
A Related Work

A number of algorithms for approximate distributed PCA have been proposed [21, 14, 16, 9], but
either without theoretical guarantees, or without considering communication. [21] proposed an
algorithm but provided no analysis on the tradeoff between communication and approximation.
Most closely related to our work is [9], which observes that the top singular vectors of the local
point set can be viewed as its summary and the union of the local summaries can be viewed as a
summary of the global data, i.e., Algorithm disPCA discussed above.

In [12] the authors study algorithms in the arbitrary partition model in which each server holds a
matrix Pi and P =

∑s
i=1 Pi. Thus, each row of P is additively shared across the s servers, whereas

in our model each row of P belongs to a single server, though duplicate rows are allowed. Our model
is motivated by applications in which points are indecomposable entities. As our model is a special
case of the arbitrary partition model, we can achieve more efficient algorithms. For instance, our
distributed PCA algorithms provide much stronger guarantees, see, e.g., Lemma 4, which are needed
for the downstream k-means application. Moreover, our k-means algorithms are more general,
in the sense that they do not make a well-separability assumption, and more efficient in that the
communication of [12] isO(sd2)+s(k/ε)O(1) words as opposed to ourO(sdk/ε2)+sk+(k/ε)O(1).

After the announce of this work, [6] improve the guarantee for the k-means application in two ways.
First, they tighten the result in [9], showing that projecting to just the O(k/ε) rather than O(k/ε2)
top singular vectors is sufficient to approximate k-means with (1 + ε) error. Second, they show
that performing a Johnson-Lindenstrauss transformation down to O(k/ε2) dimension gives (1 + ε)
approximation without requiring a log(n) dependence. This can be used as a preprocessing step
before our algorithm, replacing d with O(k/ε2) in our communication bounds. They further show
how to reduce the dimension to O(k/ε) using only O(sk/ε)vectors, but by a technique different
from distributed PCA.

Other related work includes the recent [10] (see also the references therein), who give a determinis-
tic streaming algorithm for low rank approximation in which each point of P is seen one at a time
and uses O(dk/ε) words of communication. Their algorithm naturally gives an O(sdk/ε) commu-
nication algorithm for low rank approximation in the distributed model. However, their algorithm
for PCA doesn’t satisfy the stronger guarantees of Lemma 4, and therefore it is unclear how to use
it for k-means clustering. It also involves an SVD computation for each point, making the overall
computation per server O(nidr

2/ε2), which is slower than what we achieve, and it is not clear how
their algorithm can exploit sparsity.

Speeding up large scale PCA using different versions of subspace embeddings was also considered
in [13], though not in a distributed setting and not for `2-error shape fitting problems. Also, their
error guarantees are in terms of the r-th singular value gap, and are incomparable to ours.

B Guarantees for Distributed PCA

B.1 Proof of Lemma 1

We first prove a generalization of Lemma 1.

Lemma 7. Let A ∈ Rn×d be an n × d matrix with singular value decomposition A = UΣV>.
Let ε ∈ (0, 1] and r, t ∈ N+ with d− 1 ≥ t ≥ r + dr/εe − 1, and let Â = AV(t)(V(t))>. Then for
any matrix X with d rows and ‖X‖2F ≤ r, we have

‖(A− Â)X‖2F = ‖AX‖2F − ‖ÂX‖2F ≤ ε
d∑

i=r+1

σ2
i (A).

Proof. The proof follows the idea in the proof of Lemma 6.1 in [9].

10



For convenience, let Σ(t) denote the diagonal matrix that contains the first t diagonal entries in Σ

and is 0 otherwise. Then Â = UΣ(t)V> We first have

‖AX‖2F − ‖ÂX‖2F = ‖UΣV>X‖2F − ‖UΣ(t)V>X‖2F
= ‖ΣV>X‖2F − ‖Σ(t)V>X‖2F
= ‖(Σ−Σ(t))V>X‖2F
= ‖U(Σ−Σ(t))V>X‖2F
= ‖AX− ÂX‖2F .

where the second and fourth equalities follow since U has orthonormal columns, and the third
equality follows since for M = V>X we have

‖ΣM‖2F − ‖Σ(t)M‖2F =

d∑
i=1

d∑
j=1

σ2
i (A)m2

ij −
t∑
i=1

d∑
j=1

σ2
i (A)m2

ij

=

d∑
i=t+1

d∑
j=1

σ2
i (A)m2

ij = ‖(Σ−Σ(t))M‖2F .

