A Proof of Lemma 1

The following bounds are known [1]:
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For the Dirichlet distribution p(@\é) H he1 aeh !, the mean and the variance are given as follows:

~ O ~ 2 01,(60 — 0r)
On = (On) po16) = 7’ ((On = 0n)") 018 = Bl 1)

where §y = Zle 0y

For fixed N, R, defined by Eq.(15), diverges to +oo if @vmﬁ — +0 for any (m, h) or éhh — +0 for
any (I, h). Therefore, the global minimizer of the free energy (14) is in the interior of the domain,
where the free energy is differentiable. Consequently, the global minimizer is a stationary point.

The stationary condition (12) implies that

v

@mh>a Blh>n7 (23)
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Therefore, we have
((Omh = Omn)*)g@) = Op(N72)  forall (m,h), (25)
—~ 2 ~
(max @m,h) ((Bun — Bin)®) o) = Op(N72)  forall (I, h), (26)
which leads to Eq.(17).
By using Eq.(22), @ is bounded as follows:
Q<R<Q
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Using Egs.(25) and (26), we have Eq.(18), which completes the proof of Lemma 1. O
B Proof of Lemma 3
By using the bounds (21) and (22), R can be bounded as
R<R<R, (27)

where
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Eqgs.(23) and (24) imply that

M 1 H } o X ]
R = Tnzzl{(Ha — 5) loggem,h - Z (Ol— 5) log@?n,h}

h=1
H 1 L L 1
+ Ln—=]lo Bin — — = )log By p + Op(H(M + L)),
S { (- 3) s 2sre 30 (1 ) f 00100 4.2
which leads to Eq.(20). This completes the proof of Lemma 3. O

C Proof of Theorem 1

Lemma 2 and Lemma 3 imply that the free energy can be written as follows:
F-S§= {M (Ha— 3+ H (Ln— 1) -2, (MW (a—3)+ 1™ (n— %))}logN

+(H - K)(Ln— %) log L + Op(JN + LM). (30)
Below, we investigate the leading term of the free energy (30) in different asymptotic limits.

In the limit when N — oo with L, M ~ O(1)

In this case, the minimizer should satisfy
BO' =B'@ +0,(N ), 31)
making J = 0 with probability 1, and the leading term of the order of O, (log N):
P8 ={M(Ha— )+ 7 (1n—3) =X, (T (a= 1) + 1% (n- 1)) og N + 0, (1)
Note that Eq.(31) implies the consistency of the predictive distribution.

In the limit when N, M — oo with £, L ~ O(1)

In this case,

J = op(log N), (32)
making the leading term of the order of O, (N log N):

F-8= {M (Ho— 1) —Zhﬁzl M® (= %)}logN—&—op(NlogN).

Eq.(32) implies that the predictive distribution is not necessarily consistent—oy (log N') components can devi-
ate from the true matrix B*@* T by the order of O, (1).
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In the limit when N, L — oo with £, M ~ O(1)

In this case, Eq.(32) holds, and the leading term of the free energy is of the order of O, (N log N):
F —S=HLnlogN + o,(Nlog N).

In the limit when N, L, M — oo with £, & ~ O(1)
In this case,
J = 0p(Nlog N), (33)

and the leading term of the free energy is of the order of O, (N?log N):
F—S=H(Ma+ Ln)log N + 0,(N?log N).

This completes the proof of Theorem 1. O

D Proof of Corollary 1

From the compact representation when H=H* , M M®™ = ppeh ,and L™ = L*™ we can decompose a

singular component into two, keeping B@ unchanged, so that

H— H+1, (34)
SE M® 5 M® 4 AM for miny M*" < AM < max, M*™ | (35)
SHOLMW ZhH:I L™ 4 AL for 0 < AL < maxy, L™, (36)

Here the lower-bound for AM in Eq.(35) corresponds to the case that the least frequent topic is chosen to be
decomposed, while the upper-bound to the case that the most frequent topic is chosen. The lower-bound for
AL in Eq.(36) corresponds to the decomposition such that some of the word-occurrences are moved to a new
topic, while the upper-bound to the decomposition such that the topic with the widest vocabulary is copied to
a new topic. Note that the bounds both for AM and AL are not always achievable simultaneously, when we
choose one topic to decompose.

