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Abstract

The beta-negative binomial process (BNBP), an integer-valued stochastic process,
is employed to partition a count vector into a latent random count matrix. As the
marginal probability distribution of the BNBP that governs the exchangeable ran-
dom partitions of grouped data has not yet been developed, current inference for
the BNBP has to truncate the number of atoms of the beta process. This paper
introduces an exchangeable partition probability function to explicitly describe
how the BNBP clusters the data points of each group into a random number of
exchangeable partitions, which are shared across all the groups. A fully col-
lapsed Gibbs sampler is developed for the BNBP, leading to a novel nonparametric
Bayesian topic model that is distinct from existing ones, with simple implementa-
tion, fast convergence, good mixing, and state-of-the-art predictive performance.

1 Introduction

For mixture modeling, there is a wide selection of nonparametric Bayesian priors, such as the Dirich-
let process [1] and the more general family of normalized random measures with independent incre-
ments (NRMIs) [2, 3]. Although a draw from an NRMI usually consists of countably infinite atoms
that are impossible to instantiate in practice, one may transform the infinite-dimensional problem
into a finite one by marginalizing out the NRMI. For instance, it is well known that the marginal-
ization of the Dirichlet process random probability measure under multinomial sampling leads to
the Chinese restaurant process [4, 5]. The general structure of the Chinese restaurant process is
broadened by [5] to the so called exchangeable partition probability function (EPPF) model, leading
to fully collapsed inference and providing a unified view of the characteristics of various nonpara-
metric Bayesian mixture-modeling priors. Despite significant progress on EPPF models in the past
decade, their use in mixture modeling (clustering) is usually limited to a single set of data points.

Moving beyond mixture modeling of a single set, there has been significant recent interest in mixed-
membership modeling, i.e., mixture modeling of grouped data x1, . . . ,xJ , where each group xj =
{xji}i=1,mj consists of mj data points that are exchangeable within the group. To cluster the mj

data points in each group into a random, potentially unbounded number of partitions, which are
exchangeable and shared across all the groups, is a much more challenging statistical problem.
While the hierarchical Dirichlet process (HDP) [6] is a popular choice, it is shown in [7] that a wide
variety of integer-valued stochastic processes, including the gamma-Poisson process [8, 9], beta-
negative binomial process (BNBP) [10, 11], and gamma-negative binomial process (GNBP), can all
be applied to mixed-membership modeling. However, none of these stochastic processes are able
to describe their marginal distributions that govern the exchangeable random partitions of grouped
data. Without these marginal distributions, the HDP exploits an alternative representation known as
the Chinese restaurant franchise [6] to derive collapsed inference, while fully collapsed inference is
available for neither the BNBP nor the GNBP.
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The EPPF provides a unified treatment to mixture modeling, but there is hardly a unified treatment
to mixed-membership modeling. As the first step to fill that gap, this paper thoroughly investigates
the law of the BNBP that governs its exchangeable random partitions of grouped data. As directly
deriving the BNBP’s EPPF for mixed-membership modeling is difficult, we first randomize the
group sizes {mj}j and derive the joint distribution of {mj}j and their random partitions on a shared
list of exchangeable clusters; we then derive the marginal distribution of the group-size count vector
m = (m1, . . . ,mJ)T , and use Bayes’ rule to further arrive at the BNBP’s EPPF that describes the
prior distribution of a latent column-exchangeable random count matrix, whose jth row sums tomj .

The general method to arrive at an EPPF for mixed-membership modeling using an integer-valued
stochastic process is an important contribution. We make several additional contributions: 1) We
derive a prediction rule for the BNBP to simulate exchangeable random partitions of grouped data
governed by its EPPF. 2) We construct a BNBP topic model, derive a fully collapsed Gibbs sam-
pler that analytically marginalizes out not only the topics and topic weights, but also the infinite-
dimensional beta process, and provide closed-form update equations for model parameters. 3) The
straightforward to implement BNBP topic model sampling algorithm converges fast, mixes well,
and produces state-of-the-art predictive performance with a compact representation of the corpus.

