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Appendix

We present Theorem 2 in the main text again, and provide the proof here.

Theorem 2. Real-time reconstruction: Given a signal f € £8 g passed through an IAF encoder with
known thresholds, and given that the spikes satisfy a certain minimum density sup;cy (i1 —1t;) =9

for some § < % we can construct a causal real-time decoder that reconstructs a function f;(t) using
the recursive algorithm in Equations 11 and 12, s.t.
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, where ¢ depends only on 6, 2 and 3.
Moreover, if we use a finite number of iterations K at every step, we obtain the following error.
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Proof. We start with a few preliminaries, and the definition of a constant c that will be used later in
the proof. These preliminary notions are also provided in [[1]]. We define a local maximum function

on f:
f#(t) = sup |f(t+u)| 3)

lu|<é

Note the following two properties of {7 (t) for f € 552{ 5» With a function p,, (t) such that p, (w) = 1
forw € [—Q,Q), and p, € L1 4, for some o > (. Here, * denotes the convolution operator.

|Z F(si) L, 4, (t)] < f#(t) pointwise 4)
i=1
) = (Frpa)? () < (f1*pE)(1) (5)

As a consequence of equation @), we obtain the following bound on the L5 g norm of the local
maximum function , using a function p, (t) as described above.

#1125 < inf [1pZ l1,0ll fll2,5 (6)

We denote inf,,, |[p¥||1.o for some a > 3 by ¢, which depends only on §, 2 and j3.

We now bound the £, norm of the error incurred using a decoder acting on all the spikes in a finite
time period 7', i.e. {t;}.¢,|<7» and show that this error is decaying in 7".

We consider that after the first approximation A7 f with a finite number of spikes, we can construct
{ti}i;e,)>7 such that sup;,,, | (ti+1 — t;) is less than the required §. Thus we can construct an



operator .4 as long as it is not acting directly on f, where A is defined as in Theorem 1 in the main
text. The adjoint operators of A and Ar for f € LS are A* and A’ respectively.

A'f =3 flsi)(sincg * Dy, ) (7)
1€EZ

A;“f = Z f(si)(SinCQ * ]]-[ti,ti+1}) (3
it <T

Equation [7)is shown in [2], and Equation [§follows similarly.
We first define fT as the result of the following iteration, i.e. fT = limg 00 fT

fT = Arf 9
o= (I-Af+Arf=(1—A)Arf + Arf (10)
k
fFo= U=Af7 +Arf =) (I—A)"Arf (11)
n=0

To derive || f — fr||2 for f € LS, we first note that the error incurred using a finite number of spikes
is the same as the error in the adjoint space, ie. ||f — frllz = [|f — >, oI — A" Arf|, =
I1f = 20z — A" AL £,

We can thus work exclusively with the adjoint operators A* f and A% f in order to derive || f — fr |2
131
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n=0 2
< Z MATf = A, (13)
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, where ¢ depends only on 4, €2 and S3.

Now, only using a finite number of iterations, we have the following error bound.
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We now construct ft(t) using spikes {#;};.,|<¢ at every time ¢. Thus, at every time ¢, we have a
causal decoder that uses all spikes that have already occurred. We bound the error at every time ¢ as
the following.

1f(t) — fe(t)] < sgglf(T)fﬁ(T)\ (24)
< |f - fill2 (25)
< g 1l 0077 26)

s

Here, we used the fact that |z« < ||z||2 Vo € L5 for the inequality in Equation25] and Equation
[20] for the inequality in Equation[26] The proof for Equation [2| follows similarly from Equation 23]
We note that as a new spike ¢, arrives, we can calculate the new estimate as a function of the old
estimate due to the following.

- tit .
P = A = At ([ e sincte — s = 72+ 48 e
t;
We can carry the term 97(5)1' ., forward, and track its effect on future iterations to calculate gf L, asa
function of gfi;l, to obtain Equation 12 in the main text. O
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