Below, we investigate the relation between the sparsity of the solution and the hyperparameter setting in differ-
ent asymptotic limits.

In the limit when N — oo with L, M ~ O(1)
The coefficient of the leading term of the free energy is
A=M(Ha=3)+ XL, (In =4 = M" (a=3) =" (n-})). 37)

Note that the solution is sparse if Eq.(37) is increasing of H, and dense if it is decreasing. Eqgs.(34)—(36) imply
the following:

I. When0 <n < 57 anda < 5, the solution is sparse if

Ln— % — m}}n Wl (a - %) > 0, or equivalently, o < % - m (% - Ln) ,
and dense if
1 1 1
——— |z —Ln|.
227 ming M (2 77)
2. When0 <n < 57 and o > , the solution is sparse if
1 1 1 1 1
L'f] - 5 - maX ]\4*(}1> < 5) > 07 or equivalenﬂy7a < 5 - W <§ — L')’]) 5

and dense if

11 (1
2 max, M*h) \ 2 n)-

Therefore, the solution is always dense in this case.
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3. When 57 <n < <i 5 and o < , the solution is sparse if

Ln— % — m}}nM*(m (a - %) > 0, or equivalently, o < % + m (Ln - %) ,
and dense if
a>1+;(Ln—l>.
2 ' miny M*() 2
Therefore the solution is always sparse in this case.
4. When 5 <n < <! 5 and o > , the solution is sparse if
Ln— % — max MM < %) > 0, or equivalently, a < % + m <L77 - %) ,
and dense if
a>1+;(Lnfl).
2 max, M*H) 2
5. Whenn > % and o < %, the solution is sparse if
B AL T R
and dense if
Ln— L max (M*w (a _ 1) NG (n _ 1)) <o. (39)
2 h 2 2

Therefore, the solution is sparse if
1 N 1 N 1
L?yfifmgnM ") (af§>fm;;ixL ") (7775) 0,
1 1 1 . 1
or equivalently, o < 5 + iy 00 (LU —5 m,?xL (h) (77 _ 5)
and dense if

*(h)

1 1 () 1
Ln 5 m};lixM 2) m};axL n- 5 <0,

or equivalently, o > % + m (L"7 _ % _ m}z}xL*(h) (TI _ %)) ]

Therefore, the solution is always sparse in this case.

6. Whenn > 3 and a > 5, the solution is sparse if Eq.(38) holds, and dense if Eq.(39) holds. There-
fore, the solutlon is sparse if

Ln— % - maxM*(h) ( %) _ m}szxL*(m <77 _ %) >0,
1 1 1 " 1
or equivalently, a < 3 + s, MO0 (LU —5 m;:;LXL (h) <77 _ 5)) ,

and dense if
Lo 1 “(h)
Ln 5 ~min M a—g max L n
. 1 1 1 N
or equivalently, o > 5 + i M <L77 5= m}ELlXL (h) (77 _
Thus, we can conclude that, in this case, the solution is sparse if
1 L—1

< — -
< ot S maxy, M)

and dense if

1 Ln—3
>4 2
*~ 3 + miny, M**h)

Summarizing the above, we have the following lemma:

1 1
ion i i 1 o=In i 1 _3-In
Lemma 4 When(0 < n < 2L, the solution is sparse if o < 3 RS YEOL and dense if o > i, Ok
Ln—%
When L < n < 3, the solution is sparse if « < 3 + Ty, MG and dense if o > 35 + m When
1 ion i j 1, p-1 j 1 L
n > 2, the solution is sparse if a < 2 + T, M and dense if « > 5 Ly eSS VEIOR
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In the limit when N, M/ — oo with 3£, L ~ O(1)
The coefficient of the leading term of the free energy is given by