1.1 Exchangeable Partition Probability Function

Let Πm = {A1, . . . , Al} denote a random partition of the set [m] = {1, 2, . . . ,m}, where there
are l partitions and each element i ∈ [m] belongs to one and only one set Ak from Πm. If P (Πm =
{A1, . . . , Al}|m) depends only on the number and sizes of the Ak’s, regardless of their order, then
it is called an exchangeable partition probability function (EPPF) of Πm. An EPPF of Πm is an
EPPF of Π := (Π1,Π2, . . .) if P (Πm|n) = P (Πm|m) does not depend on n, where P (Πm|n)
denotes the marginal partition probability for [m] when it is known the sample size is n. Such a
constraint can also be expressed as an addition rule for the EPPF [5]. In this paper, the addition rule
is not required and the proposed EPPF is allowed to be dependent on the group sizes (or sample
size if the number of groups is one). Detailed discussions about sample size dependent EPPFs
can be found in [12]. We generalize the work of [12] to model the partition of a count vector into a
latent column-exchangeable random count matrix. A marginal sampler for σ-stable Poisson-Kigman
mixture models (but not mixed-membership models) is proposed in [13], encompassing a large class
of random probability measures and their corresponding EPPFs of Π. Note that the BNBP is not
within that class and both the BNBP’s EPPF and perdition rule are dependent on the group sizes.

1.2 Beta Process

The beta process B ∼ BP(c,B0) is a completely random measure defined on the product space
[0, 1]× Ω, with a concentration parameter c > 0 and a finite and continuous base measure B0 over
a complete separable metric space Ω [14, 15] . We define the Lévy measure of the beta process as

ν(dpdω) = p−1(1− p)c−1dpB0(dω). (1)

A draw from B ∼ BP(c,B0) can be represented as a countably infinite sum as B =∑∞
k=1 pkδωk , ωk ∼ g0, where γ0 = B0(Ω) is the mass parameter and g0(dω) = B0(dω)/γ0

is the base distribution. The beta process is unique in that the beta distribution is not infinitely
divisible, and its measure on a Borel set A ⊂ Ω, expressed as B(A) =

∑
k:ωk∈A pk, could be

larger than one and hence clearly not a beta random variable. In this paper we will work with
Q(A) = −

∑
k:ωk∈A ln(1− pk), defined as a logbeta random variable, to analyze model properties

and derive closed-form Gibbs sampling update equations. We provide these details in the Appendix.

2 Exchangeable Cluster/Partition Probability Functions for the BNBP

The integer-valued beta-negative binomial process (BNBP) is defined as

Xj |B ∼ NBP(rj , B), B ∼ BP(c,B0), (2)

where for the jth group rj is the negative binomial dispersion parameter and Xj |B ∼ NBP(rj , B)
is a negative binomial process such that Xj(A) =

∑
k:ωk∈A njk, njk ∼ NB(rj , pk) for each Borel

set A ⊂ Ω. The negative binomial distribution n ∼ NB(r, p) has probability mass function (PMF)
fN (n) = Γ(n+r)

n!Γ(r) p
n(1− p)r for n ∈ Z, where Z = {0, 1, . . .}. Our definition of the BNBP follows
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those of [10, 7, 11], where for inference [10, 7] used finite truncation and [11] used slice sampling.
There are two recent papers [16, 17] that both marginalize out the beta process from the negative
binomial process, with the predictive structures of the BNBP described as the negative binomial
Indian buffet process (IBP) [16] and “ice cream” buffet process [17], respectively. Both processes
are also related to the “multi-scoop” IBP of [10], and they all generalize the binary-valued IBP [18].
Different from these two papers on infinite random count matrices, this paper focuses on generating
a latent column-exchangeable random count matrix, each of whose row sums to a fixed observed
integer. This paper generalizes the techniques developed in [17, 12] to define an EPPF for mixed-
membership modeling and derive truncation-free fully collapsed inference.