Next, we bound ‖AX− ÂX‖2F . We have

‖AX− ÂX‖2F = ‖(Σ−Σ(t))V>X‖2F ≤ ‖(Σ−Σ(t))‖2S‖X‖2F = rσ2
t+1(A)

where the inequality follows because the spectral norm is consistent with the Euclidean norm. This
implies the lemma since

rσ2
t+1(A) ≤ ε(t− r + 1)σ2

t+1(A) ≤ ε
t+1∑
i=r+1

σ2
i (A) ≤ ε

d∑
i=r+1

σ2
i (A). (2)

where the first inequality follows for our choice of t.

Then Lemma 1 immediately follows from Lemma 7 since any d × r orthonormal matrix A has
‖A‖2F ≤ r, and

∑d
i=r+1 σ

2
i (A) ≤ d2(A, LX) by the property of the singular value decomposition.

B.2 Proof of Theorem 2

Theorem 2. Suppose Algorithm disPCA takes parameters t1 ≥ r + d4r/εe − 1 and t2 = r, and
outputs V(r). Then

‖P−PV(r)(V(r))>‖2F ≤ (1 + ε) min
X

d2(P, LX)

where the minimization is over d×r orthonormal matrices X. The communication isO( srdε ) words.

Proof. Recall the notations: P̂i := PiV
(t1)
i (V

(t1)
i )> is the data obtained by applying local PCA

on local data Pi, and P̂ is the concatenation of P̂i. Now let X∗ denote the optimal subspace for P.
Our goal is to show that the distance between P and the subspace spanned by V(r) is close to that
between P and the subspace spanned by X∗.

To get some intuition, see Figure 5 for an illustration. We let a denote the distance between P and
LV(r) , that is, a := d2(P, LV(r)) = ‖P − PV(r)(V(r))>‖2F . Similarly, let b denote the distance
between P and LX∗ , c denote that between P̂ and LV(r) , d denote that between P̂ and LX∗ . Then
our goal is to show a− b is small. Since

a− b = (a− c) + (c− d) + (d− b),

it suffices to bound each of the three terms on the right hand side.
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Figure 5: Illustration for the proof of Theorem 2.

First, we note that the optimal principal components for P̂ are V(r), so c − d ≤ 0. This is because
P̂ = ŨY where Ũ is a block-diagonal matrix with blocks U1, . . . ,Us, and thus the right singular
vectors of Y are also the right singular vectors of P̂.

Now, what is left is to bound (a− c) and (d− b). They are differences between the distances from
P and P̂ to some low dimensional subspace, for which Lemma 1 is useful. Formally, we have the
following claim.

Claim 1. For any orthonormal matrix X of size d× r,

d2(P̂, LX)− d2(P, LX) = ∆(X)− c0

where ∆(X) := ‖PX‖2F − ‖P̂X‖2F and c0 := ‖P‖2F − ‖P̂‖2F . Furthermore,

0 ≤ ∆(X) ≤ εd2(P, LX), c0 ≥ 0.

Proof. By Pythagorean Theorem,

d2(P̂, LX)− d2(P, LX) = (‖P̂‖2F − ‖P̂X‖2F )− (‖P‖2F − ‖PX‖2F ) = ∆(X)− c0.

The bound on ∆(X) follows from the fact that

∆(X) = ‖PX‖2F − ‖P̂X‖2F =
∑
i

[‖PiX‖2F − ‖P̂iX‖2F ]

and apply Lemma 1 on each term. The bound on c0 follows from Pythagorean Theorem.

Applying this claim, we have a− c = c0 −∆(V(r)) and d− b = ∆(V∗)− c0, and

(a− c) + (d− b) = ∆(V∗)−∆(V(r)) ≤ εd2(P, LX∗).

This completes the proof.

Note A refinement of the proof of Lemma 1 leads to the following data dependent bound.
Lemma 8. The statement in Lemma 7 holds if t > τ(A, r, ε) where

τ(A, r, ε) := argmin
t

{
σ2
t (A) ≤ ε

r

∑
i>r

σ2
i (A)

}
.

Furthermore, τ(A, r, ε) = O( rε ).