A=M(Ha-2) =P M™ (a—1). (40)
Although the predictive distribution does not necessarily converges to the true distribution, we can investigate

the sparsity of the solution by c0n51der1ng the duplication rules (34)— (36) that keep B@ unchanged. It is

clear that Eq.(40) is increasing of Hifa < 1, and decreasing if @ > 5. Combing this result with Lemma 4
completes the proof of Corollary 1. O

E Proof of Theorem 2

We analyze PBA learning, PBB learning, and MAP estimation, and then summarize the results.

E.1 PBA Learning

The free energy for PBA learning is given as follows:
FPBA _ 5 + RPBA L QFBA, (41)
where x g is a large constant corresponding to the negative entropy of the delta functions, and
RPBA _ <log 4(©)a(B)

p(®|a)p(B]n) >qPBA(@VB)

M
D(SHo 000 (e « v
> ( i T + Tha (OR3 — o) (WO5RY) —w(Zh_, 82%)))

m,h

H
r
+ Z (log p(’Z)n) + Zz (1=m) (IOg(BPBA) log( Ez/ 1 BPBA))) ) (42)
h=1
PBA FICEASAURE) >
Q <10g p({w("’m)},{z(""’")}\@,B) qPBA(@,B,{z<"vm)})
M L H PBA SPBA
— S N™ S o ex"(‘”@m 3 >) Bin . 43)

Let us first consider the case when 1 < 1. In this case, I diverges to F' — —oo with fixed IV, when
By, = O(1) for any (I, h) and By j, — +0 for all other I’ # [. Therefore, the solution is useless.

When 1 > 1, the solution satisfies the following stationary condition:

° ) n,m B (m) n,m) -l n,m

Oniit =t 00y BN BERA = -1+ L Ly e @
_ n,m)

E}E’BA(n,m) _ exp(W(@PBA))Hf,l(BPBA)wz 45)

w(n. ™)
it (e (w@2E0) T BEE )

In the same way as for VB learning, we can obtain the following lemma:

PBA ~PBAT

Lemma5 Let B O = (BO"),rsx (0 p) Then, it holds that
(BOT-B 0™ ) reaie.m = 0p(N7?), (46)
QA = — M N L Vi tog(BT @)+ 0p(NY). @)
QFBA is minimized when B — prerT + O,(N™1), and it holds that

QPPA = S+ O,(JN + LM).

RPBA is written as follows:

RPBA = M (Ha— )+ HL(1—1) = 3L, (M® (0= 3) + L™ (n—1)) }log N

+(H—H)L(n—1)log L + O,(H(M + L)). (48)
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Taking the different asymptotic limits, we obtain the following theorem:

~PBA
Theorem 3 When n < 1, each column vector of B has only one non-zero entry. Assume below

that n > 1. In the limit when N — oo with L, M ~ O(1), it holds that J = 0 with probability 1,
and

FPPA — 54 {M (Ha - §) + HL(n—1) = 4L, (M® (= 3) + L™ (n- 1)) } 10g N
+ Op(1).
In the limit when N, M — oo with 3., L ~ O(1), it holds that J= op(log N), and
FPBA — g4 {M (Ha— 1) =372 M) (a - %)}logN—i-op(NlogN).
In the limit when N, L — oo with &, M ~ O(1), it holds that J= op(log N), and
FPBA — G+ HL(n —1)log N + 0,(Nlog N).
In the limit when N, L, M — oo with %, % ~ O(1), it holds that J= op(Nlog N), and

FPBA — S 4 H(Ma+ L(n —1))log N + 0,(N?log N).

Note that Theorem 3 provides no information on the sparsity of the PBA solution for < 1. Below,
we investigate the sparsity of the solution for n > 1.

In the limit when N — oo with L, M ~ O(1)

The coefficient of the leading term of the free energy is
NPPA = M (Ho — 3) + I, (Lin—1) = F® (a — 3) ~ 20 (- 1)).