The BNBP by nature is an integer-valued stochastic process as Xj(A) is a random count for each
Borel set A ⊂ Ω. As the negative binomial process is also a gamma-Poisson mixture process, we
can augment (2) as a beta-gamma-Poisson process as

Xj |Θj ∼ PP(Θj), Θj |rj , B ∼ ΓP[rj , B/(1−B)], B ∼ BP(c,B0),

where Xj |Θj ∼ PP(Θj) is a Poisson process such that Xj(A) ∼ Pois[Θj(A)], and Θj |B ∼
ΓP[rj , B/(1−B)] is a gamma process such that Θj(A) =

∑
k:ωk∈A θjk, θjk ∼ Gamma[rj , pk/(1−

pk)], for each Borel set A ⊂ Ω. The mixed-membership-modeling potentials of the BNBP become
clear under this augmented representation. The Poisson process provides a bridge to link count mod-
eling and mixture modeling [7], since Xj ∼ PP(Θj) can be equivalently generated by first drawing
a total random count mj := Xj(Ω) ∼ Pois[Θj(Ω)] and then assigning this random count to disjoint
disjoint Borel sets of Ω using a multinomial distribution.

2.1 Exchangeable Cluster Probability Function

In mixed-membership modeling, the size of each group is observed rather being random, thus al-
though the BNBP’s augmented representation is instructive, it is still unclear how exactly the integer-
valued stochastic process leads to a prior distribution on exchangeable random partitions of grouped
data. The first step for us to arrive at such a prior distribution is to build a sample size dependent
model that treats the number of data points to be clustered (partitioned) in each group as random.
Below we will first derive an exchangeable cluster probability function (ECPF) governed by the
BNBP to describe the joint distribution of the random group sizes and their random partitions over a
random, potentially unbounded number of exchangeable clusters shared across all the groups. Later
we will show how to derive the EPPF from the ECPF using Bayes’ rule.
Lemma 1. Denote δk(zji) as a unit point mass at zji = k, njk =

∑mj
i=1 δk(zji), and Xj(A) =∑

k:ωk∈A njk as the number of data points in group j assigned to the atoms within the Borel set
A ⊂ Ω. The Xj’s generated via the group size dependent model as

zji ∼
∑∞
k=1

θjk
Θj(Ω)δk, mj ∼ Pois(Θj(Ω)),

Θj ∼ ΓP[rj , B/(1−B)], B ∼ BP(c,B0) (3)

is equivalent in distribution to the Xj’s generated from a BNBP as in (2).

Proof. With B =
∑∞
k=1 pkδωk and Θj =

∑∞
k=1 θjkδωk , the joint distribution of the cluster indices

zj = (zj1, . . . , zjmj ) given Θj and mj can be expressed as p(zj |Θj ,mj) =
∏mj
i=1

θjzji∑∞
k′=1

θjk′
=

1
(
∑∞
k=1 θjk)mj

∏∞
k=1 θ

njk
jk ,which is not in a fully factorized form. Asmj is linked to the total random

mass Θj(Ω) with a Poisson distribution, we have the joint likelihood of zj and mj given Θj as

f(zj ,mj |Θj) = f(zj |Θj ,mj)Pois(mj ,Θj(Ω)) = 1
mj !

∏∞
k=1 θ

njk
jk e−θjk , (4)

which is fully factorized and hence amenable to marginalization. Since θjk ∼ Gamma[rj , pk/(1 −
pk)], we can marginalize θjk out analytically as f(zj ,mj |rj , B) = EΘj [f(zj ,mj |Θj)], leading to

f(zj ,mj |rj , B) = 1
mj !

∏∞
k=1

Γ(njk+rj)
Γ(rj)

p
njk
k (1− pk)rj . (5)

Multiplying the above equation with a multinomial coefficient transforms the prior distribution
for the categorical random variables zj to the prior distribution for a random count vector as
f(nj1, . . . , nj∞|rj , B) =

mj !∏∞
k=1 njk!f(zj ,mj |rj , B) =

∏∞
k=1 NB(njk; rj , pk). Thus in the prior,
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for each group, the sample size dependent model in ( 3) draws njk ∼ NB(rj , pk) random number of
data points independently at each atom. With Xj :=

∑∞
k=1 njkδωk , we have Xj |B ∼ NBP(rj , B)

such that Xj(A) =
∑
k:ωk∈A njk, njk ∼ NB(rj , pk).

The Lemma below provides a finite-dimensional distribution obtained by marginalizing out the
infinite-dimensional beta process from the BNBP. The proof is provided in the Appendix.
Lemma 2 (ECPF). The exchangeable cluster probability function (ECPF) of the BNBP, which de-
scribes the joint distribution of the random count vectorm := (m1, . . . ,mJ)T and its exchangeable
random partitions z = (z11, . . . , zJmJ ), can be expressed as

f(z,m|r, γ0, c) =
γ
KJ
0 e−γ0[ψ(c+r·)−ψ(c)]∏J

j=1mj !

