′ ̸= l.
Therefore, the solution is useless.

When α ≥ 1 and η ≥ 1, the solution satisfies the following stationary condition:

Θ̆MAP
m,h = α− 1 +

∑N(m)

n=1 ẑMAP(n,m)
h , B̆MAP

l,h = η − 1 +
∑M

m=1

∑N(m)

n=1 w(n,m)
l ẑMAP(n,m)

h ,

(66)

ẑMAP(n,m)
h =

Θ̆MAP
m,h

∏L
l=1(B̆

MAP
l,h )w

(n,m)
l

∑H
h′=1

(
Θ̆MAP

m,h′
∏L

l=1(B̆
MAP
l,h′ )w

(n,m)
l

) . (67)

In the same way as for VB, PBA, and PBB learning, we can obtain the following lemma:
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Lemma 9 Let B̂
MAP

Θ̂
MAP⊤

= ⟨BΘ⊤⟩qMAP(Θ,B). Then, QMAP is minimized when

B̂
MAP

Θ̂
MAP⊤

= B∗Θ∗⊤ +Op(N−1), and it holds that

QMAP = S +Op(ĴN + LM).

RMAP is written as follows:

RMAP =
{
MH (α− 1) + ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h) (η − 1)

)}
logN

+ (H − Ĥ)L (η − 1) logL+Op(H(M + L)). (68)

Taking the different asymptotic limits, we obtain the following theorem:

Theorem 5 When α < 1, each row vector of Θ̂
MAP

has only one non-zero entry, and the MAP
solution is sparse. When η < 1, each column vector of B̂

MAP
has only one non-zero entry. Assume

below that α, η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), it holds that Ĵ = 0 with
probability 1, and

FMAP = S +
{
MH (α− 1) + ĤL (η − 1)−

∑Ĥ
h=1

(
M̂ (h) (α− 1) + L̂(h) (η − 1)

)}
logN

+Op(1).

In the limit when N,M → ∞ with M
N , L ∼ O(1), it holds that Ĵ = op(logN), and

FMAP = S +
{
MH (α− 1)−

∑Ĥ
h=1 M̂

(h) (α− 1)
}
logN + op(N logN).

In the limit when N,L → ∞ with L
N ,M ∼ O(1), it holds that Ĵ = op(logN), and

FMAP = S +HL(η − 1) logN + op(N logN).

In the limit when N,L,M → ∞ with L
N , M

N ∼ O(1), it holds that Ĵ = op(N logN), and

FMAP = S +H(M(α− 1) + L(η − 1)) logN + op(N2 logN).

Theorem 5 states that the MAP solution is sparse when α < 1. However it provides no information
on the sparsity of the MAP solution for η < 1. Below, we investigate the sparsity of the solution for
α, η ≥ 1.

In the limit when N → ∞ with L,M ∼ O(1)

The coefficient of the leading term of the free energy is

λMAP = MH (α− 1) +
∑Ĥ

h=1

(
L(η − 1)− M̂ (h) (α− 1)− L̂(h) (η − 1)

)
.

The solution is sparse if λMAP is increasing of Ĥ , and dense if it is decreasing. We focus on the
case when α, η ≥ 1. Eqs.(34)–(36) imply the following:

The solution is sparse if

L(η − 1)−max
h

(
M∗(h) (α− 1) + L∗(h) (η − 1)

)
> 0, (69)

and dense if

L(η − 1)−max
h

(
M∗(h) (α− 1) + L∗(h) (η − 1)

)
< 0. (70)

Therefore, the solution is sparse if

L(η − 1)−max
h

M∗(h) (α− 1)−max
h

L∗(h) (η − 1) > 0,

or equivalently, α < 1 +
(L−maxh L∗(h))(η − 1)

maxh M∗(h) ,
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ad dense if

L(η − 1)−min
h

M∗(h) (α− 1)−max
h

L∗(h) (η − 1) < 0,

or equivalently, α > 1 +
(L−maxh L∗(h))(η − 1)

minh M∗(h) .

Thus, we can conclude that the solution is sparse if

α < 1,

and dense if

α > 1 +
L(η − 1)

minh M∗(h) .

Summarizing the above, we have the following lemma:

Lemma 10 Assume that η ≥ 1. The solution is sparse if α < 1, and dense if α > 1 + L(η−1)
minh M∗(h) .

In the limit when N,M → ∞ with M
N , L ∼ O(1)

The coefficient of the leading term of the free energy is given by

λMAP = MH (α− 1)−
∑Ĥ

h=1 M̂
(h) (α− 1) . (71)

Although the predictive distribution does not necessarily converges to the true distribution, we can
investigate the sparsity of the solution by considering the duplication rules (34)–(36) that keep B̂Θ̂

⊤

unchanged. It is clear that Eq.(71) is decreasing of Ĥ if α > 1. Combing this result with Theorem 5,
which states that the MAP solution is sparse if α < 1, and Lemma 10, we obtain the following
corollary:

Corollary 4 Assume that η ≥ 1. In the limit when N → ∞ with L,M ∼ O(1), the MAP solution is
sparse if α < 1, and dense if α > 1+ L(η−1)

minh M∗(h) . In the limit when N,M → ∞ with M
N , L ∼ O(1),

the MAP solution is sparse if α < 1, and dense if α > 1.

E.4 Summary of Results

Summarizing Corollary 1, Corollary 2, Corollary 3, and Corollary 4 completes the proof of Theo-
rem 2. ✷
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