The solution is sparse if \PB4 is increasing of H , and dense if it is decreasing. We focus on the case
when 1 > 1. Eqs.(34)-(36) imply the following:

1. When o < %, the solution is sparse if

L(n —1) — max (M*(h) (a — ;) + M (- 1)) >0, (49)
and dense if
L(n —1) — max (M*(h) (a - ;) + LM (g — 1)> <0. (50)
Therefore, the solution is sparse if
Lin—1) - m}jnM*(h) (a - ;) — max LM (n—1) >0,

(L — max;, L*(h)) (n—1)
miny, M*(h) ’

1
or equivalently, o < 3 +
and dense if
1
Lin—1)— m}gxM*(”') (a — 2) — mhaxL*W (n—1) <0,

(L — max), L*"M) (n — 1)
maxyp, M*(h)

1
or equivalently, o > 3 +

Therefore, the solution is always sparse in this case.
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2. When o > %, the solution is sparse if Eq.(49) holds, and dense if Eq.(50) holds. Therefore,
the solution is sparse if

1
Lin-1)-— m}?xM*(h) (a — 2) — max L™ (n—1) >0,

(L — max), L*M) (n — 1)
maxy, M*(h) ’

1
or equivalently, o < 3 +
and dense if
1
Lin—-1) - m}jnM*(h) (a - 2) - m}?XL*(h) (n—1) <0,

(L — max), L*"M) (n — 1)
miny, M*(h)

Thus, we can conclude that, in this case, the solution is sparse if

1
or equivalently, o > 3 +

a < 57
and dense if
1 Lin-1)

> — —_—.
R miny, M*(h)

Summarizing the above, we have the following lemma:

Lemma 6 Assume that n > 1. The solution is sparse if o < % and dense if o > % + %
In the limit when N, M/ — oo with £, L ~ O(1)
The coefficient of the leading term of the free energy is given by

A= M (Ha— 1) - S 50 (0= 3). 61)

Although the predictive distribution does not necessarily converges to the true distribution, we can

~ AT
investigate the sparsity of the solution by considering the duplication rules (34)—(36) that keep B®

unchanged. It is clear that Eq.(51) is increasing of Hifa < %, and decreasing if o > % Combing
this result with Lemma 6, we obtain the following corollary:

Corollary 2 Assume that n > 1. In the limit when N — oo with L, M ~ O(1), the PBA solution is

sparse if o < L, and dense if o > %Jr% In the limit when N, M — oo with 32 L ~ O(1),

. . . 1 . 1
the PBA solution is sparse if o < 3, and dense if o > 5.

E.2 PBB Learning
The free energy for PBB learning is given as follows:
FPBB = Yo 4 RPBB + QPBB, (52)

where Yo is a large constant corresponding to the negative entropy of the delta functions, and

PEE _ 2(©)a(B)
R = (l0g 8B >quB(@,B)

M
H v v
=3 (log £y + XL, (1 - ) (log(O52F) — log(S1_, 6558)) )
m=1
- DSy BURD) rin™ L (5PBB SPBB L  }1PBB
+ Z (lOg Hfz;}(é#EB) Ty T PO (Bl,h - 77) (J/(Bl,h ) =iy By ))) )

(53)

16



PBB FICEASRR)) >
Q <10g p({w(n,m)} {z(”vm)}\@ B) PBB(@ B {z(n.m)})

(m) Onth o rBIE)
Z N Z Vi,m log <Z SE_ orn BE exp(‘I/(Z BPBB)) . (54)

m—1 V=171 h

Let us first consider the case when o < 1. In this case, F' diverges to F' — —oo with fixed N, when

émﬁ = O(1) for any (m, h) and émyh/ — +0 for all other b’ # h. Therefore, the solution is
sparse (so sparse that the estimator is useless).