∏KJ
k=1

[
Γ(n·k)Γ(c+r·)
Γ(c+n·k+r·)

∏J
j=1

Γ(njk+rj)
Γ(rj)

]
, (6)

where KJ is the number of observed points of discontinuity for which n·k > 0, r := (r1, . . . , rJ)T ,
r· :=

∑J
j=1 rj , n·k :=

∑J
j=1 njk, and mj ∈ Z is the random size of group j.

2.2 Exchangeable Partition Probability Function and Prediction Rule

Having the ECPF does not directly lead to the EPPF for the BNBP, as an EPPF describes the distri-
bution of the exchangeable random partitions of the data groups whose sizes are observed rather than
being random. To arrive at the EPPF, first we organize z into a random count matrix NJ ∈ ZJ×KJ ,
whose jth row represents the partition of the mj data points into the KJ shared exchangeable clus-
ters and whose order of these KJ nonzero columns is chosen uniformly at random from one of the
KJ ! possible permutations, then we obtain a prior distribution on a BNBP random count matrix as

f(NJ |r, γ0, c) = 1
KJ !

∏J
j=1

mj !∏KJ
k=1 njk!

f(z,m|r, γ0, c)

=
γ
KJ
0 e−γ0[ψ(c+r·)−ψ(c)]

KJ !

∏KJ
k=1

Γ(n·k)Γ(c+r·)
Γ(c+n·k+r·)

∏J
j=1

Γ(njk+rj)
njk!Γ(rj)

. (7)

As described in detail in [17], although the matrix prior does not appear to be simple, direct calcula-
tion shows that this random count matrix has KJ ∼ Pois {γ0 [ψ(c+ r·)− ψ(c)]} independent and
identically distributed (i.i.d.) columns that can be generated via

n:k ∼ DirMult(n·k, r1, . . . , rJ), n·k ∼ Digam(r·, c), (8)
where n:k := (n1k, . . . , nJk)T is the count vector for the kth column (cluster),
the Dirichlet-multinomial (DirMult) distribution [19] has PMF DirMult(n:k|n·k, r) =

n·k!∏J
j=1 njk!

Γ(r·)
Γ(n·k+r·)

∏J
j=1

Γ(njk+rj)
Γ(rj)

, and the digamma distribution [20] has PMF Digam(n|r, c) =

1
ψ(c+r)−ψ(c)

Γ(r+n)Γ(c+r)
nΓ(c+n+r)Γ(r) , where n = 1, 2, . . .. Thus in the prior, the BNBP generates a Poisson

random number of clusters, the size of each cluster follows a digamma distribution, and each cluster
is further partitioned into the J groups using a Dirichlet-multinomial distribution [17].

With both the ECPF and random count matrix prior governed by the BNBP, we are ready to derive
both the EPPF and prediction rule, given in the following two Lemmas, with proofs in the Appendix.
Lemma 3 (EPPF). Let

∑∑K
k=1 n:k=m denote a summation over all sets of count vectors with∑K

k=1 n:k = m, where m· =
∑J
j=1mj and n·k ≥ 1. The group-size dependent exchangeable

partition probability function (EPPF) governed by the BNBP can be expressed as

f(z|m, r, γ0, c) =

γ
KJ
0∏J

j=1mj !

∏KJ
k=1

[
Γ(n·k)Γ(c+r·)
Γ(c+n·k+r·)

∏J
j=1

Γ(njk+rj)
Γ(rj)

]
∑m·
K′=1

γK
′

0

K′!

∑∑K′
k′=1

n:k′=m

∏K′

k′=1
Γ(n·k′ )Γ(c+r·)
Γ(c+n·k′+r·)

∏J
j=1

Γ(njk′+rj)

njk′ !Γ(rj)

, (9)

which is a function of the cluster sizes {njk}k=1,KJ , regardless of the orders of the indices k’s.