Proof. Note that the bound on t is only used in proving (2), for which t > τ(A, r, ε) suffices.
τ(A, r, ε) = O( rε ) follows by definition.
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Theorem 9. Suppose Algorithm disPCA takes parameters t1 ≥ maxi τ(Pi, r, ε) and t2 = r,and
outputs V(r). Then

‖P−PV(r)(V(r))>‖2F ≤ (1 + ε) min
X

d2(P, LX)

where the minimization is over orthonormal matrices X ∈ Rd×r. The total communication cost is
O(sdmaxi τ(Pi, r, ε)) words.

τ(Pi, r, ε) is typically much less than O(r/ε) in practice. This provides an explanation for the fact
that t1 much smaller thanO(r/ε) can still lead to good solution for many practical instances. Similar
data dependent bounds can be derived for the other theorems in our paper.

C Guarantees for Distributed `2-Error Fitting

C.1 Proof of Lemma 4

Recall that P̃i denotes the projection of the original data Pi to V(t), and P̃ denotes their concate-
nation. We further introduce some intermediate variables for our analysis. Imagine we perform two
projections: first project Pi to P̂i = PiVi

(t)(Vi
(t))>, then project P̂i to Pi = P̂iV

(t)(V(t))>

where t = t1 = t2. Let P̂ denote the vertical concatenation of P̂i and let P denote the vertical
concatenation of Pi, i.e.

P̂ =

 P̂1

...
P̂s

 and P =

 P1

...
Ps


Lemma 4. Let t1 = t2 ≥ k + d8k/εe − 1 in Algorithm disPCA for k ∈ N+ and ε ∈ (0, 1). Then
for any d× k matrix X with orthonormal columns,

0 ≤ ‖PX− P̃X‖2F ≤ εd2(P, LX), (3)

0 ≤ ‖PX‖2F − ‖P̃X‖2F ≤ εd2(P, LX). (4)

Proof. Before going to the proof, we note that unlike in Lemma 7, ‖PX − P̃X‖2F may not equal
‖PX‖2F − ‖P̃X‖2F since multiple SVD are applied.

For the first statement (3), we have

‖PX− P̃X‖2F ≤ 2‖PX− P̂X‖2F (5)

+ 2‖P̂X−PX‖2F (6)

+ 2‖PX− P̃X‖2F . (7)

For (5), we have by Lemma 7

‖PX− P̂X‖2F =

s∑
i=1

‖PiX− P̂iX‖2F ≤
s∑
i=1

ε

4
d2(Pi, LX) =

ε

8
d2(P, LX). (8)

Similarly, for (6) we have by Lemma 7

‖P̂X−PX‖2F ≤
ε

8
d2(P̂, LX). (9)

To bound (7), let Y = V(t)(V(t))>X. Then by definition, PiX = P̂iY and P̃iX = PiY. By
Lemma 7, we have

‖PX− P̃X‖2F =

s∑
i=1

‖P̂iY −PiY‖2F (10)

≤
s∑
i=1

ε

8

s∑
i=r+1

σ2
i (Pi) ≤

ε

8

s∑
i=1

d2(Pi, LX) =
ε

8
d2(P, LX). (11)
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Combining (8)(9) and (11) leads to

‖PX− P̃X‖2F ≤
ε

2
d2(P, LX) +

ε

4
d2(P̂, LX). (12)

We now only need to bound d2(P̂, LX) is similar to d2(P, LX), which is done in Claim 1. The first
statement then follows.

For the second statement (4), we have a similar argument.

‖PX‖2F − ‖P̃X‖2F = ‖PX‖2F − ‖P̂X‖2F (13)

+ ‖P̂X‖2F − ‖PX‖2F (14)

+ ‖PX‖2F − ‖P̃X‖2F . (15)

For (13), we have by Lemma 7

‖PX‖2F − ‖P̂X‖2F =

s∑
i=1

[
‖PiX‖2F − ‖P̂iX‖2F

]
≤

s∑
i=1

ε

4
d2(Pi, LX) =

ε

4
d2(P, LX). (16)

Similarly, for (14) we have by Lemma 7

‖P̂X‖2F − ‖PX‖2F ≤
ε

4
d2(P̂, LX). (17)

By Lemma 7, we have

‖PX‖2F − ‖P̃X‖2F =

s∑
i=1

[
‖P̂iY‖2F − ‖PiY‖2F

]
≤

s∑
i=1

ε

4

s∑
i=r+1

σ2
i (Pi) ≤

ε

4

s∑
i=1

d2(Pi, LX) =
ε

4
d2(P, LX). (18)

Combining (16)(17) and (18) leads to

‖PX‖2F − ‖P̃X‖2F ≤
ε

2
d2(P, LX) +

ε

4
d2(P̂, LX). (19)

The second statement then follows from (19) and Claim 1.

