
Appendix: Beta-Negative Binomial Process and Exchangeable Random
Partitions for Mixed-Membership Modeling

Logbeta Process

Denoting a transformed representation of the beta process as Q = −
∑∞
k=1 ln(1 − pk)δωk , then

for each A ⊂ Ω, using the Lévy-Khintchine theorem and (1), the Laplace transform of the random
variable Q(A) = −

∑
k:ωk∈A ln(1− pk) can be expressed as

E[e−sQ(A)] = exp
{∫

[0,1]×A [(1− p)s − 1] ν(dpdω)
}

= exp
{
−B0(A) [ψ(c+ s)− ψ(c)]

}
,

where ψ(x) = Γ′(x)
Γ(x) is the digamma function with ψ(c+ s)−ψ(c) =

∑∞
i=0

(
1
c+i −

1
c+i+s

)
. Thus

Q(A) is an infinitely divisible random variable, which is defined as the logbeta random variable as
Q(A) ∼ logBeta(B0(A), c). We further define the associated completely random measure as the
logbeta process Q ∼ logBP(B0, c), with Lévy measure ν(dqdω) = e−qc

1−e−q dqB0(dω). The logbeta
random variable is found to be useful to derive closed-form Gibbs sampling update equations for
model parameters, as shown below. We mention that the logbeta process presented here is the same
as the beta-stacy process of [1].

Proof for Lemma 2

By separating the atoms within the absolutely continuous space and the atoms with positive counts,
the conditional likelihood of the BNBP group size dependent mixed-membership model, as shown
in (5), can be rewritten as

f(z,m|r, B) = 1∏J
j=1mj !

{∏
k:n·k=0(1− pk)r·

}
·
{∏

k:n·k>0 p
n·k
k (1− pk)r·

∏J
j=1

Γ(njk+rj)
Γ(rj)

}
.

Let DJ := {ωk}k:n·k>0 denote the set of all observed atoms with positive counts, and let KJ :=
|DJ | denote its cardinality. Our goal is to marginalize out the beta process B to obtain the joint
distribution of the cluster assignments z and the group-size vector m. Fixing an arbitrary labeling
of the atoms in DJ from 1 to KJ , we may further rewrite the joint conditional likelihood as

f(z,m|r, B) = 1∏J
j=1mj !

e−Q(Ω\DJ )r·
∏KJ
k=1

[
pn·k
k (1− pk)r·

∏J
j=1

Γ(njk+rj)
Γ(rj)

]
, (15)

whereQ(Ω\DJ) := −
∑
k:nk=0 ln(1−pk) follows the logBeta(γ0, c) distribution in the prior. Since∫

[0,1]×Ω
pn(1 − p)rν(dpdω) = γ0

Γ(n)Γ(c+r)
Γ(c+n+r) and EB [e−Q(Ω\DJ )r· ] = e−γ0[ψ(c+r·)−ψ(c)], we may

marginalize B out of (15) with the Palm formula [2, 3, 4], leading to (6), which is a PMF that is
only related to the cluster sizes, regardless of their orders. Since the group sizes {mj}j themselves
are random, and the random cluster sizes {njk}k are exchangeable, we call (6) as the exchangeable
cluster probability function (ECPF) of the BNBP group size dependent mixed-membership model.

Proof for Lemma 3

As the group-size count vector m = (m1, . . . ,mJ)T can be generated as the summation of a
Poisson random number of i.i.d. random count vectors, its PMF can be expressed as

f(m|r, γ0, c) =

m·∑
K=1

Pois{K; γ0 [ψ(c+ r·)− ψ(c)]}
∑

∑K
k=1

n:k=m

K∏
k=1

DirMult(n:k|n·k, r)Digam(n·k|r·, c)

=

m·∑
K=1

γK0 e
−γ0[ψ(c+r·)−ψ(c)]

K!

∑
∑K
k=1

n:k=m

K∏
k=1

Γ(n·k)Γ(c+ r·)

Γ(c+ n·k + r·)

J∏
j=1

Γ(njk + rj)

njk!Γ(rj)
.

Using the ECPF in (6) and the multivariate distribution of the group size vectorm shown above, the
EPPF in (9) directly follows Bayes’ rule as

f(z|m, r, γ0, c) =
f(z,m|r, γ0, c)

f(m|r, γ0, c)
.
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Proof for Lemma 4

One may rewrite the ECPF in (6) as

f(zji, z
−ji,m|r, γ0, c) =

1∏J
j=1mj !

γ
K−jiJ
0 e−γ0[ψ(c+r·)−ψ(c)]

(
γ0rj
c+ r·

)δ
(K
−ji
J

+1)
(zji)

×
K−jiJ∏
k=1

Γ(n−ji·k + δk(zji))Γ(c+ r·)

Γ(c+ n−ji·k + δk(zji) + r·)

∏
j

Γ(n−jijk + δk(zji),+rj)

Γ(rj)

 ,
which directly leads to (10) via Bayes’ rule as

P (zji|z−ji,m, r, γ0, c) =
f(zji, z

−ji,m|r, γ0, c)∑K−jiJ +1

k=1 f(zji = k, z−ji,m|r, γ0, c)
.

Parameter Inference

Using both the conditional likelihood (5) and marginal likelihood (6), with the data augmentation
and marginalization techniques for the negative binomial distribution in [5, 6], we sample the model
parameters as

(γ0|−) ∼ Gamma
(
e0 +KJ ,

1

f0 + ψ(c+ r·)− ψ(c)

)
, (16)

(pk|−) ∼ Beta(n·k, c+ r·), (Q(Ω\DJ)|−) ∼ logBeta(γ0, c+ r·), (17)

(ljk|−) =

njk∑
t=1

ut, ut ∼ Bernoulli
(

rj
rj + t− 1

)
, (18)

(rj |−) ∼ Gamma

(
a0 +

KJ∑
k=1

ljk,
1

b0 +Q(Ω\DJ)−
∑KJ
k=1 ln(1− pk)

)
. (19)

To draw from the logBeta distribution x ∼ logBeta(γ0, c+ r·), we use its Laplace transform

E[e−sx] = exp {−γ0 [ψ(c+ r· + s)− ψ(c+ r·)]}
together with the random number generating technique developed in [7]. The only parameter that
we could not find an analytic conditional posterior is the concentration parameter c, for which we
use the griddy-Gibbs sampler [8] to sample from a discrete distribution

(c|−) ∝ f(z,m|r, γ0, c) (20)

over a grid of points 1
1+c = 0.01, 0.02, . . . , 0.99. Collapsed Gibbs sampling for the BNBP topic

model is implemented by iteratively running (12) and (16)-(20). The direct assignment Gibbs sam-
pler for the HDP-LDA is developed in [9] and also described in detail in [10].
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