Although the EPPF is fairly complicated, one may derive a simple prediction rule, as shown below,
to simulate exchangeable random partitions of grouped data governed by this EPPF.
Lemma 4 (Prediction Rule). With y−ji representing the variable y that excludes the contribution
of xji, the prediction rule of the BNBP group size dependent model in (3) can be expressed as

P (zji = k|z−ji,m, r, γ0, c) ∝


n−ji·k

c+n−ji·k +r·
(n−jijk + rj), for k = 1, . . . ,K−jiJ ;

γ0
c+r·

rj , if k = K−jiJ + 1.
(10)
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Figure 1: Random draws from the EPPF that governs the BNBP’s exchangeable random partitions of
10 groups (rows), each of which has 50 data points. The parameters of the EPPF are set as c = 2,
γ0 = 12

ψ(c+
∑
j rj)−ψ(c)

, and (a) rj = 1, (b) rj = 10, or (c) rj = 100 for all the 10 groups. The jth row
of each matrix, which sums to 50, represents the partition of the mj = 50 data points of the jth group over
a random number of exchangeable clusters, and the kth column of each matrix represents the kth nonempty
cluster in order of appearance in Gibbs sampling (the empty clusters are deleted).

2.3 Simulating Exchangeable Random Partitions of Grouped Data

While the EPPF (9) is not simple, the prediction rule (10) clearly shows that the probability of
selecting k is proportional to the product of two terms: one is related to the kth cluster’s overall
popularity across groups, and the other is only related to the kth cluster’s popularity at that group
and that group’s dispersion parameter; and the probability of creating a new cluster is related to γ0,
c, r· and rj . The BNBP’s exchangeable random partitions of the group-size count vectorm, whose
prior distribution is governed by (9), can be easily simulated via Gibbs sampling using (10).

Running Gibbs sampling using (10) for 2500 iterations and displaying the last sample, we show in
Figure 1 (a)-(c) three distinct exchangeable random partitions of the same group-size count vector,
under three different parameter settings. It is clear that the dispersion parameters {rj}j play a
critical role in controlling how overdispersed the counts are: the smaller the {rj}j are, the more
overdispersed the counts in each row and those in each column are. This is unsurprising as in the
BNBP’s prior, we have njk ∼ NB(rj , pk) and n:k ∼ DirMult(n·k, r1, . . . , rJ). Figure 1 suggests
that it is important to infer rj rather than setting them in a heuristic manner or fixing them.

3 Beta-Negative Binomial Process Topic Model

With the BNBP’s EPPF derived, it becomes evident that the integer-valued BNBP also governs a
prior distribution for exchangeable random partitions of grouped data. To demonstrate the use of
the BNBP, we apply it to topic modeling [21] of a document corpus, a special case of mixture
modeling of grouped data, where the words of the jth document xj1, . . . , xjmj constitute a group
xj (mj words in document j), each word xji is an exchangeable group member indexed by vji in
a vocabulary with V unique terms. We choose the base distribution as a V dimensional Dirichlet
distribution as g0(φ) = Dir(φ; η, . . . , η), and choose a multinomial distribution to link a word to a
topic (atom). We express the hierarchical construction of the BNBP topic model as

xji ∼ Mult(φzji), φk ∼ Dir(η, . . . , η), zji ∼
∑∞
k=1

θjk
Θj(Ω)δk, mj ∼ Pois(Θj(Ω)),

Θj ∼ ΓP
(
rj ,

B
1−B

)
, rj ∼ Gamma(a0, 1/b0), B ∼ BP(c,B0), γ0 ∼ Gamma(e0, 1/f0). (11)

Let nvjk :=
∑mj
i=1 δv(xji)δk(zji). Multiplying (4) and the data likelihood f(xj |zj ,Φ) =∏V

v=1

∏∞
k=1(φvk)nvjk , where Φ = (φ1, . . . ,φ∞), we have f(xj , zj ,mj |Φ,Θj) =∏∞

k=1

∏V
v=1 nvjk!

mj !

∏∞
k=1

∏V
v=1 Pois(nvjk;φvkθjk). Thus the BNBP topic model can also be con-

sidered as an infinite Poisson factor model [10], where the term-document word count matrix
(mvj)v=1:V, j=1:J is factorized under the Poisson likelihood as mvj =

∑∞
k=1 nvjk, nvjk ∼

Pois(φvkθjk), whose likelihood f({nvjk}v,k|Φ,Θj) is different from f(xj , zj ,mj |Φ,Θj) up to
a multinomial coefficient.