C.2 Proof of Theorem 3

The following weak triangle inequality is useful for our analysis.

Fact 1. For any a, b ∈ R and ε ∈ (0, 1), |a2 − b2| ≤ 3(a−b)2
ε + 2εa2.

Proof. Either |a| ≤ |a−b|ε or |a− b| ≤ ε|a|, so we have |a||a− b| ≤ (a−b)2
ε + εa2. This leads to

|a2 − b2| = |a− b||a+ b| ≤ |a− b|(|2a|+ |b− a|) = 2|a||a− b|+ (a− b)2 ≤ 2(a− b)2

ε
+ 2εa2 + (a− b)2

which completes the proof.

We first prove the theorem for the special case of k-means clustering, and the same argument leads
to the guarantee for general l2-error fitting problems. Note that because we use the weak triangle
inequality, we lose a factor of 1/ε. Thus, we require t1 = t2 = O(k/ε2), instead of O(k/ε) as in
Lemma 4.

Theorem 10. Let t1 = t2 ≥ k + d4k/ε2e − 1 in Algorithm disPCA.Then there exists a constant
c0 ≥ 0, such that for any set of k points L,

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L).
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Figure 6: Illustration for the proof of Theorem 10.

Proof. The proof follows that in [9], with slight modification for the distributed setting.

Let X ∈ Rd×k has orthonormal columns that span L; see Figure 6 for an illustration. Then the costs
of P and P̃ can be decomposed into two parts: one part is from P (or P̃) to its projection on LX, and
the other part is from the projection to the centers. Then we can compare the two parts separately.

Let p̃i be the point in P̃ corresponding to pi in P. Let c0 = ‖P‖2F − ‖P̃‖2F . Then by Pythagorean
theorem we have

|d2(P,L)− d2(P̃,L)− c0| ≤
∣∣∣∣d2(P, LX)− d2(P̃, LX)− c0

∣∣∣∣+

∣∣∣∣ |P|∑
i=1

[
d(πX(pi),L)2 − d(πX(p̃i),L)2

]∣∣∣∣.
For the first part, we have by Pythagorean theorem

d2(P, LX)− d2(P̃, LX)− c0 = (‖P‖2F − ‖PX‖2F )− (‖P̃‖2F − ‖P̃X‖2F )− c0 = ‖P̃X‖2F − ‖PX‖2F . (20)

For the second part, by Fact 1 we have

|P|∑
i=1

∣∣d(πX(pi),L)2 − d(πX(p̃i),L)2
∣∣ ≤ |P|∑

i=1

[
12d(πX(pi), πX(p̃i))

2

ε
+
ε

2
d(πX(pi),L)2

]

=
12

ε
‖(P− P̃)X‖2F +

ε

2

|P|∑
i=1

d(πX(pi),L)2

≤ 12

ε
‖(P− P̃)X‖2F +

ε

2

|P|∑
i=1

d(pi,L)2. (21)

We first note that d2(P, LX) ≤ d2(P,L). For the other terms in (20)(21), we need to use Lemma 4
with accuracy ε2 (instead of ε). This then leads to the theorem.

The general statement for `2-error geometric fitting problems follows from the same argument.

Theorem 3. Let t1 = t2 = O(rk/ε2) in Algorithm disPCA for ε ∈ (0, 1/3). Then there exists a
constant c0 ≥ 0 such that for any set of k centers L in r-Subspace k-Clustering,

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L).

D Fast Distributed PCA

D.1 Proofs for Subspace Embedding
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Algorithm 3 Fast Sparse Subspace Embedding [5]
Input: parameters n, ` ∈ N+.

1: Let h : [n] 7→ [`] be a random map, so that for each i ∈ [n], h(i) = j for j ∈ [`] with probability
1/`.

2: Let Φ be an `× n binary matrix with Φh(i),i = 1, and all remaining entries 0.
3: Let Σ be an n×n diagonal matrix, with each diagonal entry independently chosen as +1 or−1

with equal probability.
Output: H = ΦΣ.

