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Appendix
We present Theorem 2 in the main text again, and provide the proof here.

Theorem 2. Real-time reconstruction: Given a signal f ∈ LΩ
2,β passed through an IAF encoder with

known thresholds, and given that the spikes satisfy a certain minimum density supi∈Z(ti+1−ti) = δ

for some δ < Ω
π , we can construct a causal real-time decoder that reconstructs a function f̃t(t) using

the recursive algorithm in Equations 11 and 12, s.t.

|f(t)− f̃t(t)| ≤
c

1− δΩ
π

‖f‖2,β(1 + t)−β (1)

, where c depends only on δ, Ω and β.
Moreover, if we use a finite number of iterations K at every step, we obtain the following error.

|f(t)− f̃Kt (t)| ≤ c
1−

(
δΩ
π

)K+1

1− δΩ
π

‖f‖2,β(1 + t)−β +

(
δΩ

π

)K+1 1 + δΩ
π

1− δΩ
π

‖f‖2 (2)

Proof. We start with a few preliminaries, and the definition of a constant c that will be used later in
the proof. These preliminary notions are also provided in [1]. We define a local maximum function
on f :

f#(t) = sup
|u|≤δ

|f(t+ u)| (3)

Note the following two properties of f#(t) for f ∈ LΩ
2,β , with a function pα(t) such that p̂α(ω) = 1

for ω ∈ [−Ω,Ω], and pα ∈ L1,α, for some α ≥ β. Here, ∗ denotes the convolution operator.

|
∞∑
i=1

f(si)1[ti,ti+1](t)| ≤ f#(t) pointwise (4)

f#(t) = (f ∗ pα)#(t) ≤ (|f | ∗ p#
α )(t) (5)

As a consequence of equation (5), we obtain the following bound on the L2,β norm of the local
maximum function (3), using a function pα(t) as described above.

‖f#‖2,β ≤ inf
pα
‖p#
α ‖1,α‖f‖2,β (6)

We denote infpα ‖p#
α ‖1,α for some α ≥ β by c, which depends only on δ, Ω and β.

We now bound the L2 norm of the error incurred using a decoder acting on all the spikes in a finite
time period T , i.e. {ti}i:|ti|≤T , and show that this error is decaying in T .

We consider that after the first approximation AT f with a finite number of spikes, we can construct
{ti}i:|ti|>T such that supi:|ti|>T (ti+1 − ti) is less than the required δ. Thus we can construct an

1



operator A as long as it is not acting directly on f , where A is defined as in Theorem 1 in the main
text. The adjoint operators of A and AT for f ∈ LΩ

2 are A∗ and A∗T respectively.

A∗f =
∑
i∈Z

f(si)(sincΩ ∗ 1[ti,ti+1]) (7)

A∗T f =
∑

i:|ti|≤T

f(si)(sincΩ ∗ 1[ti,ti+1]) (8)

Equation 7 is shown in [2], and Equation 8 follows similarly.
We first define f̃T as the result of the following iteration, i.e. f̃T = limk→∞ f̃kT .

f̃0
T = AT f (9)

f̃1
T = (I −A)f̃0

T +AT f = (I −A)AT f +AT f (10)

f̃kT = (I −A)f̃k−1
T +AT f =

k∑
n=0

(I −A)nAT f (11)

To derive ‖f − f̃T ‖2 for f ∈ LΩ
2 , we first note that the error incurred using a finite number of spikes

is the same as the error in the adjoint space, i.e. ‖f − f̃T ‖2 = ‖f −
∑∞
n=0(I −A)nAT f‖2 =

‖f −
∑∞
n=0(I −A∗)nA∗T f‖2

We can thus work exclusively with the adjoint operatorsA∗f andA∗T f in order to derive ‖f − f̃T ‖2
[3].

‖f − f̃T ‖2 =

∥∥∥∥∥
∞∑
n=0

(I −A∗)n(A∗f −A∗T f)

∥∥∥∥∥
2

(12)

≤
∞∑
n=0

‖(I −A∗)n(A∗f −A∗T f)‖2 (13)

≤
∞∑
n=0

(
δΩ

π
)n+1 ‖A∗f −A∗T f‖2 (14)

=
1

1− δΩ
π

∥∥∥∥∥∥
∑

i:|ti|>T

f(si)1[ti,ti+1] ∗ sincΩ

∥∥∥∥∥∥
2

(15)

≤ 1

1− δΩ
π

∥∥∥∥∥∥
∑

i:|ti|>T

f(si)1[ti,ti+1]

∥∥∥∥∥∥
2

(16)

≤ 1

1− δΩ
π

∥∥∥f#
1R\[−T,T ]

∥∥∥
2

(using (5)) (17)

=
1

1− δΩ
π

∥∥∥f#
1R\[−T,T ](1 + |t|)β(1 + |t|)−β

∥∥∥
2

(18)

≤ 1

1− δΩ
π

∥∥∥f#
∥∥∥

2,β
sup

t∈R\[−T,T ]

(1 + |t|)−β (19)

≤ c

1− δΩ
π

‖f‖2,β (1 + T )−β (using (6)) (20)

, where c depends only on δ, Ω and β.

Now, only using a finite number of iterations, we have the following error bound.

‖f − f̃KT ‖2 =

∥∥∥∥∥
∞∑
n=0

(I −A∗)nA∗f −
K∑
n=0

(I −A∗)nA∗T f

∥∥∥∥∥
2

(21)

≤

∥∥∥∥∥
K∑
n=0

(I −A∗)n(A∗f −A∗T f)

∥∥∥∥∥
2

+

∥∥∥∥∥
∞∑

n=K+1

(I −A∗)nA∗f

∥∥∥∥∥
2

(22)

≤ c
1−

(
δΩ
π

)K+1

1− δΩ
π

‖f‖2,β(1 + T )−β +

(
δΩ

π

)K+1 1 + δΩ
π

1− δΩ
π

‖f‖2 (23)
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We now construct f̃t(t) using spikes {ti}i:|ti|≤t at every time t. Thus, at every time t, we have a
causal decoder that uses all spikes that have already occurred. We bound the error at every time t as
the following.

|f(t)− f̃t(t)| ≤ sup
τ∈R
|f(τ)− f̃t(τ)| (24)

≤ ‖f − f̃t‖2 (25)

≤ c

1− δΩ
π

‖f‖2,β (1 + t)−β (26)

Here, we used the fact that ‖x‖∞ ≤ ‖x‖2 ∀x ∈ L2 for the inequality in Equation 25, and Equation
20 for the inequality in Equation 26. The proof for Equation 2 follows similarly from Equation 23.
We note that as a new spike ti+1 arrives, we can calculate the new estimate as a function of the old
estimate due to the following.

f̃0
ti+1

= Ati+1
f = Atif +

(∫ ti+1

ti

f(τ)dτ

)
sinc(t− si) = f̃0

ti + g0
ti+1

(27)

We can carry the term g0
ti+1

forward, and track its effect on future iterations to calculate gkti+1
as a

function of gk−1
ti+1

, to obtain Equation 12 in the main text.
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