When o > 1, the solution satisfies the following stationary condition:

o (m) _J n (m) N n
@712173}]13 14 ZN PBB( m) BPBB =9+ Zm ) Zi:’ : (n,m)ziBB( ,m), (55)
z,f’Bme) _ o eXP{Ez L™ ’")(W(BL‘TEB%W(ZVﬂ BEER)) ) (56)

e OL5 exe{ i ™™ (VBIRP) - (S, BEE)) )

In the same way as for VB and PBA learning, we can obtain the following lemma:

~PBB ~PBBT

Lemma7 Let B © = (BO") ren (o, p). Then, it holds that
~PBB ~PBBT
(BOT-B O )i m)qres(@,8) = Op(N72), (57)
~PBB ~PBBT
QPP = =Y N S Vi log(BT 0 i + Op(N1). (58)
~PBB ~PBBT
QFEEB is minimized when B~ © = B*@*" + 0,(N~1), and it holds that

QPP = S+ O,(JN + LM).

RPBB s written as follows:

RPBB — {MH (a—1)+H(Lyp-1) -2 (MW (@=1)+ LM (y— ))}1ogN
+(H — H) (Ln— 1) log L + O, (H(M + L)). (59)

Taking the different asymptotic limits, we obtain the following theorem:

~PBB
Theorem 4 When o < 1, each row vector of @ has only one non-zero entry, and the PBB
solution is sparse. Assume below that « > 1. In the limit when N — oo with L, M ~ O(1), it holds

that J = 0 with probability 1, and

FPBB — 5 4 {MH(a— 1)+ H (Lyp— 1) -7 ( V(@ —1)+ LM (n— %))}logN

+0,(1).
In the limit when N, M — oo with 3., L ~ O(1), it holds that J= op(log N), and
FPBP = 54 {MH (a —1) = ©iL, M® (a = 1) }log N + 0,(N log N).
In the limit when N, L — oo with &, M ~ O(1), it holds that J= op(log N), and
FPBB = S+ HLnlog N + 0,(Nlog N).

In the limit when N, L, M — oo with & g W

FPBB — 4+ H(M(a — 1) + Ln) log N + 0,(N?log N).

~ O(1), it holds that J = 0,(N log N), and

Theorem 4 states that the PBB solution is sparse when oo < 1. Below, we investigate the sparsity of
the solution for o > 1.
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In the limit when N — oo with L, M ~ O(1)
The coefficient of the leading term of the free energy is
APBE — MH (o — 1)+ 321 (Ln Lo M™ (0= 1) = L™ (n— %)) .

The solution is sparse if APBB is increasing of H, and dense if it is decreasing. We focus on the case
when o > 1. Egs.(34)—(36) imply the following:

1. When0 < n < L the solution is sparse if

i?
L L max M*"™ (o — 1) > 0, or equivalently, o < 1 L ! L
— — —max a— « —_—— | = —
and dense if
1 1
>1—-———(=-—1Ln|.
“ maxy, M*(h) (2 77)
Therefore, the solution is always dense in this case.
2. When ﬁ <n< %, the solution is sparse if
1

1
Ln— 5 — max M) (oy— 1) > 0, or equivalently, v < 1+ —VEOR

and dense if

) Ln— %
a1+ maxy M*(h)’
3. Whenn > %, the solution is sparse if

1 1

Ly — 5 — max (M*<h> (v —1) 4 L*™ <n — 2)) >0, (60)
and dense if

1 1

Ly — 5 — max (M*<h> (v —1) 4 L*M™ (77 — 2)) < 0. 61)

Therefore, the solution is sparse if

1 1
- ) (o — 1) — w(h) (g — =
Ly 5 m}?xM (a—1) m}z}xL (77 2) > 0,

1 1 1
ivalentl 14— (In—=— [,*(h) _Z
or equivalently, o < 1 + A ( 1= 5 T max -3 ,

and dense if

1 1
Ln— 3~ m}}nM*(h) (a—1)— m}zlxXL*(h) (77 - 2) <0,

1 1 1
ivalentl 1+ —F (Ln— =z — L - = .
or equivalently, a > 1 + iy, M) ( n 5 mgx n 3