The construction of the embedding matrix H is presented in Algorithm 3. Note that the embedding
matrix H does not need to be built explicitly; we can compute the embedding HA for an given
matrix A in a direct and faster way. Algorithm 3 has the following guarantee.

Theorem 11. [5, 17, 19] Suppose n > d and ` = O(d
2

ε2 ). With probability at least 99/100,
‖HAy‖2 = (1 ± ε)‖Ay‖2 for all vectors y ∈ Rd. Moreover, HA can be computed in time
O(nnz(A)) where nnz(A) is the number of non-zero entries in A.

Lemma 12. Let ε ∈ (0, 1/2] and k, t ∈ N+ with d− 1 ≥ t ≥ k + d4k/εe − 1. Suppose Algorithm
disPCA takes input {HiPi}si=1 and outputs V(t). Let P̃ = PV(t)(V(t))>. Then for any d × k
matrix X with orthonormal columns,

‖PX− P̃X‖2F ≤ εd2(P, LX),∣∣‖PX‖2F − ‖P̃X‖2F
∣∣ ≤ 3ε‖PX‖2F + εd2(P, LX).

Proof. First note that the input to Algorithm disPCA is TP where T is a block-diagonal matrix
with blocks H1, . . . ,Hs. Then the projection of the input to V(t) is TPV(t)(V(t))> = TP̃. By
Lemma 4, for any d× k matrix X with orthonormal columns, we have

0 ≤ ‖TPX−TP̃X‖2F ≤ ε

4
d2(TP, LX), (22)

0 ≤ ‖TPX‖2F − ‖TP̃X‖2F ≤ ε

4
d2(TP, LX). (23)

By properties of T, we have

‖TPX−TP̃X‖2F = ‖T(PX− P̃X)‖2F ≥ (1− ε)‖PX− P̃X‖2F
and

d2(TP, LX) = ‖TP−TPXX>‖2F ≤ (1 + ε)‖P−PXX>‖2F = (1 + ε)d2(P, LX).

Combined with (22), these lead to the first claim.

Similarly, we also have ‖TPX‖2F = (1 ± ε)‖PX‖2F and ‖TP̃X‖2F = (1 ± ε)‖P̃X‖2F . Plugging
these into (23), we obtain

−3ε‖PX‖2F ≤ ‖PX‖2F − ‖P̃X‖2F ≤ 3ε‖PX‖2F + εd2(P, LX)

which establishes the lemma.

Theorem 13. Algorithm 4 outputs a subspace embedding with probability at least 1− δ. In expec-
tation Step 3 is run only a constant number of times with expected time O(d3r2/ε2).

Proof. For each j, HjA succeeds with probability 99/100, meaning that for all x we have
‖HjAx‖2 = (1 ± ε/9)‖Ax‖2. Suppose for some j 6= j′, HjA and Hj′A are both successful.
By definition we have

‖HjAx‖2 = (1± ε/3)‖Hj′Ax‖2
for all x. Taking the SVD of the embeddings, this is equivalent to

‖ΣjV
>
j x‖2 = (1± ε/3)‖Σj′V

>
j′x‖2
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Algorithm 4 Boosting success probability of embedding
Input: A ∈ Rn×d, parameters ε, δ.

1: Construct r = O(log 1
δ ) independent subspace embeddings HjA, each having accuracy ε/9

and success probability 99/100.
2: Compute SVD HjA = UjΣjV

>
j for j ∈ [r].

3: for j ∈ [r] do
4: Check if for at least half j′ 6= j,

σi(Σj′V
>
j′VjΣ

−1
j ) ∈ [1± ε/3],∀i.

5: If so, output HjA.
6: end for

Algorithm 5 Randomized SVD [11]
Input: matrix A ∈ R`×d; parameters t, q ∈ N+.

1: � Stage A
2: Generate an `× 2t Gaussian test matrix Ω.
3: Set Y = (A>A)qA>Ω, and compute QR-factorization: Y = QR.
4: � Stage B
5: Set B = AQ, and compute SVD: B = UΣṼ>.
6: Set V = QṼ.

Output: Σ,V.

for all x. Making the change of variable y := ΣjV
>
j x, this is equivalent to

‖y‖2 = (1± ε/3)‖Σj′V
>
j′VjΣ

−1
j y‖2

for all y, which is true if and only if all singular values of Σj′V
>
j′VjΣ

−1
j are in [1− ε/3, 1 + ε/3].