The full conditional likelihood f(x, z,m|Φ,Θ) =
∏J
j=1 f(xj , zj ,mj |Φ,Θj) can be further

expressed as f(x, z,m|Φ,Θ) =
{∏∞

k=1

∏V
v=1 φ

nv·k
vk

}
·
{∏∞

k=1

∏J
j=1 θ

njk
jk e−θjk∏J

j=1mj !

}
, where the

marginalization of Φ from the first right-hand-side term is the product of Dirichlet-multinomial dis-
tributions and the second right-hand-side term leads to the ECPF. Thus we have a fully marginalized
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likelihood as f(x, z,m|γ0, c, r) = f(z,m|γ0, c, r)
∏KJ
k=1

[
Γ(V η)

Γ(n·k+V η)

∏V
v=1

Γ(nv·k+η)
Γ(η)

]
. Directly

applying Bayes’ rule to this fully marginalized likelihood, we construct a nonparametric Bayesian
fully collapsed Gibbs sampler for the BNBP topic model as

P (zji = k|x,z−ji, γ0,m, c, r)∝


η+n−jivji·k

V η+n−ji·k
· n−ji·k
c+n−ji·k +r·

· (n−jijk + rj), for k = 1, . . . ,K−jiJ ;

1
V · γ0

c+r·
· rj , if k = K−jiJ + 1.

(12)

In the Appendix we include all the other closed-form Gibbs sampling update equations.

3.1 Comparison with Other Collapsed Gibbs Samplers

One may compare the collapsed Gibbs sampler of the BNBP topic model with that of latent Dirichlet
allocation (LDA) [22], which, in our notation, can be expressed as

P (zji = k|x, z−ji,m, α,K) ∝
η+n−jivji·k

V η+n−ji·k
· (n−jijk + α), for k = 1, . . . ,K, (13)

where the number of topics K and the topic proportion Dirichlet smoothing parameter α are both
tuning parameters. The BNBP topic model is a nonparametric Bayesian algorithm that removes the
need to tune these parameters. One may also compare the BNBP topic model with the HDP-LDA
[6, 23], whose direct assignment sampler in our notation can be expressed as

P (zji = k|x, z−ji,m, α, r̃) ∝


η+n−jivji·k

V η+n−ji·k
· (n−jijk + αr̃k), for k = 1, . . . ,K−jiJ ;

1
V · (αr̃∗), if k = K−jiJ + 1;

(14)

where α is the concentration parameter for the group-specific Dirichlet processes Θ̃j ∼ DP(α, G̃),
and r̃k = G̃(ωk) and r̃∗ = G̃(Ω\DJ) are the measures of the globally shared Dirichlet process G̃ ∼
DP(γ0, G̃0) over the observed points of discontinuity and absolutely continuous space, respectively.

Comparison between (14) and (12) shows that distinct from the HDP-LDA that combines a topic’s
global and local popularities in an additive manner as (n−jijk + αr̃k), the BNBP topic model com-

bines them in a multiplicative manner as n−ji·k
c+n−ji·k +r·

· (n−jijk + rj). This term can also be rewritten

as the product of n−ji·k and
n−jijk +rj

c+n−ji·k +r·
, the latter of which represents how much the jth document

contributes to the overall popularity of the kth topic. Therefore, the BNBP and HDP-LDA have dis-
tinct mechanisms to automatically shrink the number of topics. Note that while the BNBP sampler
in (12) is fully collapsed, the direct assignment sampler of the HDP-LDA in (14) is only partially
collapsed as neither the globally shared Dirichlet process G̃ nor the concentration parameter α are
marginalized out. To derive a collapsed sampler for the HDP-LDA that marginalizes out G̃ (but still
not α), one has to use the Chinese restaurant franchise [6], which has cumbersome book-keeping as
each word is indirectly linked to its topic via a latent table index.