Thus, we can conclude that, in this case, the solution is sparse if
L—-1

<14+ ——,
@ 2 maxj, M*(h)
and dense if
Lnp—1
>14+—"2
a> Lt i

Summarizing the above, we have the following lemma:

Lemma 8 Assume that o > 1. When 0 < n < ﬁ, the solution is always dense. When ﬁ <n< %,

. . . Lnfé . Lnfé 1
the solution is sparse if « < 1 + Ty 3L and dense if « > 1 + T, 3L When 1 > 3, the
Lnfé
miny, M*(h) "

solution is sparse if « < 1 + and dense if o« > 1 +

L—1
2 maxyp M*(h)?
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In the limit when N, M/ — oo with 3£, L ~ O(1)
The coefficient of the leading term of the free energy is given by

A=M(Ha—-1) -2 MM (a-1). (62)

Although the predictive distribution does not necessarily converges to the true distribution, we can

~~T
investigate the sparsity of the solution by considering the duplication rules (34)—(36) that keep BO®
unchanged. It is clear that Eq.(62) is decreasing of H if a > 1. Combing this result with Theorem 4,
which states that the PBB solution is sparse when o < 1, and Lemma 8, we obtain the following
corollary:

Corollary 3 Consider the limit when N — oo with L, M o1 ) When 0 < n < 5, the PBB
solution is sparse if o« < 1, and dense if a« > 1. When < n < s, the PBB solution is sparse if

a <1+ and dense if o > 1 + When n > 5, the PBB solution is sparse

maxp, 1\/[ (’1)

. . L . .
ifa <1+ W’ and dense if « > 1 + m In the llmlt when N, M — oo with

%, L ~ O(1), the PBB solution is sparse if « < 1, and dense if « > 1.

maxy, M*(h) ’

E.3 MAP Learning
The free energy for MAP learning is given as follows:
FMAP _ 1\ g RMAP | QMAP (63)

where y o and x p are large constants corresponding to the negative entropies of the delta functions,
and

MAP __ q(®)q(B)
R = <1°g p(©Ja)p(B) >qMAp<&B>
M

= 3 (los iy + Tia (1= o) (lo8(61137) ~ log(2 6013 )

H
L 9]
+ > (tog 12 + 0, (1= m) (log(BN) —log(i, BYAD))) . (64
h=1
MAP q({z(m™)y) >
Q <10g p<{w(n,7n)} {z("””)}le B) MAP(@ B,{z("‘m)})

m QMAP B,M;AP
Z Nt )Zw m log (Z SN oy ’BMAP> : (65)

m,h' '=1"1h

Let us first consider the case when o < 1. In this case, F' diverges to F' — —oo with fixed N,

when @um,h = O(1) for any (h,m) and ém7hl — +0 for all other A’ # h. Therefore, the solution
is sparse (so sparse that the estimator is useless). Similarly, assume that < 1. Then, F' diverges

to F — —oc with fixed N, when By ;, = O(1) for any (I, h) and By, — +0 for all other I’ # 1.
Therefore, the solution is useless.

When a > 1 and i > 1, the solution satisfies the following stationary condition:

SMAP N(m) /MAP(" m) SMAP N(m) (n,m)/\MAP(n,m)
Omp =a—1+3 " Byt =n—1+ Z wy Zn )
(66)
(n m)
E\MAP(”am) _ O T (BYR)™ 67)
h - (n,m) .
pe (e

In the same way as for VB, PBA, and PBB learning, we can obtain the following lemma:
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~MAP ~MAPT T MAP e
Lemma9 Letr B (&) = (BO )ar@p). Then, Q is minimized when

~MAP ~MAPT . nT . .
B e = B*O" + O,(N™"), and it holds that
QMAY = S+ 0, (JN + LM).