Conversely, if all singular values of Σj′V
>
j′VjΣ

−1
j are in [1− ε/3, 1 + ε/3], one can trace the steps

backward to conclude that ‖HjAx‖2 = (1± ε/3)‖Hj′Ax‖2 for all x.

Since with probability at least 1− δ, a 9/10 fraction of the embeddings succeed with accuracy ε/9,
there exists a j that can pass the test. It follows that any index j which passes the test in the algorithm
with a majority of the j′ 6= j is a successful subspace embedding with accuracy ε.

Moreover, if we choose a random j to compare to the remaining j′, the expected number of choices
of j until the test passes is only constant. Then finding the index j only takes an expected O(r)
SVDs.

The time to do the SVD naively is O(d4/ε2). We can improve this by letting T be a fast Johnson-
Lindenstrauss transform matrix of dimensionO(dr/ε2)×O(d2/ε2), then we can replace HjA with
THjA for all j ∈ [d]. Then the verification procedure would only take O(d3r2/ε2) time.

D.2 Proofs for Randomized SVD

The details of randomized SVD are presented in Algorithm 5, rephrased in our notations. We have
the following analog of Lemma 1.

Lemma 14. Let A ∈ R`×d be an `× d matrix (` > d). Let ε ∈ (0, 1], k, t ∈ N+ with d− 1 ≥ t ≥
k+d6k/ε2e−1. Let Â = AVV> where V is computed by Algorithm 5 with q = O(log max{`, d}).
Then with probability at least 1− 3e−t, for any matrix X with d rows and ‖X‖2F ≤ k, we have

‖(A− Â)X‖2F ≤ ε2

3

d∑
i=k+1

σ2
i (A),

∣∣‖AX‖2F − ‖ÂX‖2F
∣∣ ≤ ε

d∑
i=k+1

σ2
i (A) + 2ε‖AX‖2F .
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The algorithm runs in time O(qt`d+ t2(`+ d)).

Proof. As stated in Section 10.4 in [11], with probability at least 1− 3e−t, we have

‖A− Â‖S ≤ 2σt+1(A). (24)
Then we have

‖(A− Â)X‖2F ≤ ‖X‖2F ‖A− Â‖2S ≤ 2kσ2
t+1(A)

where the first inequality follows because the spectral norm is consistent with the Euclidean norm,
and the second inequality follows from (24). For our choice of t, we have

kσ2
t+1(A) ≤ ε2

6
(t− k + 1)σ2

t+1(A) ≤ ε2

6

t+1∑
i=k+1

σ2
i (A) ≤ ε2

6

d∑
i=k+1

σ2
i (A) ≤ ε2

6
d2(A, LX),

which leads to the first claim in the lemma.

To prove the second claim, first note that∣∣‖AX‖F − ‖ÂX‖F
∣∣2 ≤ ‖(A− Â)X‖2F ≤

ε2

3
d2(A, LX).

Then by Fact 1, we have∣∣‖AX‖2F − ‖ÂX‖2F
∣∣ ≤ 3

ε

∣∣‖AX‖F − ‖ÂX‖F
∣∣2 + 2ε‖AX‖2F ≤ εd2(A, LX) + 2ε‖AX‖2F

which completes the proof.

D.3 Proof of Theorem 6

Let T to be a diagonal block matrix with H1,H2, . . . ,Hs on the diagonal. Then Algorithm 2 is
just to run Algorithm disPCA on TP to get the principal components V. Recall that the goal is to
show P̃ = PVV> is a good proxy for the original data P with respect to `2 error fitting problems.
It suffices to show that P̃ satisfies enjoys properties similar to those stated in Lemma 4.

To prove this, we begin with a lemma saying that TP̃ enjoys such properties, i.e. such properties are
approximately preserved when replacing exact SVD with randomized SVD in Algorithm disPCA
(Lemma 15). Then we can show that P̃ enjoys similar properties as TP̃, i.e. these properties are
approximately preserved under subspace embedding (Lemma 17).
Lemma 15. For any d× k matrix X with orthonormal columns,

‖TPX−TP̃X‖2F ≤ O(ε2)d2(TP, LX) +O(ε3)‖TPX‖2F ,∣∣∣‖TPX‖2F − ‖TP̃X‖2F
∣∣∣ ≤ O(ε)d2(TP, LX) +O(ε)‖TPX‖2F .