4 Example Results

We consider the JACM1, PsyReview2, and NIPS123 corpora, restricting the vocabulary to terms that
occur in five or more documents. The JACM corpus includes 536 documents, with V = 1539 unique
terms and 68,055 total word counts. The PsyReview corpus includes 1281 documents, with V =
2566 and 71,279 total word counts. The NIPS12 corpus includes 1740 documents, with V = 13, 649
and 2,301,375 total word counts. To evaluate the BNBP topic model4 and its performance relative to
that of the HDP-LDA, which are both nonparametric Bayesian algorithms, we randomly choose 50%

1http://www.cs.princeton.edu/∼blei/downloads/
2http://psiexp.ss.uci.edu/research/programs data/toolbox.htm
3http://www.cs.nyu.edu/∼roweis/data.html
4Matlab code available in http://mingyuanzhou.github.io/
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Figure 2: The inferred number of topicsKJ for the first 1500 Gibbs sampling iterations for the (a) HDP-LDA
and (b) BNBP topic model on JACM. (c)-(d) and (e)-(f) are analogous plots to (a)-(c) for the PsyReview and
NIPS12 corpora, respectively. From bottom to top in each plot, the red, blue, magenta, black, green, yellow,
and cyan curves correspond to the results for η = 0.50, 0.25, 0.10, 0.05, 0.02, 0.01, and 0.005, respectively.

of the words in each document as training, and use the remaining ones to calculate per-word heldout
perplexity. We set the hyperparameters as a0 = b0 = e0 = f0 = 0.01. We consider 2500 Gibbs
sampling iterations and collect the last 1500 samples. In each iteration, we randomize the ordering
of the words. For each collected sample, we draw the topics (φk|−) ∼ Dir(η + n1·k, . . . , η +
nJ·k), and the topics weights (θjk|−) ∼ Gamma(njk + rj , pk) for the BNBP and topic proportions
(θk|−) ∼ Dir(nj1 + αr̃1, . . . , njKJ + αr̃KJ ) for the HDP, with which the per-word perplexity is

computed as exp
(
− 1

mtest
··

∑
v

∑
jm

test
vj ln

∑
s

∑
k φ

(s)
vk θ

(s)
jk∑

s

∑
v

∑
k φ

(s)
vk θ

(s)
jk

)
, where s ∈ {1, . . . , S} is the index

of a collected MCMC sample, mtest
vj is the number of test words at term v in document j, and

mtest =
∑
v

∑
jm

test
vj . The final results are averaged over five random training/testing partitions.

The evaluation method is similar to those used in [24, 25, 26, 10]. Similar to [26, 10], we set the
topic Dirichlet smoothing parameter as η = 0.01, 0.02, 0.05, 0.10, 0.25, or 0.50. To test how the
algorithms perform in more extreme settings, we also consider η = 0.001, 0.002, and 0.005. All
algorithms are implemented with unoptimized Matlab code. On a 3.4 GHz CPU, the fully collapsed
Gibbs sampler of the BNBP topic model takes about 2.5 seconds per iteration on the NIPS12 corpus
when the inferred number of topics is around 180. The direct assignment sampler of the HDP-LDA
has comparable computational complexity when the inferred number of topics is similar. Note that
when the inferred number of topics KJ is large, the sparse computation technique for LDA [27, 28]
may also be used to considerably speed up the sampling algorithm of the BNBP topic model.

We first diagnose the convergence and mixing of the collapsed Gibbs samplers for the HDP-LDA
and BNBP topic model via the trace plots of their samples. The three plots in the left column of
Figures 2 show that the HDP-LDA travels relatively slowly to the target distributions of the number
of topics, often reaching them in more than 300 iterations, whereas the three plots in the right column
show that the BNBP topic model travels quickly to the target distributions, usually reaching them
in less than 100 iterations. Moreover, Figures 2 shows that the chains of the HDP-LDA are taking
in small steps and do not traverse their distributions quickly, whereas the chains of the BNBP topic
models mix very well locally and traverse their distributions relatively quickly.