RMAP s yyritten as follows:

RMAP _ {MH (a—1V)+HL@—-1) -0 (J\?W (0 —1)+ LW (n - 1)) } log N
+ (H — HYL (n—1)log L+ O,(H(M + L)). (68)

Taking the different asymptotic limits, we obtain the following theorem:

~ MAP
Theorem 5 When o« < 1, each row vector of @ has only one non-zero entry, and the MAP
~MAP
solution is sparse. When 1) < 1, each column vector of B has only one non-zero entry. Assume

below that a,ny > 1. In the limit when N — oo with L, M ~ O(1), it holds that J = 0 with
probability 1, and

FMAP _ g | {MH(a )+ HLG-1) -1 (ﬁ(h) (0= 1)+ L™ (5~ 1))}1°gN
+ O,(1).
In the limit when N, M — oo with %, L ~ O(1), it holds that J= op(log N), and
FMAP _ g {MH (a—1) =7 JF® (o - 1)} log N + 0,(N log N).

In the limit when N, L — oo with &, M ~ O(1), it holds that J = op(log N), and
FMAY — S+ HL(n—1)log N + 0,(Nlog N).
In the limit when N, L, M — oo with £, 3L ~ O(1), it holds that J = op(Nlog N), and
FMAP — 6+ H(M(a — 1) + L(n — 1)) log N + 0,(N?log N).

Theorem 5 states that the MAP solution is sparse when av < 1. However it provides no information
on the sparsity of the MAP solution for < 1. Below, we investigate the sparsity of the solution for
a,n > 1.

In the limit when N — oo with L, M ~ O(1)
The coefficient of the leading term of the free energy is
NIAP = M H (o= 1)+ 5L, (L= 1) = M® (@ = 1) = T®) (n = 1)) .

The solution is sparse if AMAF is increasing of H, and dense if it is decreasing. We focus on the

case when a;, 7 > 1. Eqs.(34)—(36) imply the following:
The solution is sparse if
L(n—1) - max (M*(h’) (a—1)+L*® (5 — 1)) >0, (69)
and dense if
L(n—1) - max (M (@ = 1)+ L™ (= 1)) <0, (70)
Therefore, the solution is sparse if
Lin-1)— max MM (a0 —1) — m]?XL*(h) (n—1)>0,

(L — max;, L*"M)(n — 1)
max, M*(h) ’

or equivalently, o < 1+
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ad dense if
Lin—-1)— m}in MM (o —1) — m’?xL*(h) (n—1) <0,
(L — maxy, L*(h))(r] -1
miny, M*(h)

Thus, we can conclude that the solution is sparse if

or equivalently, oo > 1+

a<l,
and dense if
Ln—1)
>14+ —— .
@ + miny, M*(h)

Summarizing the above, we have the following lemma:

L(n—1)

Lemma 10 Assume that n > 1. The solution is sparse if o < 1, and dense if « > 1 + i M

In the limit when N, M/ — oo with £, L ~ O(1)
The coefficient of the leading term of the free energy is given by

AMAP — AV (00— 1) =2 M® (0 —1). (71)
Although the predictive distribution does not necessarily converges to the true distribution, we can

~ AT
investigate the sparsity of the solution by considering the duplication rules (34)—(36) that keep BO®

unchanged. It is clear that Eq.(71) is decreasing of H if o > 1. Combing this result with Theorem 5,
which states that the MAP solution is sparse if « < 1, and Lemma 10, we obtain the following
corollary:

Corollary 4 Assume thatn > 1. In the limit when N — oo with L, M ~ O(1), the MAP solution is
sparse if a < 1, and dense if « > 1+ —LO=Y "Iy the limit when N, M — oo with %, L~ O(1),

minp M*(h) "

the MAP solution is sparse if « < 1, and dense if « > 1.

E.4 Summary of Results

Summarizing Corollary 1, Corollary 2, Corollary 3, and Corollary 4 completes the proof of Theo-
rem 2. .
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