Proof. The proof follows that of Lemma 4 to TP. But now exact SVD is replaced with randomized
SVD, so we need to argue that randomized SVD produces similar result as exact SVD in the sense of
Lemma 7. This is already proved in Lemma 14. Also note that we need a technical lemma bounding
the small error terms incurred on the intermediate result TP̂. This is done by Lemma 16.

Lemma 16.
‖TP̂X‖2F ≤ εd2(TP, LX) + (1 + 2ε)‖TPX‖2F ,
d2(TP̂, LX) ≤ (1 + ε)d2(TP, LX) + ε‖TPX‖2F .

Proof. For the first statement, by Lemma 14, we have∣∣∣‖TP̂X‖2F − ‖TPX‖2F
∣∣∣ ≤ s∑

i=1

∣∣∣‖TPiX‖2F − ‖TP̂iX‖2F
∣∣∣

≤ ε

s∑
i=1

d2(TPi, LX) + 2ε

s∑
i=1

‖TPiX‖2F

≤ εd2(TP, LX) + 2ε‖TPX‖2F . (25)
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For the second statement, by Pythagorean Theorem,

d2(TP̂, LX)− d2(TP, LX) =
[
‖TP̂‖2F − ‖TP̂X‖2F

]
−
[
‖TP‖2F − ‖TPX‖2F

]
=

[
‖TP̂‖2F − ‖TP‖2F

]
+
[
‖TPX‖2F − ‖TP̂X‖2F

]
≤ ‖TPX‖2F − ‖TP̂X‖2F .

The second statement then follows from the last inequality and (25).

Lemma 17. For any d× k matrix X with orthonormal columns,

‖PX− P̃X‖2F ≤ O(ε2)d2(P, LX) +O(ε3)‖PX‖2F ,∣∣∣‖PX‖2F − ‖P̃X‖2F
∣∣∣ ≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F .

Proof. By the property of subspace embedding, we have ‖TPX−TP̃X‖2F = (1±ε)‖PX−P̃X‖2F ,
‖TPX‖2F = (1±ε)‖PX‖2F and d2(TP, LX) = ‖TP−TPXX>‖2F = (1±ε)‖P−PXX>‖2F =
(1± ε)d2(P, LX). Then

(1 + ε)‖PX− P̃X‖2F ≤ ‖TPX−TP̃X‖2F
≤ O(ε2)d2(TP, LX) +O(ε3)‖TPX‖2F
≤ O(ε2)d2(P, LX) +O(ε3)‖PX‖2F

where the second inequality is from Lemma 15. This then leads to the first statement.

For the second statement, we have

(1 + ε)‖PX‖2F − (1− ε)‖P̃X‖2F ≤ ‖TPX‖2F − ‖TP̃X‖2F
≤ O(ε)d2(TP, LX) +O(ε)‖TPX‖2F
≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F

which leads to

‖PX‖2F − ‖P̃X‖2F ≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F .

A similar argument bounds ‖P̃X‖2F − ‖PX‖2F , which completes the proof.

We represent Theorem 6 in a general form for `2-error geometric fitting problems.

Theorem 6. Suppose Algorithm 2 takes ε ∈ (0, 1/2], t1 = t2 = O(max
{
k
ε2 , log s

δ

}
), ` =

O(d
2

ε2 ), q = O(max{log d
ε , log sk

ε }) as input, and sets the failure probability of each local sub-
space embedding to δ′ = δ/2s. Let P̃ = PVV>. Then with probability at least 1− δ, there exists
a constant c0 ≥ 0, such that for any set of k points L,

(1− ε)d2(P,L)− ε‖PX‖2F ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L) + ε‖PX‖2F
where X is an orthonormal matrix whose columns span L. The total communication is O(skd/ε2)

and the total time is O
(

nnz(P) + s
[
d3k
ε4 + k2d2

ε6

]
log d

ε log sk
δε

)
.

Proof. The proof of correctness follows the proof of Theorem 3, replacing the use of Lemma 4 with
Lemma 17.

On each node vi, the subspace embedding takes time O(nnz(Pi)), and the randomized SVD takes
timeO(qt1`d+t21(`+d)); on the central coordinator, the randomized SVD takes timeO(qt1(st1)d+
t21(st1 +d)) since Y hasO(st1) non-zero rows. The total running time then follows from the choice
of the parameters. The total communication cost follows from the fact that the algorithm only sends
Σi

(t1),Vi
(t1) from each node to the central coordinator.
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