A smaller topic Dirichlet smoothing parameter η generally supports a larger number of topics, as
shown in the left column of Figure 3, and hence often leads to lower perplexities, as shown in
the middle column of Figure 3; however, an η that is as small as 0.001 (not commonly used in
practice) may lead to more than a thousand topics and consequently overfit the corpus, which is
particularly evident for the HDP-LDA on both the JACM and PsyReview corpora. Similar trends
are also likely to be observed on the larger NIPS2012 corpus if we allow the values of η to be
even smaller than 0.001. As shown in the middle column of Figure 3, for the same η, the BNBP
topic model, usually representing the corpus with a smaller number of topics, often have higher
perplexities than those of the HDP-LDA, which is unsurprising as the BNBP topic model has a
multiplicative control mechanism to more strongly shrink the number of topics, whereas the HDP
has a softer additive shrinkage mechanism. Similar performance differences have also been observed
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Figure 3: Comparison between the HDP-LDA and BNBP topic model with the topic Dirichlet smoothing pa-
rameter η ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.25, 0.50}. For the JACM corpus: (a) the posterior
mean of the inferred number of topics KJ and (b) per-word heldout perplexity, both as a function of η, and (c)
per-word heldout perplexity as a function of the inferred number of topics KJ ; the topic Dirichlet smoothing
parameter η and the number of topics KJ are displayed in the logarithmic scale. (d)-(f) Analogous plots to
(a)-(c) for the PsyReview corpus. (g)-(i) Analogous plots to (a)-(c) for the NIPS12 corpus, where the results of
η = 0.002 and 0.001 for the HDP-LDA are omitted.

in [7], where the HDP and BNBP are inferred under finite approximations with truncated block
Gibbs sampling. However, it does not necessarily mean that the HDP-LDA has better predictive
performance than the BNBP topic model. In fact, as shown in the right column of Figure 3, the
BNBP topic model’s perplexity tends to be lower than that of the HDP-LDA if their inferred number
of topics are comparable and the η is not overly small, which implies that the BNBP topic model is
able to achieve the same predictive power as the HDP-LDA, but with a more compact representation
of the corpus under common experimental settings. While it is interesting to understand the ultimate
potentials of the HDP-LDA and BNBP topic model for out-of-sample prediction by setting the
η to be very small, a moderate η that supports a moderate number of topics is usually preferred
in practice, for which the BNBP topic model could be a preferred choice over the HDP-LDA, as
our experimental results on three different corpora all suggest that the BNBP topic model could
achieve lower-perplexity using the same number of topics. To further understand why the BNBP
topic model and HDP-LDA have distinct characteristics, one may view them from a count-modeling
perspective [7] and examine how they differently control the relationship between the variances and
means of the latent topic usage count vectors {(n1k, . . . , nJk)}k.

We also find that the BNBP collapsed Gibbs sampler clearly outperforms the blocked Gibbs sampler
of [7] in terms of convergence speed, computational complexity and memory requirement. But a
blocked Gibbs sampler based on finite truncation [7] or adaptive truncation [11] does have a clear
advantage that it is easy to parallelize. The heuristics used to parallelize an HDP collapsed sampler
[24] may also be modified to parallelize the proposed BNBP collapsed sampler.

5 Conclusions

A group size dependent exchangeable partition probability function (EPPF) for mixed-membership
modeling is developed using the integer-valued beta-negative binomial process (BNBP). The ex-
changeable random partitions of grouped data, governed by the EPPF of the BNBP, are strongly in-
fluenced by the group-specific dispersion parameters. We construct a BNBP nonparametric Bayesian
topic model that is distinct from existing ones, intuitive to interpret, and straightforward to imple-
ment. The fully collapsed Gibbs sampler converges fast, mixes well, and has state-of-the-art predic-
tive performance when a compact representation of the corpus is desired. The method to derive the
EPPF for the BNBP via a group size dependent model is unique, and it is of interest to further inves-
tigate whether this method can be generalized to derive new EPPFs for mixed-membership modeling
that could be introduced by other integer-valued stochastic processes, including the gamma-Poisson
and gamma-negative binomial processes.

8



References
[1] T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Statist., 1973.
[2] E. Regazzini, A. Lijoi, and I. Prünster. Distributional results for means of normalized random

measures with independent increments. Annals of Statistics, 2003.
[3] A. Lijoi and I. Prünster. Models beyond the Dirichlet process. In N. L. Hjort, C. Holmes,

P. Müller, and S. G. Walker, editors, Bayesian nonparametrics. Cambridge Univ. Press, 2010.
[4] D. Blackwell and J. MacQueen. Ferguson distributions via Pólya urn schemes. The Annals of
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